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INVARIANT UNIVERSALITY FOR QUANDLES AND

FIELDS

ANDREW D. BROOKE-TAYLOR, FILIPPO CALDERONI,
AND SHEILA K. MILLER

Abstract. We show that the embeddability relations for countable
quandles and for countable fields of any given characteristic other than 2
are maximally complex in a strong sense: they are invariantly universal.
This notion from the theory of Borel reducibility states that any analytic
quasi-order on a standard Borel space essentially appears as the restric-
tion of the embeddability relation to an isomorphism-invariant Borel
set. As an intermediate step we show that the embeddability relation of
countable quandles is a complete analytic quasi-order.

1. Introduction

The comparison of different equivalence relations in terms of Borel re-

ducibility has proven to be an extremely fruitful area of research, with im-

plications in diverse areas of mathematics, most notably in showing that

various classification programmes are impossible to complete satisfactorily.

See, for example, [Hjo00] for an introduction to the area; note however that

all necessary preliminaries for this paper will be provided in Section 2. The

area was initiated by the pioneering papers of H. Friedman and L. Stanley

and of Harrington, Kechris and Louveau [FS89, HKL90], with the former

paper in particular focused on the equivalence relation of isomorphism be-

tween countable structures. Indeed the set of all structures of a given type

with underlying set the natural numbers may be endowed with the topology

of a complete separable metric space, and in this framework the results of

descriptive set theory have been brought to bear on questions about equiv-

alence relations to great effect.

In the underlying descriptive set-theoretic machinery, there is nothing

that requires us to constrain investigation to equivalence relations, and re-

cently attention in this field has expanded to include quasi-orders (reflexive

and transitive binary relations), beginning with the work of Louveau and
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Rosendal [LR05]. A central example of a quasi-order is the embeddability re-

lation between countable structures of a given type. This also fits with previ-

ous work in category theory studying the complexity of different categories,

as for example in [PT80]. Indeed, there is a kind of “Church’s thesis for real

mathematics” that states that, assuming the objects in question are reason-

ably encoded as members of a standard Borel space, hands-on constructions

will invariably be Borel. Thus, from the functors between categories that

demonstrate universality one can expect to derive Borel reductions that re-

spect embeddings. For example, building on work of Przeździecki [Prz14]

in a category-theoretic context, the second author [Cal18] has shown that,

when κ is an uncountable cardinal satisfying certain assumptions, the em-

beddability relation between κ-sized graphs Borel reduces in a generalised

sense suitable for κ to embeddability between κ-sized torsion-free abelian

groups.

Louveau and Rosendal [LR05] showed that within the class of analytic

quasi-orders (see Section 2 for definitions) there are quasi-orders that are

maximal with respect to Borel reducibility — so called complete analytic

quasi-orders. Louveau and Rosendal furnish a number of examples, includ-

ing the embeddability relation between graphs. In fact, the restriction of the

graph embeddability relation to connected acyclic graphs — combinatorial

trees — is already complete analytic, a fact that we will make use of below.

We prove in Section 4 that the embeddability relation on quandles is com-

plete analytic. We also observe in Section 5 that an old result of Fried and

Kollár [FK82], when expressed in these terms, states that the embeddability

relation of fields is complete analytic.

When restricting to subclasses of structures, it is reasonable to consider

the case when the subclass is closed under isomorphism. Thus arises the no-

tion of invariant universality (Definition 3.1), first introduced by Camerlo,

Marcone and Motto Ros [CMMR13] building on fundamental observations

of S. Friedman and Motto Ros [FMR11]. Whilst invariant universality im-

poses significant requirements making it stronger than complete analyticity,

a general trend observed in [CMMR13, CMR18] is that in practice, when-

ever the relation of embeddability on some space of countable structures

is a complete analytic quasi-order, it is moreover invariantly universal with

respect to isomorphism.

In Section 3 of this paper we give the formal definition of invariant uni-

versality, and recall a special case of Theorem 4.2 of [CMMR13], which will

be our main tool for proving invariant universality. In Section 4 we first show
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that the embedding relation on countable quandles is a complete analytic

quasi-order, and then use this fact to show that the relation is invariantly

universal. We further observe that arguing similarly we obtain invariant uni-

versality of the embedding relations of related classes of countable structures

such as kei as LD-monoids. In Section 5 we turn to the embedding relation

on fields of a given characteristic other than 2. In this case, the fact that the

embeddability relation is complete analytic was essentially shown by Fried

and Kollár [FK82], and arguing using their construction we are able to show

that the relation is invariantly universal. Our results all add weight to the

trend mentioned above, and hint that in the search for a natural example

of a complete analytic quasi-order that is not invariantly universal, it might

be best to focus on relations other than embeddability.

