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Abstract

A novel DOA estimation method for known waveform sources with differ-

ent unknown time delays and Doppler shifts is proposed. Based on the idea

of maximum likelihood and the matrix projection theory, a decoupled cost

function is first constructed and then the problem of estimating time delay

and Doppler shift is transformed into a nonlinear least squares (NLS) prob-

lem. To solve the NLS problem efficiently without multidimensional search,

a Toeplitz dominant rule is established to perform initial estimates with a

reduced dimension. Finally, with the aid of time delay and Doppler shift es-

timates, DOAs and complex amplitudes of the incoming signals are obtained.

Simulation results show that the proposed method can achieve a performance

close to CRB at high SNR and with a large number of snapshots.

Keywords: Direction of arrival estimation, known waveform, time delay,
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1. Introduction

Direction of arrival (DOA) estimation is a widely studied problem in

wireless communications, radar, and sonar, etc [1]. Various DOA estima-

tion methods, such as subspace-based methods [2–5], and sparsity-inducing

methods [6–8], have been developed. These methods are mainly realized on

the assumption that the received signals are either unknown deterministic

or random. However, for many real applications, such as communications

[9] and radar [10], prior information of the signal waveform can be acquired.

With the aid of waveform information, a better angle estimation performance

can be achieved [11]. Hence, many methods have been developed to deal with

DOA estimation for known waveform sources [11–24]. Most existing meth-

ods, such as DEML [12], SB [14], LR [17], CDEML [19], and LP [22], assume

that the known waveforms arrive at the same time. However, in practice,

they may arrive with different unknown time delays and Doppler shifts. A

couple of methods [13, 24] have been proposed to deal with either of the two

aforementioned problems, i.e., either with unknown time delays [13] or with

unknown Doppler shifts [24]. Apart from the work in [10], which deals with

a single known waveform with multiple multipath signals in the presence of

unknown time delays and Doppler shifts, to our best knowledge, there has

not been any work for DOA estimation for multiple known waveform sources

in the presence of unknown time delays and Doppler shifts.

In this work, the DOA estimation problem for multiple known waveform

sources in the presence of unknown time delays and Doppler shifts is inves-

tigated for the first time, and a new DOA estimation model incorporating

the time delay and Doppler effect is established first. Then, based on the
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idea of maximum likelihood and the matrix projection theory, a decoupled

cost function is constructed, where estimation of the time delay and Doppler

shift is transformed into a nonlinear least squares (NLS) problem. To solve

the NLS problem efficiently, a Toeplitz dominant rule is employed to provide

initial estimates with a reduced dimension. Finally, with the estimated time

delay and Doppler shift, the DOA and complex amplitude information is

obtained based on the data structure. Simulation results show that the es-

timation performance of the proposed method can achieve the Cramer-Rao

Bound (CRB) at high SNR and with a large number of snapshots in the

presence of unknown time delays and Doppler shifts.

The rest of the paper is organised as follows. In Section 2, the studied

signal model along with some necessary assumptions is introduced. The

proposed method is derived in Section 3. Simulation results are provided in

Section 4 and conclusions are drawn in Section 5.

Notations: matrices and vectors are denoted by bold upper-case and

lower-case letters, respectively. (·)∗, (·)T (·)H , (·)−1, and (·)† stand for con-

jugate, transpose, conjugate transpose, inverse, and Moore-Penrose inverse,

respectively. ◦, ⊗, diag{·}, vec{·}, tr{·}, ‖·‖F , ‖·‖2, and angle{·} denote the

Hadamard product, Kronecker product, diagonalization, vectorization, trace,

Frobenius norm, ℓ2 norm, and phase of a complex number, respectively. IN

is the identity matrix of size N .

