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Not only do curved spaces fascinate scientists and non-scientists, but they are also at the heart of general relativity and
modern theories of quantum gravity. Optical systems can provide models for the wave and quantum behavior of curved
spaces. Here we show how to construct optical systems that simulate triangulations of 3D curved spaces, for example, the
curved 3D surface of a 4D hypersphere. Our work offers a new approach to the optical simulation of curved spaces, and
has the potential to lead to new ways of thinking about physics in curved spaces and simulating otherwise inaccessible
phenomena in non-Euclidean geometries.
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1. INTRODUCTION

Physics in curved spaces and curved space–time is subject to
extensive research. The basic properties of curvature can be seen
in the standard example of a curved space: the two-dimensional
(2D) surface of a sphere. In such spaces, very unusual phenomena
can be observed, such as the sum of the inner angles of a triangle
being different from π [Fig. 1(a)]—an example of angular defect,
one of the hallmarks of curvature. Ever since Einstein’s general
theory of relativity [1], such spaces have been central to theories
of gravity, including modern theories of quantum gravity such as
string theory [2]. Many theoretical predictions of curved space–
time physics, such as gravitational lensing [3], black holes [4],
and gravitational waves [5], have been observed experimentally
[6–9], but there are still phenomena that remain unobserved,
e.g., the gravitational self-interaction of quantum wavepackets
[10], Hawking radiation [11], the Unruh effect [12], and the
compactified dimensions of Kaluza–Klein theory [13,14] and
of string theory [2]. As such experiments “enable control over
physical parameters, suggest new insights and offer considerable
intuition” [15], several attempts have been made to simulate these
inaccessible phenomena in the laboratory [15–19].

In 2D waveguides, light behaves as in a 2D space, and curved
2D waveguides have been used to simulate curved spaces [20–23].
Three-dimensional (3D) curved spaces cannot be simulated in this
straightforward manner. However, in 1925, Tamm [24] discov-
ered that light propagation in anisotropic media is equivalent to
light propagation in gravitational fields in vacuum, which general
relativity described as metric spaces; these ideas led directly to
modern attempts to simulate optical phenomena in curved spaces

in metamaterial structures (e.g., [25–33]). Due to their manmade
sub-wavelength structure, metamaterials can exhibit extraordinary
properties not found naturally, but these properties often hold
in only a very narrow wavelength range and are associated with
significant absorption [34]; additionally, metamaterials can be
difficult and costly to manufacture.

A curved smooth surface, such as the surface of a sphere, can be
approximated by a surface comprising planar triangles [Fig. 1(b)];
smaller triangles allow the surface to be approximated more closely.
In this piecewise triangular approximation of the curved surface,
curvature is concentrated into the vertices of the triangles, and with
it the angular defect, which now manifests as the angles completely
surrounding the vertices on the surface adding up not to 2π (as they
would if the surface was flat), but to 2π − ε, where ε is the so-called
deficit angle. This idea can be generalized to higher dimensions: in
N dimensions, the triangles become N-simplices (tetrahedra in
3D), and curvature is concentrated into the (N − 2-dimensional)
edges of these simplices. This is the basis of Regge calculus [35],
which discretizes the dynamics of space–time geometry using sim-
plices, the generalization of triangles in any dimension, and which
is used to numerically investigate aspects of general relativity, for
instance, black hole collisions [36], whose relevance is particularly
timely after the recent discovery of gravitational waves [37].

The angular deficit of a vertex can be visualized when the surface
around the vertex is unwrapped into a plane [Fig. 1(c)]. The deficit
angle ε then corresponds to a wedge of the same angle of “missing
space.” Conversely, a wedge of missing space corresponds to a
corresponding deficit angle. In this paper, we discuss, theoretically,
ways in which a wedge of space can be made to disappear optically
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Fig. 1. Curved surface of a sphere (a) and its piecewise triangular
approximation (b). In the geodesic triangle on the surface of the sphere,
the sum of the inner angles, α + β + γ , does not equal π , illustrating
angular defect. In the piecewise triangular approximation, the angular
defect is concentrated in the vertices. This can be seen by cutting the
surface around a vertex, V , and unfolding it into a plane (c); the angular
deficit is then visible as a wedge of missing space; the wedge angle, ε, is
the deficit angle of the vertex. In this unfolding, the geodesic (red arrow)
shown in (b) is cut into two parts that are rotated relative to each other
by ε around V . (d) A combination of a wedge of material with refractive
index n = −1 (shaded) and wedge angle ε/2 and mirrors (solid black
lines), arranged as shown, rotates any light ray (red arrow) incident on the
wedge by an angle ε around V . It therefore redirects light rays such that
they travel along geodesics in the unfolded space shown in (c). Alternative
ways to redirect light rays in this manner include combinations of skew
lenses (azure double-sided arrows) (e) and light-field transfer using arrays
of lenslets (azure double-sided arrows) and coherent fiber bundles (azure
lines) (f ).