2. Preliminaries

A standard Borel space is a pair (X,B) such that B is the σ-algebra

of Borel subsets of X with respect to some Polish topology on X. The

class of standard Borel spaces is closed under countable products, and a

Borel subset of a standard Borel space is standard Borel when viewed as a

subspace. Every uncountable standard Borel space is in fact isomorphic to

the Baire space N
N of all functions from N to N, with the Borel structure

generated by the product topology. We recall that this topology is generated

by all sets [s] = {g ∈ N
N | g ⊇ s} of end extensions of a given finite string

s. We also define the set (N)N as {x ∈ N
N | x is injective}, which is a closed

subset of the Baire space N
N and therefore a Polish space with the induced

topology. Given any Polish space, X, the set F (X) of closed subsets of X

is a standard Borel space when equipped with the Effros Borel structure,

namely, the σ-algebra generated by the sets

{C ∈ F (X) | C ∩ U 6= ∅},

where U is an open subset of X (see [Hjo00, Example 2.4] or [Kec95, Sec-

tion 12.C]). A Polish group is a topological group whose topology is Polish.

A well known example of a Polish group is S∞, the group of all bijections

from N to N. In fact, S∞ is a Gδ subset of the Baire space N
N and a topo-

logical group under the induced topology. We define Ns as [s] ∩ S∞. Note

that the set {Ns | s ∈ (N)<N} is a basis for S∞, where (N)<N denotes the

set of finite sequences of distinct natural numbers.

A subset A of a standard Borel space X is analytic, or Σ
1
1, if there is a

Polish space Y and some Borel set B ⊆ X×Y such that A is the projection

p(B) = {x ∈ X | ∃y ∈ Y ((x, y) ∈ B)}.
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A subset of a standard Borel space whose complement is analytic is called

co-analytic, or Π
1
1. Souslin’s Theorem (see [Kec95, Theorem 14.11]) states

that the Borel sets of a standard Borel space are precisely the sets that are

both Σ
1
1 and Π

1
1.

A function f : X → Y between two standard Borel spaces X and Y is

Borel if the inverse image under f of any Borel set is Borel. A corollary of

Souslin’s Theorem is that a function f : X → Y between standard Borel

spaces is Borel if and only if {(x, f(x)) ∈ X × Y | x ∈ X} is an analytic

subset of X × Y (see [Kec95, Theorem 14.12]).

A quasi-order is a reflexive and transitive binary relation. Any quasi-

order Q on a set X naturally induces an equivalence relation EQ on X

which is given by defining x EQ y if and only if x Q y and y Q x. In

the cases considered in this paper, Q will be the relation of embeddability

between structures, in which case EQ will be bi-embeddability, a coarsening

of the equivalence relation of isomorphism between structures.

A quasi-order Q on a standard Borel space X is a subset of X2 so we

say that the quasi-order Q is analytic (resp. Borel) if Q is analytic (resp. a

Borel) as a subset of X2 equipped with the product Borel structure. If Q is

analytic (or Borel), then so is EQ.

If G is a Polish group and there is a Borel action a of G on a standard

Borel space X, then we say that X is a standard Borel G-space and we de-

note by Ea the orbit equivalence relation induced by that action. When the

action is clear from the context we shall write EX
G

instead of Ea. Such equiva-

lence relations are often called G-equivalence relations. Every G-equivalence

relation is analytic by definition and it is well known that all the classes of

any G-equivalence relation are Borel (see [BK96, 2.3.3]). The stabilizer of

a point x in X is the subgroup Stab(x) := {g ∈ G | g · x = x}, where

g · x denotes the value of the action on the pair (g, x). We will use the fact

that each stabilizer is a closed subgroup of G (see [Kec95, 9.17]), and that

the set Subg(G) of closed subgroups of G is a Borel subset of F (G). Thus

Subg(G) is standard Borel space with the induced Borel structure.