2. Signal Model

Consider an M -element uniform linear array (ULA) with inter-sensor

spacing d. Q narrowband far-field uncorrelated sources with known wave-
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forms {sq(n)}
Q
q=1 (n = 0, · · · , N − 1 with N being the number of snapshots

) of wavelength λ from distinct directions {θq}
Q
q=1 (unknown) impinge on

the array. Due to the asynchronous effect and relative movement, the signal

received by the mth element (m = 1, · · · ,M) can be expressed as

xm(n) =
∑Q

q=1
am(θq)γqe

j2πfDqnsq(n− τq) + wm(n) (1)

where am(θq) = exp[−j2π(m − 1)d sin θq/λ], γq denotes the complex ampli-

tude of the received qth known waveform signal, fDq denotes the Doppler shift

of the qth signal resulting from the relative movement of the source to the

ULA, τq denotes the time delay of the qth signal resulting from asynchronous

receiving, and wm(n) is the noise.

The received signal vector at the nth snapshot can be represented by

x(n)= A(θ)Γ(γ)(sD(fD, n) ◦ sτ (n)) +w(n) (2)

= B(θ,γ)(sD(fD, n) ◦ sτ (n)) +w(n) (3)
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where

x(n)= [x1(n), x2(n), · · · , xM(n)]T ,

B(θ,γ)= A(θ)Γ(γ),

A(θ)= [a(θ1), a(θ2), · · · , a(θQ)],

a(θq)= [a1(θq), a2(θq), · · · , aM(θq)],

Γ(γ)= diag{γ1, γ2, · · · , γQ},

sD(fD, n)= [ej2πfD1n, ej2πfD2n, · · · , ej2πfDQn]T ,

sτ (n)= [s1(n− τ1), s2(n− τ2), · · · , sQ(n− τQ)]
T ,

w(n)= [w1(n), w2(n), · · · , wM(n)]T ,

θ= [θ1, θ2, · · · , θQ]
T ,

γ= [γ1, γ2, · · · , γQ]
T ,

fD= [fD1, fD2, · · · , fDQ]
T ,

τ= [τ1, τ2, · · · , τQ]
T .

With a total number of N snapshots, in matrix form, we have

X = B(θ,γ)(SD(fD) ◦ S(τ )) +W (4)

where

X= [x(0),x(1), · · · ,x(N − 1)],

SD(fD)= [sD(fD, 0), sD(fD, 1), · · · , sD(fD, N − 1)],

S(τ )= [sτ (0), sτ (1), · · · , sτ (N − 1)],

W= [w(0),w(1), · · · ,w(N − 1)]. (5)
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Similar to [23, 24], it is assumed that the additive noises are temporally

and spatially white with zero-mean and variance σ2
w, and are uncorrelated

with the incident signals.

3. Proposed Method

3.1. Nonlinear Least Squares Based ML method

Similar to [13], we can formulate a maximum likelihood (ML) cost func-

tion as follows,

{θ̂, τ̂ , f̂D, γ̂} = arg min
θ,τ ,fD,γ

||X−B(θ,γ)(SD(fD) ◦ S(τ ))||
2
F (6)

Using the projection theory, the estimations of θ, τ , fD, and γ can be

separated, i.e., (6) can be transformed into

{τ̂ , f̂D}= argmin
τ ,fD

∥

∥

∥P
⊥
ST
D
(fD)◦ST (τ )X

T
∥

∥

∥

2

F
(7)

B̂(θ̂, γ̂)= X(SD (̂fD) ◦ S(τ̂ ))
† (8)

wherePST
D
(fD)◦ST (τ ) = (ST

D(fD)◦S
T (τ ))(ST

D(fD) ◦ S
T (τ ))†, andP⊥

ST
D
(fD)◦ST (τ )

=

IN −PST
D
(fD)◦ST (τ ) represent the projection and orthogonal projection matri-

ces of ST
D(fD) ◦ S

T (τ ), respectively.

