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Molybdenum disulfide (MoS2) and related transition metal chal-
cogenides can replace expensive precious metal catalysts such

as Pt for the hydrogen evolution reaction (HER). The relations
between the nanoscale properties and HER activity of well-

controlled 2H and Li-promoted 1T phases of MoS2, as well as

an amorphous MoS2 phase, have been investigated and a de-
tailed comparison is made on Mo@S and Mo@Mo bond analysis

under operando HER conditions, which reveals a similar bond
structure in 1T and amorphous MoS2 phases as a key feature in

explaining their increased HER activity. Whereas the distinct
bond structure in 1T phase MoS2 is caused by Li+ intercalation

and disappears under harsh HER conditions, amorphous MoS2

maintains its intrinsic short Mo@Mo bond feature and, with
that, its high HER activity. Quantum-chemical calculations indi-

cate similar electronic structures of small MoS2 clusters serving
as models for amorphous MoS2 and the 1T phase MoS2, show-

ing similar Gibbs free energies for hydrogen adsorption (DGH*)
and metallic character.

Scalable electrochemical proton reduction (hydrogen evolution

reaction, HER) is crucial for realizing large-scale storage of re-
newable energy. Water splitting requires efficient and robust

catalysts, which are composed of earth-abundant elements.
The most active metal catalyst for HER is Pt, which is scarce

and thus makes scale-up of water electrolysis to terawatt (TW)

scale too costly.[1] Molybdenum disulfide (MoS2), one of the
most studied transition metal chalcogenides (TMCs), has re-
ceived substantial attention because of its unique physiochem-
ical properties, such as a tunable band gap,[2] high catalytic ac-

tivity,[3] and high electron mobility.[4] These properties allow it
to be exploited in transistors,[5] metalloenzymes,[6] and, at a

practical scale, as the active phase in industrial catalysts for hy-
drotreatment of oil fractions.[7] The ability to activate hydrogen

reversibly also explains its promise for catalyzing hydrogen

evolution in the context of electrochemical water splitting.[8]

Not surprisingly, the edge sites of MoS2 nanocatalysts have

been identified as active HER sites by Jaramillo and co-work-
ers.[9] Since then, tremendous efforts have been devoted to en-

gineering the surface structure of MoS2 to preferentially
expose these edge sites to improve HER performance.[10]

Different polymorphs of MoS2 exist in the form of 2H (trigo-

nally coordinated), 1T (octahedrally coordinated), and 3R
phases (rhombohedral).[3, 11] 2H-MoS2 is the thermodynamically

stable two-dimensional (2D) phase with semiconductor proper-
ties (band gap&1.9 eV for monolayer, 1.2 eV for bulk),[12] a low

electron mobility, and a limited number of HER-active (edge)
sites. These properties render this phase less attractive for elec-

trocatalytic applications[2, 13] than the octahedral 1T phase,

which is metallic and six orders of magnitude more conducti-
ve.[13a] The improved charge transfer kinetics and the affinity

for binding H atoms on 1T-MoS2 are reported to be responsible
for the substantially enhanced HER activity compared to the

2H phase. However, the underlying mechanism of the high
HER activity of the 1T phase has yet to be elucidated.[14] As the

1T phase can be formed from 2H-MoS2 by intercalation of cat-

ions (e.g. , Li+ , Na+),[15] it is usually characterized by distorted
structural domains.[16] Aside from 2H and 1T phases, amor-

phous MoSx (x = 2–3) has also been extensively investigated in
the past as a hydrotreatment catalyst and as a cathode materi-
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al in lithium-ion batteries.[17] Furthermore, it was re-
cently reported by Hu and other groups that this

form of MoS2 is a highly active electrocatalyst for
HER.[8b, 18] Although Mo edge sites of 2H-MoS2 have

been experimentally identified as the active HER
sites, the question of what causes the superior cata-

lytic performances of 1T and amorphous phase MoS2

remains unclear, which adds to the challenge of un-
raveling the HER mechanism in amorphous

MoS2.[11, 17b,c, 19]