In this paper we focus mainly on standard Borel spaces of countable

structures. If L is a countable (relational) language we denote by XL the

space of L-structures with domain N, whose topology is the one defined by

taking as basic open sets those of the form

{M ∈ XL | M |= R(n0, . . . , nk−1)}, {M ∈ XL | M 6|= R(n0, . . . , ki−1)},

for any k-tuples (n0, . . . , nk−1) of natural numbers and any relation R in L

of arity k = a(R). Such a space is Polish because it is homeomorphic to
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∏

R∈L 2
N
a(R)

. (An analogous definition can be given also for languages with

function symbols, see [BK96, Section 2.5].) Let S∞ act on XL continuosly

by the so-called logic action: for every g in S∞ and M, N ∈ XL we set

g · M = N if for all k-ary relations R in L and all k-tuples of natural

numbers (n0, . . . , nk−1), we have

N |= R(n0, . . . , nk) ⇐⇒ M |= R(g−1(n0), . . . , g
−1(nk)).

In other words, the structure g ·M is obtained by interpreting each relation

symbol as in M up to g, which is a permutation of natural numbers. Thus,

for any countable L, the space XL is a standard Borel S∞-space; and the

isomorphism relation on XL, usually denoted by ∼=L, coincides with the

orbit equivalence relation EXL

S∞
. Moreover notice that, for every M in XL,

we have equality between Stab(M) and the group of automorphisms of M,

Aut(M).

Given two quasi-orders P and R on the standard Borel spaces X and

Y , respectively, we say that P Borel reduces (or is Borel reducible) to R,

written P ≤B R, if and only if there is a Borel function f : X → Y such

that for every x, y in X

x P y ⇐⇒ f(x) R f(y).

Such an f is called a Borel reduction. We say that P is essentially R, denoted

P ∼B R, whenever P and R are Borel bi-reducible: that is, P ≤B R and

R ≤B P .

Louveau and Rosendal proved in [LR05] that among all Σ1
1 quasi-orders

there are ≤B-maximum elements called complete Σ
1
1 quasi-orders. One of

the most prominent examples of such a maximum element is the quasi-

order of embeddability between combinatorial trees. By a graph we mean a

structure for an irreflexive and symmetric binary relation symbol called the

edge relation. A combinatorial tree is a connected acyclic graph.

Let XGr be the space of graphs on N. Identifying each graph with the

characteristic function of its edge relation as above, XGr is a closed subset of

2N
2
, and thus is a Polish space. We denote by XCT the set of combinatorial

trees with vertex set N, and note that XCT is a Gδ subset of XGr (towards

this, first observe that the set of graphs with a path from m to n is open for

all m and n in N). Hence, XCT is a Polish space with the induced topology

(see for example [Kec95, Theorem 3.11]). For graphs S, T in XGr, we say

that S embeds, or S is embeddable into T , S ⊑Gr T , if and only if there is

a one-to-one function f : N → N which realizes an isomorphism between S
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and T ↾ Im(f). The quasi-order ⊑Gr is analytic because it is the set

{(S, T ) ∈ (XGr)
2 | ∃f ∈ (N)N(∀n,m ∈ N((n,m) ∈ S) ⇐⇒ (f(n), f(m)) ∈ T ))},

which is a projection of a closed subset of NN ×XGr ×XGr. We denote by

⊑CT the restriction of the quasi-order ⊑Gr to XCT.

Theorem 2.1 ([LR05, Theorem 3.1]). The relation ⊑CT of embeddability

between countable combinatorial trees is a complete Σ
1
1 quasi-order.

All trees built in the proof of Theorem 2.1 satisfy the further property

that there are no complete vertices, expressible by the formula:

(⊔) ∀x∃y(x 6= y ∧ (x, y) /∈ T ).

We denote by XCT⊔ the standard Borel space of combinatorial trees sat-

isfying (⊔). In [FMR11, Section 2] and [CMMR13, Section 3], the authors

modified the proof of Theorem 2.1 to prove the following proposition.

Proposition 2.2. There is a Borel X ⊆ XCT⊔ such that:

(i) the equality and isomorphism relations restricted to X, denoted respec-

tively by =X and ∼=X, coincide;

(ii) each graph in X is rigid; that is, it has no nontrivial automorphism;

(iii) for every Σ
1
1 quasi-order P on 2N, there exists an injective Borel reduc-

tion α 7→ Tα from P to ⊑X.

This result is a strengthening of Theorem 2.1. A closer look into [CMMR13]

shows that the map α 7→ Tα in (iii) of Proposition 2.2 is constructed by first

reducing P to a quasi-order, which is denote by ≤max and is defined on the

standard Borel space T of normal trees1 on 2×ω, and then reducing ≤max to

⊑CT⊔ . Both those reductions are injective. Next one defines X as the image

of the whole of T through the second map. Clearly, X is a Borel subset of

XCT⊔ as it is the injective image of a standard Borel space through a Borel

map [Kec95, Corollary 15.2]. Moreover, since ≤max is known to be a com-

plete Σ
1
1 quasi-order (see [LR05, Theorem 2.5]), so is the quasi-order ⊑X.