With the aid of the vectorization operator, the cost function in (7) can

be expressed as

||P⊥
ST
D
(fD)◦ST (τ )X

T ||2F

= ||vec{P⊥
ST
D
(fD)◦ST (τ )X

T}||22

= ||vec{XT} − (X⊗ IN) · vec{PST
D
(fD)◦ST (τ )}||

2
2 (9)
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It is noticed that time delays and Doppler shifts are nonlinearly mixed with

known waveforms, and we now have a nonlinear least squares (NLS) problem,

which can be solved via the Levenberg-Marquardt algorithm [25]. Therefore,

we can obtain estimates of τ and fD via NLS optimization, provided a good

initialization is available.

With the estimates of time delays and Doppler shifts and (8), DOA and

complex amplitude can be estimated as follows

θ̂q = arcsin{
−λ

2πd
· angle{

1

M − 1

M−1
∑

m=1

B̂m+1,q

B̂m,q

}} (10)

γ̂q =
1

M

M
∑

m=1

B̂m,q

exp{−j2π(m− 1)d sin θ̂q/λ}
(11)

where B̂m,q denotes the (m, q)th element of B̂(θ̂, γ̂).

3.2. Initialization with the Toeplitz Dominant Rule

To provide good initial estimates, we can find a solution to reduce the

optimization dimension of (7).

Utilizing the property of matrix trace, (7) can be rewritten as

{τ̂ , f̂D} = argmin
τ ,fD

∥

∥

∥
P⊥

ST
D
(fD)◦ST (τ )X

T
∥

∥

∥

2

F

= argmin
τ ,fD

tr{X∗(P⊥
ST
D
(fD)◦ST (τ ))

HP⊥
ST
D
(fD)◦ST (τ )X

T}

= argmin
τ ,fD

tr{X∗P⊥
ST
D
(fD)◦ST (τ )X

T}

= argmin
τ ,fD

tr{XTX∗P⊥
ST
D
(fD)◦ST (τ )}

= argmin
τ ,fD

tr{XTX∗} − tr{XTX∗PST
D
(fD)◦ST (τ )}

= argmax
τ ,fD

tr{XTX∗PST
D
(fD)◦ST (τ )}

= argmax
τ ,fD

tr{XHXPSH
D
(fD)◦SH(τ )} (12)
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For a large number of snapshots N , we have the following approximation

(SD(fD) ◦ S(τ))(S
H
D(fD) ◦ S

H(τ))

≈diag{(s1(fD1) ◦ s1(τ1))(s
H
1 (fD1) ◦ s

H
1 (τ1)), · · · ,

(sQ(fDQ) ◦ sQ(τQ))(s
H
Q (fDQ) ◦ s

H
Q (τQ))} (13)

where sq(τq) = [sq(0−τq), sq(1−τq), · · · , sq(N−1−τq)], sq(fDq) = [1, ej2πfDq , · · · ,

ej2πfDq(N−1)], and q = 1, · · · , Q.

Substituting (13) into (12), we have

tr{XHXPSH
D
(fD)◦SH(τ )}

= tr{XHX(SH
D(fD) ◦ S

H(τ ))(SH
D(fD) ◦ S

H(τ ))†}

= tr{XHX(SH
D(fD) ◦ S

H(τ ))((SD(fD) ◦ S(τ ))(S
H
D(fD) ◦ S

H(τ )))−1(SD(fD) ◦ S(τ ))}

≈

Q
∑

q=1

(sq(fDq) ◦ sq(τq))X
HX(sHq (fDq) ◦ s

H
q (τq))

(sq(fDq) ◦ sq(τq))(sHq (fDq) ◦ sHq (τq))
(14)

Hence, time delays and Doppler shifts can be estimated using Q two-

dimensional (2-D) searches as follows,

{τ̂q, f̂Dq} = argmax
τ,fD

(sq(fD) ◦ sq(τ))X
HX(sHq (fD) ◦ s

H
q (τ))

(sq(fD) ◦ sq(τ))(sHq (fD) ◦ s
H
q (τ))

(15)

Using the property of Hadamard product, (15) can be rewritten as

{τ̂q, f̂Dq} = argmax
τ,fD

sq(fD)diag{sq(τ)}X
HXdiag{sHq (τ)}s

H
q (fD)

sq(τ)sHq (τ)
(16)

However, the 2-D search of (16) still has a high computational complexity.