Here, we show how the structure and surface
properties of 2H, 1T, and amorphous MoS2 influence
the HER activity and stability by a combined theory

as well as ex situ and operando X-ray spectroscopy
approach. In comparison to 2H-MoS2, shorter Mo@S

and Mo@Mo bonds were observed in both 1T and

amorphous MoS2 thin film electrodes. Besides, both
core level Mo 3d and valence band photoemission

spectra indicate that 1T and amorphous phase MoS2

exhibit a similar electronic structure. The short

Mo@Mo bond in 1T phase MoS2 is caused by lithium
intercalation and gradually changes back to the 2H

phase accompanied by a decrease in HER activity at

high overpotentials. By contrast, amorphous MoS2

(Am-MoS2) retains its intrinsic (short) Mo@S and

Mo@Mo bond structure as well as high HER activity after 24 h
electrochemical testing under the same conditions. Electro-

chemical operando X-ray absorption spectroscopy was per-
formed to probe the local bond and electronic structure of

MoS2 under HER conditions. The results show that the ob-

served short Mo@Mo bonds play a key role in determining the
activity of both 1T and amorphous phase MoS2 electrocatalysts

for HER.
2H and amorphous MoS2 films were prepared by plasma-

enhanced atomic layer deposition (PEALD) on glassy carbon
plates at 450 and 250 8C, respectively, whereas the 1T phase
was synthesized by lithium intercalation of the as-deposited

2H-MoS2 (see the Supporting Information for details). The HER
electrocatalytic activity of as-prepared MoS2 films was assessed

in 0.1 m H2SO4 in a typical three-electrode electrochemical cell.
As shown in Figure 1, both cyclic voltammetry (CV) and linear

sweep voltammetry (LSV) curves present higher current densi-
ties for 1T and amorphous MoS2, as compared to the 2H

phase. However, even though 1T and amorphous MoS2 have
comparable current densities initially, the catalytic activity of
the 1T phase gradually decreases during the stability test,

whereas Am-MoS2 maintained its higher initial activity (Fig-
ure 1 d). This particular behavior led us to investigate further

the electronic and structural properties of the materials.
We used X-ray absorption spectroscopy at the Mo K-edge to

probe the electronic as well as local geometric structure of

these films. Ex situ X-ray absorption near-edge spectra (XANES)
of MoS2 films before and after HER stability tests recorded

under a grazing incidence angle of 0.38 (grazing incidence X-
ray absorption spectroscopy)[23] are shown in Figure 2. The sup-

pression of features A and D in 1T (Figure 2 d) compared to
2H-MoS2 emphasizes its distinct bond structure. Importantly,

features A and D reappear for 1T-MoS2 after 24 h HER stability
testing, which implies that the 1T phase is not stable under

the HER conditions and gradually changes back to 2H-MoS2.
Feature D is absent for the amorphous phase MoS2 both

before and after the HER, indicating its stable bond structure

(Figure 2 g), which is in contrast to 2H-MoS2. Absorption edge
features in the XANES spectra are very sensitive to the elec-

tronic properties of the atoms being probed:[20] the less ex-
pressed shoulder at the edge and the shift of the white line

for 1T-MoS2 compared to 2H-MoS2 are indicative of the struc-
tural differences. Simulations of the Mo-K edge XANES spectra
of MoS2 with hexagonal (2H phase) and monoclinic (1T phase

with Li intercalation) symmetry were performed to understand
these differences. The red curves (Figure 2 j, k) represent calcu-
lated spectra based on the model structure and the blue
curves are calculated taking into account broadening by core-

hole lifetime effects.[21] The fitted XANES spectra in both cases
reproduce the experimental features of 2H- and 1T-MoS2 well,

which confirms their assignment. As monoclinic MoS2 shows
octahedral Mo coordination with a shorter bond distance than
2H-MoS2 upon Li intercalation, we may conclude that the as-

prepared 1T-MoS2 in this study has a distorted bond structure.
For further comparison, ex situ grazing incidence extended X-

ray fine structure (GI-EXAFS) data of MoS2 films were recorded
before and after stability measurements. The Fourier transform

(FT) profiles in R-space (Figure 2 b, c) present two main peaks

at 2.40 a and 3.16 a (Table 1) corresponding to the nearest
Mo@S and Mo@Mo bonds, respectively. The coordination

number (CN) values shown in Table 1 suggest that there is no
complete shell of S atoms around the central Mo at the surface

of the MoS2 films, which can be due to termination by Mo
edges or oxidation by emersion from the electrolyte and air ex-