Therefore in contrast to items (i) and (ii), the bi-embeddability relation on

X will be highly nontrivial, and the graphs in X will have many nontrivial

endomorphisms.

1The precise definition of ≤max is not relevant to the results of this paper. We refer
the interested reader to [LR05, Definition 2.3].
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3. Invariant universality

The property of invariant universality (Definition 3.1) was first observed

in [CMMR13] for embeddability between countable combinatorial trees when

the equivalence relation is isomorphism.

Definition 3.1 ([CMMR13]). Let P be a Σ
1
1 quasi-order on some standard

Borel space X and let E be a Σ
1
1 equivalence subrelation of P . We say that

(P,E) is invariantly universal (or P is invariantly universal with respect to

E) if for every Σ
1
1 quasi-order R there is a Borel subset B ⊆ X which is

invariant with respect to E and such that P ↾ B is essentially R.

When we look at relations defined on a space of countable structures,

if (P,E) are as in Definition 3.1 and E is the relation of isomorphism, we

simply say that P is invariantly universal. By a classical result of Lopez-

Escobar (see [Kec95, Theorem 16.8]), a subset of a space of countable

structures is closed under isomorphism if and only if it is definable in

the logic Lω1ω. Examples of invariantly universal quasi-orders found in

[CMMR13, CMR18, CMMR18] include: linear isometric embeddability be-

tween separable Banach spaces; embeddability between countable groups;

and isometric embeddability on ultrametric Polish spaces with any pre-

scribed ill-founded set of distances.

The standard Borel space X defined in Section 2 is used to test whether a

pair (Q,E) satisfying the hypotheses of Definition 3.1 is invariantly univer-

sal. The following result, which is essentially a particular case of [CMMR13,

Theorem 4.2], gives a sufficient condition for the invariant universality of a

pair.

Theorem 3.2 ([CMMR13]). Let P be a Σ
1
1 quasi-order on a space XL of

L-structures with domain N such that ∼=L⊆ P . Suppose that the following

conditions hold:

(i) there is a Borel reduction f : X → XL of ⊑X to P ;

(ii) f is also a Borel reduction of =X (equivalently, of ∼=X) to ∼=L;

(iii) the map X → Subg(S∞), T 7→ Stab(f(T )) = Aut(f(T )) is Borel.

Then, for every Σ
1
1 quasi-order R there is a Borel B ⊆ XL such that R is

essentially P ↾ B.

One of the open questions about invariant universality in the paper by

Camerlo, Marcone, and Motto Ros is the following.
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Question 3.3 ([CMMR13, Question 6.3]). Is there a natural pair (P,E)

which is not invariantly universal but for which P is a complete analytic

quasi-order?

We stress the word “natural” — although examples of such pairs are

known, none of them consists of relations that arise in other contexts de-

fined over a space of mathematical objects. Our results show that the specific

examples of quandle embedding and of field embedding for fields of charac-

teristic not equal to 2 (each with the equivalence relation of isomorphism)

do not furnish examples for an affirmative answer to Question 3.3.

4. Quandles and related structures

In this section we use the reduction from graphs to quandles defined in

[BTM] to prove that embeddability between countable quandles is a com-

plete Σ1
1 quasi-order. Recall that a set Q with a binary relation ∗ is a quandle

if:

(a) ∀x, y, z ∈ Q(x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z));

(b) ∀x, z ∈ Q ∃!y ∈ Q(x ∗ y = z);

(c) ∀x ∈ Q(x ∗ x = x).

For an introduction to the theory of quandles, see for example [EN15].

We now recall the reduction appearing in [BTM]. For any T in XGr, let

QT be the quandle with underlying set N×{0, 1} and the binary operation

be ∗T defined as follows:

(∗) (u, i) ∗T (v, j) =

{

(v, j) if u = v or (u, v) ∈ T ,

(v, 1− j) otherwise.

It is straightforward to check that (QT , ∗T ) satisfies (a)–(c). In the sequel, we

denote the space of quandles with domain N by XQdl, which is a Gδ subset of

2N
3

and thus a Polish space. For every graph T in XGr, the quandle QT can

be easily coded as an isomorphic structure QT with domain N, for example

use the bijection N × 2 → N, (n, i) 7→ 2n + i. Clearly the map T 7→ QT is

Borel; in fact, it is continuous. Recall the following definition.