To reduce it further, notice that

XHX = M

Q
∑

q=1

|γq|
2sHqq(fDq, τq)sqq(fDq, τq)

+

Q
∑

r=1

Q
∑

p=1,p 6=r

γ∗
rγps

H
rr(fDr, τr)a

H(θr)a(θp)spp(fDp, τp) + E (17)
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where sqr(fDq, τr) = sq(fDq)◦ sr(τr), and E = WHB(θ,γ) ·(SD(fD)◦S(τ))+

(SD(fD) ◦ S(τ))
HBH(θ,γ)W +WHW.

Hence, if τ = τq, we have

diag−1{sqq(τq, τq)}diag{sq(τq)}X
HX · diag{sHq (τq)}diag

−1{sqq(τq, τq)}

= C0 +C1 +C2 +C3 (18)

where

C0 = M |γq|
2sHq (fDq

)sq(fDq) (19)

C1 = M

Q
∑

p=1,p 6=q

|γp|
2diag−1{sqq(τq, τq)}

·diag{sqp(τq, τp)}s
H
p (fDp

)sp(fDp)diag{spq(τp, τq)} · diag
−1{sqq(τq, τq)} (20)

C2 =

Q
∑

r=1

Q
∑

p=1,p 6=r

γ∗
t γpdiag

−1{sqq(τq, τq)} · diag{sqr(τq, τr)}s
H
r (fDr

)aH(θr)a(θp)sp(fDp)

·diag{spq(τp, τq)}diag
−1{sqq(τq, τq)} (21)

C3 = diag{sq(τq)}Ediag{s
H
q (τq)} (22)

diag{sqr(τq, τr)} = diag{sq(τq) ◦ s
∗
r(τr)} (23)

Since C0 is a Toeplitz matrix, while C1, C2, and C3 are not, we can

establish a Toeplitz dominant rule to determine the time delay without known

Doppler shift as follows,

τ̂q = argmin
τ

||Gq(τ)− Toeplitz{gq,1(τ)}||
2
F (24)

where

Gq(τ) =diag−1{sqq(τ, τ)}diag{sq(τ)}X
HX

·diag{sHq (τ)}diag
−1{sqq(τ, τ)}, (25)
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gq,1(τ) is the first row of Gq(τ), and Toeplitz{·} denotes Toeplitz matrix

construction using a row vector.

Furthermore, to improve the time delay estimation performance under

low SNR cases, a multiple frame superposition strategy is adopted. To

start, X and sq(τ) are divided into L frames with maximum overlap along

the snapshot dimension, i.e., X(l) = X:,l:l+N−L, s
(l)
q (τ) = sq,l:l+N−L(τ), l =

0, 1, · · · , L − 1. Then, the cost function of (24) is applied L times, and a

summation of these results leads to a new estimate of the time delay.

Substituting the estimates of {τ̂q}
Q
q=1 into (16), we can obtain the es-

timates of Doppler shifts {f̂Dq
}Qq=1 via Q 1-D searches. Moreover, higher-

accuracy estimates of time delays and Doppler shifts can be obtained by

applying the NLS optimization method to (9).

Remark 1: For the initial estimates of time delays and Doppler shifts in

(16) and (24), we can utilize some simple search strategy such as in [6], to

reduce the number of searches.

3.3. Summary of the proposed method

The steps of the proposed method are summarized as follows:

Step 1: DivideX and sq(τ) into L frames with maximum overlap along the

snapshot dimension, i.e., X(l) = X:,l:l+N−L, s
(l)
q (τ) = sq,l:l+N−L(τ), s

(l)
q (fDq

) =

sq,l:l+N−L(fDq
), l = 0, 1, · · · , L− 1.

Step 2: With X(l) and {s
(l)
q (τ)}Qq=1 and using cost function of (24) QL

times, obtain the initial estimates of time delays , i.e., {τ̂q}
Q
q=1.