Figure 1. a, b) Cyclic voltammetry (CV; a) and linear sweep voltammetry (LSV; b) curves of
2H-, 1T-, and Am-MoS2 films corrected by uncompensated resistance with scan rates of
50 mV s@1 for CV and 5 mV s@1 for LSV. c) Tafel slopes obtained from LSV curves in (b).
d) Chronopotentiometric responses (V–t) recorded at a constant current density of
3 mA cm@2. Electrolyte: 0.1 m H2SO4.
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posure.[22] By contrast, FT curves of 1T-MoS2 exhibit a distinct
decrease of the Mo@Mo bond length (short Mo@Mo bond)

from 3.16 a to 2.75 a (Table 1), which corresponds to the char-
acteristic bond length found in 1T phase MoS2.[24, 25] Evidence

for this feature can be also found by the larger Debye–Waller
(s2) factor of both Mo@S and Mo@Mo bonds in 1T phase com-
pared to 2H-MoS2 (see the Supporting Information, Table S1)

although the normal Mo@Mo bond (3.16 a) is still present in
1T.[24] Nevertheless, this shortened Mo@Mo bond disappeared

after 24 h HER stability testing, which is consistent with the ob-
servations from XANES that 1T changes back to the 2H phase

under these conditions. In the case of Am-MoS2, a similarly

short Mo@S and Mo@Mo bond structure was found (Fig-
ure 2 h, i). The similarities between the 1T and amorphous

phases in XANES and EXAFS are also reflected in the Mo 3d
core level and valence band photoemission spectra (Figure S3,

Tables S2 and S3), shifting consistently to lower binding ener-
gies. Therefore, we may suggest that the short Mo@Mo bond

features observed in both 1T-MoS2 and Am-MoS2 play a key
role in enhancing the HER activity of MoS2 catalysts. Distinct
from the 1T phase, the short Mo@Mo bond in Am-MoS2 was re-
tained after 24 h of HER stability testing. Considering the HER

stability of Am-MoS2, we may conclude that the bond structure
in Am-MoS2 is intrinsic (viz. not caused by Li intercalation), re-
sulting in a higher stability during 24 h HER stability testing.

Several structural models for amorphous MoS2 or MoS3 have
been proposed in previous reports by for example, Hibble

et al.[17b] and Weber et al.[11] However, based on our experimen-
tal observations, we cannot conclusively assign a structure to

Am-MoS2. Nonetheless, the disorder in amorphous MoS2 re-

ported in this work is consistent with earlier reports.[17a,d] It is
worth noting that even though the HER activity of 1T-MoS2 de-

creases gradually (Figure 1 d), the corresponding overpotential
is still much lower than that of 2H-MoS2, which we have re-

cently attributed to the presence of remaining Li adsorbed on
the 1T-MoS2 even after loss of intercalated Li.[18c] Inductively

Figure 2. a, d, g) Mo K-edge XANES spectra of 2H-MoS2 (a), 1T-MoS2 (d), and Am-MoS2 (g) before (solid line) and after (dash line) stability test. b, e, h) Mo K-
edge Fourier transform EXAFS (k3-weighted) of 2H-MoS2 (b), 1T-MoS2 (e), and Am-MoS2 (h) before stability test. c, f, i) Mo K-edge Fourier transform EXAFS (k3-
weighted) of 2H-MoS2 (c), 1T-MoS2 (f), and Am-MoS2 (i) after stability test. j, k) Mo-K edge XANES spectra of experimental data (black curve) and calculated sim-
ulation based on hexagonal (j, inset) and monoclinic (k, inset) structure model (purple, yellow, and green balls corresponds to Mo, S, and Li atoms, respective-
ly) ; red curves represent simulated spectra whereas blue curves represent simulated spectra convoluted with the Mo 1s core-hole lifetime.
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coupled plasma optical emission spectroscopy (ICP-OES) analy-
sis of MoS2 films after stability tests confirms the presence of

adsorbed Li on 1T-MoS2 (Table S4), and the adsorption of Li on
MoS2 was observed to promote the activity of MoS2-catalyzed

hydrogen evolution reaction in our recent work.[18c]

To follow the structural evolution of the different MoS2 cata-

lysts under HER conditions, an operando electrochemical cell
(Figure S5) was developed and applied for X-ray absorption
spectroscopy experiments. The operando EXAFS spectra of dif-

ferent MoS2 polymorphs in dry state and at set potentials of
+ 0.3 V and @0.3 V versus RHE in 0.1 m H2SO4 are shown in
Figure 3. Table 2 summarizes the EXAFS fitting results. It can be
seen that, despite a small reduction in CN for the Mo@Mo

shell, the Mo@Mo and Mo@S bond distances as well as the Mo-
S CN remained the same within the accuracy range, pointing

at the overall structural stability of 2H-MoS2 under HER condi-

tions. For both 1T and Am-MoS2, a shortened Mo@S bond
could be identified as well. In contrast to the disappearance of

short Mo@S and Mo@Mo bonds after the 24 h stability test
(Figure 2), the operando EXAFS data of 1T-MoS2 confirms the