Definition 4.1. Suppose that there is a Borel action a of S∞ on some

standard Borel space and E = Ea. We say that E is S∞-complete if every

equivalence relation induced by a Borel action of S∞ on some standard Borel

space Borel reduces to E.

The main theorem of [BTM] is the following.
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Theorem 4.2 ([BTM, Theorem 3]). For all graphs S, T in XGr, we have

S ∼=Gr T ⇐⇒ QS
∼=Qdl QT .

Thus, the equivalence relation of isomorphism on the space of countable

quandles is S∞-complete.

Proving that S ∼=Gr T implies QS
∼=Qdl QT is straightforward but the con-

verse is considerably more involved. In the proof of Theorem 4.2, whenever

S contains complete vertices and ρ is an isomorphism from QS to QT , the

surjectivity of ρ is used substantially to recover an isomorphism of graphs

between S and T . Since embeddings do not need to be surjective, we cannot

prove an analog of Theorem 4.2 in the same way. However, if we restrict our

attention to XCT⊔ , a simpler argument allows us to prove Theorem 4.6.

Towards this we now analyze quandle embeddings. We recall the follow-

ing fact from [BTM].

Lemma 4.3 ([BTM, Lemma 1]). For every T in XGr and every A ⊆ N ,

the function IA : QT → QT defined by

IA(v, j) =

{

(v, j) if v ∈ A

(v, 1− j) otherwise

is an involution of QT .

For any quandle homomorphism ρ : QS → QT between quandles derived

from graphs, let us denote by ρV (v, i) and ρI(v, i) the first and the second

components of ρ(v, i), respectively.

Lemma 4.4. For every graph S satisfying (⊔) and graph T , every vertex v

of S, and every quandle homomorphism ρ : QS → QT ,

ρV (v, 0) = ρV (v, 1).

Proof. Since S satisfies (⊔), for every vertex v of S there is another vertex

v+ such that v and v+ are not adjacent in S. Then, by applying ρ to both

sides of

(v+, 0) ∗S (v, 0) = (v, 1)

we get ρ(v+, 0) ∗T ρ(v, 0) = ρ(v, 1), which implies that ρV (v, 0) = ρV (v, 1)

by definition (see (∗)). �

With these ingredients we can present a factorisation lemma for the

quandle homomorphisms we shall be interested in. We thank the anonymous

referee for their suggestion to streamline our results in this way.
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Lemma 4.5. Let S and T be graphs satisfying (⊔). Every embedding ρ : QS →

QT is obtained in the following manner: there is some graph embedding

h : S → T and some A ⊆ N such that

ρ(v, j) = IA(h(v), j).

Proof. Assume that S and T are graphs satisfying (⊔), and that ρ : QS →

QT is a quandle embedding. We define

h : S → T, v 7→ ρV (v, 0) = ρV (v, 1).

Lemma 4.4 shows that h is well-defined. Next we show that h is injective.

The equality h(v) = h(w) implies that

ρV (v, 0) = ρV (v, 1) = ρV (w, 0) = ρV (w, 1),

which implies in turn that ρ(v, 0) = ρ(w, i) for either i = 0 or i = 1. By

injectivity of ρ, we get i = 0 and v = w. It remains to show that h is a

graph embedding. Pick any two adjacent vertices u and v in S. Notice that

u and v are necessarily distinct and ρ(u, 0) ∗T ρ(v, 0) = ρ(v, 0). So either

ρV (u, 0) = ρV (v, 0) or (ρV (u, 0), ρV (v, 0)) ∈ T . The first cannot hold by

injectivity of h just shown. Thus it is the case that

(h(u), h(v)) = (ρV (u, 0), ρV (v, 0)) ∈ T.

On the other hand, if (u, v) /∈ S then (v, j) ∗S (u, 0) = (u, 1). By applying ρ

to both terms, we get ρ(v, j) ∗T ρ(u, 0) = ρ(u, 1). By Lemma 4.4, we have

that ρV (u, 0) equals ρV (u, 1), so necessarily ρI(u, 0) 6= ρI(u, 1) because ρ is

injective. Then, by definition of ∗T we have

(h(u), h(v)) = (ρV (u, 0), ρV (v, j)) /∈ T.

So h is a graph embedding.

To complete the proof of Lemma 4.5 let

A = {n ∈ N | ρI(n, i) 6= i}.

By construction we obtain that ρ(v, j) = IA(h(v), j) for every (v, i) ∈ QS.

