

This is a repository copy of A Novel Protein Sampling Method Using Styrene Maleic Acid is Non-destructive to Cardiovascular Cells and Tissues.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/157184/

Version: Accepted Version

Proceedings Paper:

Smith, AJ orcid.org/0000-0001-7283-5611, Wright, KE, Muench, SP orcid.org/0000-0001-6869-4414 et al. (4 more authors) (2019) A Novel Protein Sampling Method Using Styrene Maleic Acid is Non-destructive to Cardiovascular Cells and Tissues. In: Circulation. American Heart Association's 2019 Scientific Sessions, 16-18 Nov 2019, Philadelphia, PA, USA. American Heart Association .

© 2019 by American Heart Association, Inc.. This is an author produced version of a paper published in Circulation. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

<u>Andrew J. Smith^{1,2}</u>, Kathleen E. Wright¹, Stephen P. Muench^{1,3}, Sophie Schumann⁴, Adrian Whitehouse^{3,4}, Karen E. Porter⁵, John Colyer¹

¹School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom

²Centre for Human & Applied Physiological Sciences and Centre for Stem Cells & Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College, London, Guy's Campus, London SE1 1UL, United Kingdom

³The Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom

⁴School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom

⁵Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom

A novel protein sampling method using styrene maleic acid is non-destructive to cardiovascular cells and tissues

Background Protein biomarker detection is a key tool for medical diagnostics, typically using concentration of markers or their release from tissue. We sought to establish if proteins normally retained by living cells can be extracted non-destructively, with a view to extending this to biomarker harvest. Styrene maleic acid (SMA) is a polymer that extracts nanodiscs of biological membranes (containing proteins) from cells.

Hypothesis SMA samples proteins directly from human cardiovascular cells without significantly impact on viability, acting as a novel 'biopsy' method.

Methods We applied SMA at 1.25 to 25 parts per million (ppm) in saline for 10 minutes at 37°C to human primary cardiovascular cells: cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs) in vitro, and rat vascular tissue ex vivo. Assays of cell membrane integrity (calcein AM) and cell/tissue viability (MTT, propidium iodide) were performed. Protein isolation in SMA 'biopsies' was confirmed by SDS-PAGE, Western blotting and mass spectrometry, with proteomic analyses to identify proteins' identities and sub-cellular locations. Statistics: ANOVA plus Tukey's test, significance: p<0.05; data are mean±SEM.

Results SMA at 6.25 ppm did not significantly reduce cell integrity (with cells treated by 0% SMA as 100% viability controls) in CFs (83.4±6.6% of control, n=8) or VSMCs (78.6±9.9% of control, n=8). Cell viability at 72 hours post-SMA was not reduced in CFs (104.4±7.8% of control, n=6) or VSMCs (102.5±3.4% of control, n=6). No increased cell death was seen in SMA-treated vascular tissue. An array of proteins was recovered from both cell types (CFs: 73±17; VSMCs: 79±3) and from vascular tissue, ranging in size from 20-200 kDa. Proteins were obtained from peripheral (extracellular vesicles; exosomes) and central (cytoskeleton; cytosol; organelles) cellular locations. These included cell-specific proteins (vinculin; alpha actinin 4) and heat shock proteins (A8; B1; 90AA; 90AB).

Conclusion We demonstrate the ability of SMA 'biopsy' to non-lethally sample an extensive range of proteins from cells and tissue, thus devising a new potential tool for protein sampling to identify new physiological and/or pathological markers, especially in advancing vascular pathology.