Table 1. Summary of the ex situ grazing incidence Mo K-edge EXAFS
spectroscopic features obtained for MoS2 films under grazing incidence
reflecting information about the top &3 nm of the material.[a]

Sample Shell Fresh Spent
CN R [a] CN R [a]

2H-MoS2

Mo@S 4.25 2.402 4.80 2.405
Mo@Mo 2.26 3.155 2.98 3.158

1T-MoS2

Mo@S 3.06 2.419 5.86 2.365
Mo@S
(short)

1.78 2.019 – –

Mo@Mo 1.70 3.148 2.26 3.145
Mo@Mo
(short)

0.96 2.748 – –

Am-MoS2

Mo@S 5.29 2.430 3.50 2.368
Mo@S
(short)

0.60 1.767 0.56 1.802

Mo@Mo
(short)

1.08 2.778 1.57 2.824

[a] Detailed fitting parameters can be found in Table S1.

Figure 3. a–c) Mo K-edge Fourier transform EXAFS (k2-weighted) of 2H- (a), 1T- (b), and Am- (c) MoS2 under operando electrochemical conditions. Gray region
represents R-range for fitting. d, e) X-ray photoemission spectra of Mo 3d (d) and S 2p (e) before and after (spent) operando XAS measurements.
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retention of short Mo@S bonds under various potentials. On

the one hand, the operando XAS was not carried out at graz-
ing incidence angle and therefore reflects mostly bulk film in-

formation. On the other hand, the operando XAS measure-
ments were performed at @0.3 V vs. RHE with a current density

of only @200 mA cm@2 (Figure S6), while the 24 hours stability

tests were performed at @3 mA cm@2.
The surface electronic structures of 2H, 1T, and amorphous

MoS2 films were probed by XPS before and after operando
XAS measurements (Figure 3 d, e). The Mo 3d core level compo-

nent describing the Mo@S bond for pristine 1T and Am-MoS2

was shifted negatively by around 0.9 eV from that of the 2H

phase, which is a characteristic feature for both 1T and amor-

phous phase MoS2.[18, 26] However, the core level of MoIV@S
(Mo 3d5/2 228.6 eV) for 1T-MoS2 shifted back to 229.5 eV after

operando XAS tests, suggesting a transformation from 1T to
2H-MoS2 at the surface. By contrast, the shift in Mo 3d core

level spectra for Am-MoS2 (ca. 0.7 eV) remained unchanged
after electrochemical tests (Figure 3 d). Raman spectroscopy
was then used to further support the presence of different

MoS2 phases (Figure S18).[16] There is a redshift of E1
2g and A1g

peaks for 1T-MoS2 compared to those of 2H-MoS2, which stays

constant before and after operando XAS measurements. The
phase stability of the bulk 1T-MoS2 film under mild reaction
conditions is consistent with the EXAFS fitting results (Table 2).
Even though sulfur dimers of Am-MoS2 have been reported to

be involved in proton reduction,[19c] the decreased intensity of
sulfur dimers (Figure 3 e) here apparently did not influence the
HER activity (Figure S6).

We utilized grazing incidence X-ray diffraction (GIXRD) to in-
spect the materials before and after operando XAS measure-

ments. In the diffraction patterns of MoS2 films (Figure S15),
the diffraction peaks at 2q= 14.28 (0 0 2) and 33.38 (1 0 1) indi-

cative of 2H-MoS2 are absent in the pristine 1T phase MoS2

sample. However, the re-appearance of (0 0 2) and (1 0 1) reflec-
tions for the spent 1T-MoS2 sample suggests that the material

gradually changes back to 2H-MoS2. In addition, scanning elec-
tron microscopy (SEM) images (Figure S16) reveal obvious mor-

phology changes for the 1T phase after HER tests. By contrast,
neither Raman spectroscopy (Figure S18) nor GIXRD show any

peaks before and after HER testing for Am-MoS2. So far, we
may conclude that even under mild HER conditions, the sur-

face bond structure for the 1T phase would disappear and
change back into the 2H phase, whereas amorphous MoS2 re-

tains its intrinsic short Mo@Mo bond feature and with that its
high HER activity.