�

Theorem 4.6. The relation ⊑Qdl of embeddability on the space of countable

quandles is a complete Σ
1
1 quasi-order.

Proof. It suffices to prove that ⊑CT⊔ Borel reduces to ⊑Qdl. We show that

the map from XCT⊔ to XQdl taking T to QT is a reduction. Assume that

f : S → T is a graph embedding, then consider the function θ : QS → QT
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such that (v, i) 7→ (f(v), i). Injectivity of θ is immediate. Moreover, for all

(u, i) and (v, j) in QS,

θ((u, i) ∗S (v, j)) = θ(u, i) ∗T θ(v, j).

In fact, by applying the definitions of θ and ∗S, we have

θ((u, i) ∗S (v, j)) =

{

(f(v), j) if u = v or (u, v) ∈ T ,

(f(v), 1− j) otherwise;

and the first condition is equivalent to f(u) = f(v) or (f(u), f(v)) ∈ T be-

cause f is a graph embedding. Therefore, θ witnesses that QS is embeddable

into QT .

Now the converse is a straightforward consequence of Lemma 4.5. When-

ever ρ : QS → QT is a quandle embedding we recover a graph embedding

h : S → T such that ρ(v, j) = IA(h(v), j). Therefore, S ⊑Gr T as de-

sired. �

Before proving the main result of this section we isolate a particular case

of Lemma 4.5.

Lemma 4.7. Let T be a graph satisfying (⊔). Every ρ in Aut(QT ) is ob-

tained from some graph automorphism h in Aut(T ) in the following manner:

there is an h in Aut(T ) and some A ⊆ N such that

ρ(v, j) = IA(h(v), j).

Proof. Every automorphism ρ of QT is in particular a self-embedding of

QT . Hence by Lemma 4.5, there is an embedding h : T → T such that

ρ(v, j) = IA(h(v), j). By construction h is surjective. �

We recall that QT is defined as the quandle with domain N which is

isomorphic to QT via the bijection N× 2 → N taking (n, i) to 2n+ i.

Theorem 4.8. The relation ⊑Qdl of embeddability between countable quan-

dles is an invariantly universal Σ1
1 quasi-order.

Proof. By Theorem 3.2 it suffices to prove that ⊑Qdl and ∼=Qdl together

satisfies (i)–(iii). Let f be the map from X to XQdl taking T to QT . By

Theorem 4.6 f Borel reduces ⊑X to ⊑Qdl, and by Theorem 4.2 we know

that ∼=X Borel reduces to ∼=Qdl via the same map, hence (i) and (ii) hold.

By Lemma 4.7, whenever ρ is in Aut(QT ) there exist some h in Aut(T )

and some A ⊆ N such that ρ(v, j) = IA(h(v), j). Further, since each T in

X is rigid, we have h = id and consequently ρ = IA for some A ⊆ N. Thus
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for every T in X, g is an automorphism of QT if and only if there is some

A ⊆ N such that for i ∈ {0, 1}

g(2v + i) =

{

2v + i v ∈ A

2v + 1− i otherwise.

Note in particular that this depends only on A, not on T .

To see that the T 7→ Aut(QT ) is Borel it suffices to show that the

preimage of every basic open set is Borel. For every fixed s in (N)<N, the

preimage of

{G ∈ Subg(S∞) | G ∩Ns 6= ∅}

through the map T 7→ Aut(QT ) is the set

{T ∈ X | Aut(QT ) ∩Ns 6= ∅} =























X if every n in dom s is either sent to
itself or, if not, swapped with its
successor if n is even and predeces-
sor if n is odd,

∅ otherwise,

which is certainly a Borel set. �

Corollary 4.9. For every Σ
1
1 quasi-order R there is an Lω1ω-elementary

class B of countable quandles such that the embeddability relation on B is

Borel bi-reducible with R.

In [BTM] other quandle-like structures are considered. A quandle is a

kei if and only if it satisfies

∀x∀y(x ∗ (x ∗ y) = y).

It is easy to check that for every T in XGr, QT defined as in Section 3 is

a kei. Therefore, arguing as in Theorem 4.8 one can prove the following.

Theorem 4.10. The embeddability relation between countable kei is invari-

antly universal.