Step 3: Applying Q 1-D searches to (16) with {τ̂q}
Q
q=1, get the initial

estimates of Doppler shifts {f̂Dq
}Qq=1.
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Step 4: With the aid of {τ̂q}
Q
q=1 and {f̂Dq

}Qq=1, obtain the high accuracy

estimates of τ and fD from (7) and (9) via NLS optimization1.

Step 5: Obtain the estimates of DOAs and complex amplitudes from (8),

(10), and (11).

3.4. Computational complexity analysis

In this subsection, the computational complexity of the proposed method

is compared with those of DEML[12], Swindlehurst [13], and OP[24]. How-

ever, please note that they work on different conditions as shown in Tab. 1

and only the proposed method can work on the most general scenario.

Table 1: Required conditions of the four methods.

Proposed DEML Swindlehurst OP

Time delay Unknown Known Unknown Known

Doppler shift Unknown Known Known Unknown

For the proposed method ( the following analysis is consistent with steps

in Section 3.4):

(i) Initial estimates of {τ̂q}
Q
q=1: O{MN2+Q(N−L+1)2NL+QNτL(N−

L+ 1)}, where Nτ denotes the number of time delay searches.

(ii) Initial estimates of {f̂Dq
}Qq=1: O{QNfDN

2}, where NfD denotes the

number of Doppler shift searches.

(iii) NLS based high accuracy estimates of τ and fD: O{Niter(2Q)2MN+

Niter(2Q)3}, where Niter denotes the number of iterations.

1One can use the MATLAB function lsqnonlin to realize the Levenberg-Marquardt

algorithm.
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(iv) DOA and complex amplitude estimation: O{Q2N +MNQ + 2Q +

2QM}.

Then, with Nτ ≈ NfD ≈ N > L ≈ M > Q and Niter being less than 20

in practice, the overall computational complexity of the proposed method is

approximately O{MN2 +QNτNL+QNfDN
2 + 4NiterMNQ}.

For the DEML method, its overall computational complexity is about

O{M2N +MQN + 3M3} [23].

Considering the Swindlehurst method, where the high accuracy time delay

estimates also utilize the NLS optimization, its computational complexity is

approximately O{MN2 +QNτN
2 +NiterMNQ}, which is similar to that of

the proposed method.

In terms of the OP method, its overall computational complexity is about

O{MN log2N + (P + 1)N3 + (P + 1)(P + 2)QN2 + (P + 1)QMN} [24].

It can be seen that the proposed method has a larger computational

complexity than the other three methods owing to the multiple 1-D searches

involved in the initial estimates of time delays and Doppler shifts. However,

its computational complexity is still less than the direct 2-D search based

optimization of (7) and subsequent DOA and complex amplitude estimation.

4. Simulation Results

In this section, the performance of the proposed method is compared

with those of DEML[12], Swindlehurst [13], and OP[24], and the Cramer-

Rao bound (CRB) for unknown waveforms [26], and known waveforms with

unknown time delays and Doppler shifts (similar to [24], see Appendix for

details), respectively, according to their own working conditions as listed in
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Figure 1: RMSE versus number of frames, K = 3, M = 4, N = 100, SNR=0 dB.

Tab. 1. It is assumed that d = λ/2, and the waveforms of all sources are

known with unit power. However, please bear in mind that these methods

work on different conditions and only the proposed one works on the most

general scenario where all the others fail. So their performances are not

directly comparable and the reason to show their performances together here

is to give some idea of the performance of the proposed method in the context

of the class of algorithms available to deal with known waveforms but with

different unknown conditions.

Example 1: In the first example, the performance of the proposed method
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Figure 2: RMSE versus SNR, K = 3, M = 4, N = 100, L=10.

with respect to the number of frames L is studied. The time delays, Doppler

shifts, DOAs, and complex amplitudes of three sources are set to 2.4, 3.6,

1.3, 10−3, 10−3, 10−3, −10◦, 10◦, 15◦, ej0.3π, e−j0.4π, and e−j0.2π, respectively.