By using density functional theory (DFT), we compared the
(electronic) structures of Mo3S9 and Mo6S17 clusters as a motif
for Am-MoS2 with those of 2H-MoS2 and 1T-MoS2 in order to

understand differences in the Gibbs free energy of hydrogen
adsorption (DGH*), which is considered as a relevant descriptor
for HER activity.[13b, 27] The Mo@Mo and Mo@S bond distances
found for the two small clusters correspond to those observed

in 1T-MoS2 and are shorter than those in 2H-MoS2 (Figure 4
and Figures S21 and S22). Together with the structural data de-

rived from EXAFS for our samples, this provides good grounds

to hypothesize that Am-MoS2 consists of small MoSx clusters
with an increased S/Mo ratio and shortened Mo@Mo and

Mo@S bonds, similar to what is known for crystalline 1T-MoS2.
We then explored how these structures affect the HER per-

formance for which we computed the Gibbs free energies of
hydrogen adsorption (DGH*, structures see Figures S23–S27).

Table 2. Summary of ex-situ grazing incidence Mo K-edge EXAFS spectro-
scopic features obtained for MoS2 films under operando HER
conditions.[a]

Sample Shell Dry + 0.3 V @0.3 V
CN R [a] CN R [a] CN R [a]

2H-MoS2

Mo@S 4.28 2.385 4.33 2.391 4.71 2.403
Mo@Mo 3.06 3.154 2.70 3.142 2.11 3.165

1T-MoS2

Mo@S 6.66 2.354 5.82 2.416 3.78 2.406
Mo@S
(short)

5.90 2.004 0.96 1.835 0.34 1.827

Am-MoS2

Mo@S 4.60 2.443 3.04 2.401 2.30 2.407
Mo@S
(short)

0.36 1.775 0.38 1.644 0.58 1.795

[a] Detailed fitting parameters can be found in Table S5, S6, and S7.

Figure 4. a, b) Optimized Mo3S9 (a) and Mo6S17 clusters serving as models for
Am-MoS2 ; c) Schematic illustration of the structural evolution between crys-
talline 2H and 1T MoS2 phases ; normalized partial density of states (PDOS)
of (d) Mo3S9, (e) Mo6S17 clusters, (f) 2H-MoS2, and (g) 1T-MoS2.
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For optimum HER activity, the value of DGH* should be close to
zero.[28] For Mo3S9, a DGH* value of @0.06 eV was computed,

which is much more favorable than values of + 2.13 eV and
+ 0.78 eV for the basal planes of 2H-MoS2 and Li-stabilized 1T-

MoS2, respectively. As the hydrogen activation and formation
on MoS2 is known to occur at the edge terminations,[9a, 29] we

also computed DGH* for hydrogen adsorption on the Mo-
edges of 2H-MoS2 (@0.23 eV) and 1T-MoS2 (@0.10 eV). These
data confirm that the edges of the distorted 1T-MoS2 phase

are the preferred sites for HER in comparison to the edges of
2H-MoS2 and further suggest that small clusters also have a fa-
vorable DGH*. Figure 4 also gives the partial density of states
(PDOS; Figure 4 d–g) of the two investigated clusters, 1T-MoS2

and 2H-MoS2. It can be immediately seen that, similar to 1T-
MoS2, the Mo3S9 and Mo6S17 cluster models exhibit metallic

character with their Fermi level crossing the Mo 3d orbitals. In

contrast, 2H-MoS2 is a semiconductor with a band gap of
1.59 eV, which is consistent with valence band spectroscopy

(Figures S12 and S13) and earlier theoretical predictions.[30, 31]

The adsorption of hydrogen does not induce significant

changes to the electronic structures, although coupling is ob-
served between H s orbital and Mo d and S p orbitals, consis-

tent with weak bonding and high HER activity. The metallic

nature of the Mo3S9 and Mo6S17 clusters and 1T-MoS2 results in
a higher intrinsic electronic conductivity for these materials

than for the semiconducting 2H-MoS2. Therefore, in addition
to a more optimum free energy for hydrogen adsorption, the

enhanced HER activity of 1T-MoS2 and Am-MoS2 can be further
rationalized by a higher intrinsic electronic conductivity.

In summary, we have provided both experimental and theo-

retical evidence for the importance of the short Mo@Mo bond
structures of 1T and amorphous MoS2 in comparison to crystal-

line 2H-MoS2 for explaining the higher HER performance.
Whereas crystalline 1T-MoS2 stabilized by intercalated Li+ also

displays high performance, Li ions were found to dissolve in
the electrolyte during electrochemical testing, resulting in a
slow transformation back to the 2H-MoS2 phase and a con-

comitant decrease in HER activity. In contrast, amorphous MoS2

retains much of its high HER activity during prolonged

operation.
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