Definition 4.11. An LD-monoid, or algebra satisfying Σ, is a structure over

the language {∗, ◦} consisting of two binary operational symbols satisfying

for all a, b, c the following identities

a ◦ (b ◦ c) = (a ◦ b) ◦ c,

(a ◦ b) ∗ c = a ∗ (b ∗ c),

a ∗ (b ◦ c) = (a ∗ b) ◦ (a ∗ c),

(a ∗ b) ◦ a = a ◦ b.
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The terminology “LD-monoid” was introduced by Dehornoy, while Laver

called such structures “algebras satisfying Σ.” Notice that if (M, ◦M) is a

group and ∗M is the conjugation operation on M ,

a ∗M b = a ◦M b ◦M a−1,

then (M, ◦M , ∗M) is an LD-monoid.

In [BTM, Theorem 4] the authors observed that the equivalence relation

of isomorphism between LD-monoids is S∞-complete.

Theorem 4.12. The quasi-order of embeddability between countable LD-

monoids is invariantly universal.

Proof. In [Wil14] J. Williams defines a Borel reduction h : XGr → XGp

from ⊑Gr to ⊑Gp. Then in [CMR18, Theorem 3.5] the second author and

Motto Ros observe that:

(a) h ↾ X is a Borel reduction from =X to ∼=Gp, and

(b) the map X → Subg(S∞) sending T to Aut(h(T )) is Borel.

For any G = (N, ◦G) in XGp, let M(G) = (N, ◦G, ∗G) be the LD-monoid

over N such that ∗G is interpreted as the conjugation operation in (N, ◦G).

That is, we define ∗G : N× N → N by

k ∗G m = k ◦G m ◦G k−1.

The LD-monoid M(G) is thus G with enriched structure — in model-

theoretic terms, it is a definitional expansion of G. Now we observe that

this map M : XGp → XLD−m to the space XLD−m of LD-monoids is a Borel

reduction, reducing group embeddability to the embeddability relation be-

tween LD-monoids, and reducing group isomorphism to LD-monoid isomor-

phism. Indeed, any homomorphism φ : G → H (resp. embedding) realizes

a homomorphism (resp. embedding) between the corresponding M(G) and

M(H) as

k ∗G m = n ⇐⇒ k ◦G m = n ◦G k

⇐⇒ φ(k) ◦H φ(m) = φ(n) ◦H φ(k)

⇐⇒ φ(k) ∗H φ(m) = φ(n).

Conversely, it is clear that any homomorphism (resp. embedding) from

M(G) to M(H) gives a group homomorphism (resp. embedding) G → H

between the underlying group structures by simply “forgetting” the ∗ oper-

ation.
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If we let f : X → XLD−m be the composition M ◦ h, verifying con-

ditions (i)–(iii) of Theorem 3.2 will give the invariant universality of bi-

embeddability on LD-monoids, as desired. Since h Borel reduces ⊑Gr to

⊑Gp, it follows that f Borel reduces ⊑X to embeddability on LD-monoids;

hence (i) holds. Condition (a) implies that f is a reduction from ∼=X to iso-

morphism on LD-monoids; hence we get (ii). Finally, since Aut(M(h(T ))) =

Aut(h(T )), condition (b) ensures that the map T 7→ Aut(M(h(T ))) is Borel,

which gives condition (iii) of Theorem 3.2. �

5. Fields

We denote by XFld,p the standard Borel space of fields of fixed character-

istic p. The relation of isomorphism on XFld,p is an S∞-complete equivalence

relation for every characteristic p — see [FS89, Theorem 10] and [Sha90]. In

this section we study the quasi-order of embeddability on XFld,p, which we

denote by ⊑Fld,p. Recall that, since any field has only trivial ideals, every

field homomorphism is one-to-one, and thus the notions of embeddability

and homomorphism coincide. Therefore we adopt the usual terminology

from algebra that if f : F → L is a homomorphism of fields we say that F

is a subfield of L, or that L is a field extension of F .

If F is a field and S is a set of algebraically independent elements over

F , we denote by F (S) the purely trascendental extension of F by S. If S

is a singleton, {s}, we write F (s) instead of F ({s}). Following the notation

of [FK82], for any prime p, any field F , and any set S of algebraically

independent elements over F , we denote by F (S)(S, p) the smallest field

extension of F (S) containing {s(n) | s ∈ S, n < ω}, where

• s(0) = s,

• s(n+ 1) is such that (s(n+ 1))p = s(n).

Notice that this uniquely determines F (S)(S, p) up to isomorphism. We use

the convention F (s)(s, p) = F ({s})({s}, p).

We now recall a construction of Fried and Kollár [FK82] that, given a

combinatorial tree T of infinite cardinality, produces a field KT , and fur-

thermore this construction respects embedding. For clarity we denote by

V = {v0, v1, . . .} the set of vertices of the graphs in XCT.