With M = 4 and SNR = 10 dB, L varies from 0 to 100 with an interval of

5. The root mean square error (RMSE) results based on 500 Monte Carlo

trials for each fixed L are shown in Fig. 1.

It can be seen that the performance of NLS method largely depends on

the initial estimates, and a modest number of frames can provide sufficient
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Figure 3: RMSE versus number of snapshots, K = 3, M = 4, SNR = 10dB, L = 10.

estimation accuracy. Besides, since (13)-(15) are derived from the approxi-

mation for a large number of snapshots, there is a gap between the estimation

performance of Toeplitz dominant rule based initialization method and the

NLS method.

Examples 2 & 3: In Example 2, we investigate the performance of the

proposed method with respect to SNR. The settings are the same as in Ex-

ample 1 except that L = 10, and SNR varies from -10dB to 30dB with an

interval of 5dB. The results are provided in Fig. 2. In Example 3, the perfor-
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mance of the proposed method against the number of snapshots is examined.

The settings are the same as in Example 2 except that SNR = 10 dB and N

ranges from 100 to 1000 with an interval of 100. Fig. 3 shows the results.

As shown in Figs. 2 and 3, the proposed NLS based method can work

effectively for ranges of SNR from 0dB to 30dB and N from 100 to 1000.

Moreover, its performance outperforms the other four methods and can ap-

proach the CRB for high SNR values and a large number of snapshots. The

good performance of the proposed method is mainly due to employment of

the nonlinear least squares optimization by making effective use of the struc-

tural information of signal model in the presence of unknown time delays and

Doppler shifts.

For the proposed Toeplitz dominant rule based initialization method, as

seen from Fig. 2, its performance cannot be improved with increasing SNR

since it is mainly related to the approximation error of (13). Moreover, as

shown in Fig. 3, there are some unstable estimation performances of DOA

and complex amplitude, which may be due to that the correlation of source

signals varies with the number of snapshots and similar results have been

observed in [13].

From Figs. 2 and 3, for the OP method proposed earlier in [24], it cannot

work well for most cases since its performance is sensitive to model bias.

While the Swindlehurst’s method in [13] is derived from the ML principle

and has shown more robustness against the bias of model, since it does not

consider the Doppler effect, it can not work effectively for a large number of

snapshots.
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5. Conclusions

A novel DOA estimation method for sources with known waveforms in

the presence of unknown time delays and Doppler shifts has been introduced.

Based on the maximum likelihood idea and the matrix projection theory,

a decoupled cost function was first established and then the estimation of

time delay and Doppler shift was transformed into a nonlinear least squares

(NLS) problem. To solve the NLS problem efficiently, a Toeplitz dominant

rule was employed to provide initial estimates with a reduced dimension;

finally, with the aid of time delay and Doppler estimates, the DOAs and

complex amplitudes were obtained based on the data structure information.

As demonstrated by computer simulations, the proposed method can achieve

a performance close to CRB for the high SNR and larger number of snapshot

case in the presence of unknown time delays and Doppler shifts.

Appendix : Derivation of the CRB

Similar to [24], the vector consisting of all real-valued unknown variables

of the model in (4) can be expressed as

µ = [θT , ξT ,ηT , τ T , fTD]
T (26)

where ξ = [ξ1, · · · , ξQ]
T = [Re(γ1), · · · , Re(γQ)]

T , η = [ξ1, · · · , ξQ]
T =

[Im(γ1), · · · , Im(γQ)]
T .

For simplicity, A(θ) and Γ(γ) are denoted as A and Γ. Besides,
⌢
s(n) =

sD(fD, n) ◦ sτ (n), and x0(n) = AΓ
⌢
s(n).

Similar to [24, 27], the corresponding Fisher information matrix can be
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expressed as follows,

I(µ) =
2

σ2
w

Re













































Iθθ Iθξ Iθη Iθτ IθfD

Iξθ Iξξ Iξη Iξτ IξfD

Iηθ Iηξ Iηη Iητ IηfD

Iτθ Iτξ Iτη Iττ Iτ fD

IfDθ IfDξ IfDη IfDτ IfDfD













































(27)

where

Iθθ = N · (ΓHȦHȦΓ) ◦RT
⌢
s
⌢
s

(28)

Iθξ = IHξθ = N · (ΓHȦHAΓ̇ξ) ◦R
T
⌢
s
⌢
s

(29)

Iθη = IHηθ = N · (ΓHȦHAΓ̇η) ◦R
T
⌢
s
⌢
s

(30)

Iθτ = IHτθ = N · (ΓHȦHAΓ) ◦RT

s̃
⌢
s

(31)

IθfD = IH
fDθ = N · (ΓHȦHAΓ) ◦RT

⌣
s
⌢
s

(32)

Iξξ = N · (Γ̇H
ξ A

HAΓ̇ξ) ◦R
T
⌢
s
⌢
s

(33)

Iξη = IHηξ = N · (Γ̇H
ξ A

HAΓ̇η) ◦R
T
⌢
s
⌢
s

(34)

Iξτ = IHτξ = N · (Γ̇H
ξ A

HAΓ) ◦RT

s̃
⌢
s

(35)

IξfD = IH
fDξ = N · (Γ̇H

ξ A
HAΓ) ◦RT

⌣
s
⌢
s

(36)

Iηη = N · (Γ̇H
η A

HAΓ̇η) ◦R
T
⌢
s
⌢
s

(37)

Iητ = IHτη = N · (Γ̇H
η A

HAΓ) ◦RT

s̃
⌢
s

(38)

IηfD = IH
fDη = N · (Γ̇H

η A
HAΓ) ◦RT

⌣
s
⌢
s

(39)

Iττ = N · (ΓHAHAΓ) ◦RT
s̃s̃ (40)

Iτ fD = IH
fDτ = N · (ΓHAHAΓ) ◦RT

⌣
s s̃

(41)

IfDfD
= N · (ΓHAHAΓ) ◦RT

⌣
s
⌣
s

(42)
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where Ȧ = [∂a(θ1)
∂θ1

, · · · ,
∂a(θQ)

∂θQ
], Γ̇ξ = [∂γ1

∂ξ1
, · · · ,

∂γQ

∂ξq
], Γ̇η = [∂γ1

∂η1
, · · · ,

∂γQ

∂ηq
],

R⌢
s
⌢
s

= 1
N

N−1
∑

n=0

⌢
s(n)

⌢
s
H
(n),

⌣
s(n) = j2πn

⌢
s(n), R⌣

s
⌢
s

= 1
N

N−1
∑

n=0

⌣
s(n)

⌢
s
H
(n),

s̃(n) = sD(fD, n) ◦ ṡ(τ, n), ṡ(τ, n) = [∂s1(n−τ1)
∂τ1

, · · · ,
∂sQ(n−τQ)

∂τQ
]T . Besides, Rs̃s̃,

and R⌣
s s̃

have similar definition to R⌢
s
⌢
s
and R⌣

s
⌢
s
.

Therefore, given the relationship between CRB and the Fisher informa-

tion matrix, define ∆ = I−1(µ), and consequently we have

CRBθ =

√

√

√

√1/Q

Q
∑

q=1

∆q,q (43)

CRBγ =

√

√

√

√1/Q

Q
∑

q=1

(∆Q+q,Q+q +∆2Q+q,2Q+q) (44)

CRBτ =

√

√

√

√1/Q

Q
∑

q=1

∆3Q+q,3Q+q (45)

CRBfD =

√

√

√

√1/Q

Q
∑

q=1

∆4Q+q,4Q+q (46)

where CRBθ, CRBγ, CRBτ , and CRBfD represent the Cramer-Rao bounds

for DOAs, complex amplitudes, time delays, and Doppler shifts, respectively.

∆p,q denotes the (p, q)th element of ∆.
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