Definition 5.1 ([FK82, Section 3]). Fix a characteristic p equal to 0 or an

odd prime number, fix F a countable field of characteristic p, and fix an

increasing sequence of odd prime numbers {pn | n ∈ N} not containing p.

For any T in XCT, we define KT as the union of an increasing chain of fields
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Kn(T ). These fields Kn(T ) are defined recursively. First define

K0(T ) := F (V )(V, p0) and H0(T ) := {u+ v | (u, v) ∈ T}.

Next suppose that Kn(T ) and Hn(T ) have already been defined. Fix a

trascendental element tn over Kn(T ), and let Ln be the field Kn(T )(tn)({tn}, pn+1).

Now we define Kn+1(T ) as the splitting field over Ln of the set of polyno-

mials

Pn = {x2 − (tn − a) | a ∈ Hn(T )}.

Further, we define Hn+1(T ) to be a set containing exactly one root of each

of the polynomials in Pn.

The next two lemmas summarize the essential properties of the map

sending any T of XCT to KT . They were implicitly obtained in the paper of

Fried and Kollár [FK82].

Lemma 5.2. If there is a graph embedding from S to T , then KS is a

subfield of KT .

In fact, Fried and Kollár [FK82] proved inductively that if there is a

graph embedding from S to T , then each Kn(S) is a subfield of Kn(T ).

Lemma 5.3. Let φ : KS → KT be a homomorphism.

(a) For every n in N, φ maps Hn(S) into Hn(T ). In particular, we have

φ[H0(S)] ⊆ H0(T ).

(b) Suppose that u is a vertex of S. If u is not isolated and (u, v) is an edge

in S, then φ(u) is in V and (φ(u), φ(v)) is an edge in T .

The next theorem is a consequence of the previous two lemmas. The

structure of the proof is as for [FK82, Theorem 2.1], but since we are con-

cerned only with the embeddability relation rather than all embeddings, we

are able to include the odd characteristic case, unlike that theorem.

Theorem 5.4. For every p equal to 0 or an odd prime number, the quasi-

order ⊑CT Borel reduces to ⊑Fld,p. Thus ⊑Fld,p is a complete Σ
1
1 quasi-order.

Proof. The map taking each T in XCT to KT can be realized as a Borel map

from XCT to XFld,p. If S is embeddable into T , then KT is a field extension

of KS by Lemma 5.2. Now suppose that ρ : KS → KT is a homomorphism.

We claim that f defined as the restriction map ρ ↾ V is a graph embedding

from S to T . Since S is a combinatorial tree, it has no isolated vertices

and therefore item (b) of Lemma 5.3 ensures that every edge (u, v) in S is

preserved by f . For the converse, when u and v are not adjacent in S, we
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have a sequence of vertices u = v0, . . . , vn = v which is a path in S, namely,

such that (vi, vi+1) is in S, for every i < n. Since f preserves edges and is

one-to-one, the vertices f(v0), . . . , f(vn) are all distinct and (f(vi), f(vi+1))

is an edge in T , for every i < n. As a result, we have that f(u) and f(v)

are not adjacent in T by is acyclicity. �

The arguments of Fried and Kollár show that for any T , the automor-

phisms of KT are uniquely determined by their action on V , so we have the

following.

Corollary 5.5. The groups Aut(KT ) and Aut(T ) are isomorphic via the

map sending any automorphism φ of KT to the restriction of φ to V .

Now we use Theorem 5.4 and Corollary 5.5 to prove that ⊑Fld,p is invari-

antly universal.

Theorem 5.6. For p not equal to 2, the quasi-order ⊑Fld,p is invariantly

universal.

Proof. It suffices to check that ⊑Fld,p and ∼=Fld satisfy conditions (i)–(iii) of

Theorem 3.2. Let f : X → XFld,p be the map sending T to KT . Theorem 5.4

gives (i). To see (ii), notice that if φ : KS → KT is an isomorphism then

φ ↾ V is an isomorphism from S to T as (φ ↾ V )−1 = φ−1 ↾ V . Moreover,

condition (iii) is immediate as the map T 7→ Aut(KT ) is the constant map

T 7→ {id} by Corollary 5.5. �

Corollary 5.7. For every Σ
1
1 quasi-order P there is an Lω1ω-elementary

class of countable fields of characteristic p such that the embeddability rela-

tion on it is Borel bi-reducible with P .

Question 5.8. Is the embeddability relation ⊑Fld,2 between countable fields

of characteristic 2 an invariantly universal quasi-order?
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