using a device we call a “space-canceling (SC) wedge.” We discuss
several designs for such SC wedges, some easier to realize than
others [Figs. 1(d)–1(f )]. We then show how to combine such SC
wedges into meaningful curved spaces. We show how to combine
SC wedges into the 2D surfaces corresponding to the simplest
triangulations of the surface of a sphere, namely, the surface of a
tetrahedron and a cube. More interestingly, we also combine them
into the 3D surfaces of a four-dimensional (4D) tetrahedron (also
known as four-simplex and five-cell) and of a 4D hypercube (tesser-
act). Finally, we discuss different aspects of this work, including the
problem of negative curvature, before concluding.

2. CONSTRUCTING A SPACE-CANCELING

WEDGE

A key ingredient of our construction is an optical device for remov-
ing a wedge of optical space: a SC wedge. This requires a device
that optically identifies two intersecting half-planes with each
other, which is achieved by bringing light rays entering the device
through one plane to the corresponding position on the other

plane, rotating each ray around the intersection line by the inter-

section angle, ε. We describe here four ways to achieve this, all of

which are discussed in more detail in Supplement 1.

One approach employs a material with negative refractive

index. It is well known that a uniform layer of a material with

refractive index −n can “cancel” another equally thick layer of

material with refractive index +n [38,39]. In a similar way, a neg-

atively refracting wedge of space can optically “cancel” a wedge of

positive refractive index [Fig. 1(d)]. The addition of two mirrors (in

2D) or four mirrors (in 3D) makes this structure work for all light-

ray directions (see Supplement 1, Section 1). Practical realization

requires, over a suitable bandwidth, bulk materials with negative

refractive index, ideally n = −1, and low loss. Building such a

material is very difficult, perhaps even impossible, but promising

progress is being made using active materials [40,41].

A second approach avoids negative refraction but, in general,

requires inhomogeneous and anisotropic materials. It starts from

one half of a suitable Lissajous lens [42], a refractive-index distri-

bution that is restricted to one side of a plane and that images two

halves of that plane into each other such that the image position

and the direction of any ray are rotated by π around the line divid-

ing the plane. It consists entirely of isotropic materials and acts as a

SC wedge with deficit angle π . Other deficit angles can be achieved

by making this device the virtual space of a transformation-optics

device [43,44] that maps the wedge of wedge angle π containing

the device into a wedge with the required wedge angle ε. The result-

ing wedge of anisotropic material is a SC wedge with deficit angle

ε. Note that even though this approach avoids negative refraction,

it still suffers from the limitations (such as the narrow wavelength

range and significant absorption) and manufacturing difficulty and

cost of the standard metamaterials approach. Details can be found

in Supplement 1, Section 2.

The third approach uses skew ideal lenses [Fig. 1(e)]. In theory,

combinations of three skew ideal lenses that intersect in a line

can create an image that is rotated by an arbitrary angle around

the lenses’ intersection line [45] (see Supplement 1, Section 3).

In practice, however, ideal thin lenses cannot currently be real-

ized physically, although metalenses [46–48] are getting closer.

Furthermore, the ideal-lens combinations rotate only light rays

that pass through all three lenses, but in all combinations inves-

tigated to date, this is the case only over a limited field of view.

Nevertheless, this approach provides hope that optical simula-

tions of curved spaces can be performed using mere lenses, optical

instruments thought to have existed for more than 2700 years [49].

The fourth, and perhaps easiest to realize, approach transfers

the light field [50] from one face of the SC wedge to the other. This

can be done by using an array of optical fibers to connect the focal

planes of two lenslet (or microlens) arrays [Fig. 1(f )]. Depending

on which lenslet L1 in the first array an incident light ray passes

through, and the direction with which it is incident, the light ray is

directed by L1 into one particular fiber. After the ray exits the fiber’s

other end and passes through the lenslet in the second array that

corresponds to L1, it has the required direction. Light rays can also

pass through the device in reverse. The two lenslet arrays then act

like the faces of a SC wedge in which both positions and directions

are discretized, and the space-bandwidth product of the device

correspondingly limited.

https://doi.org/10.6084/m9.figshare.11396007
https://doi.org/10.6084/m9.figshare.11396007
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3. SIMULATING CURVED 2D SPACES

SC wedges can be fitted together in a meaningful manner. First, we
give a general description of our approach for the 2D situation, i.e.,
for curved 2D surfaces. We demonstrate our method on specific
examples that help to understand it more intuitively. As examples,
we choose to construct the simplest symmetrical triangulations of
the surface of a sphere, namely, surfaces of the tetrahedron and the
cube. These are the two simplest Platonic solids (all their faces are
identical regular polyhedra), and their surfaces are, of course, 2D
curved spaces. Later, in the next section, we will then extend our
construction to 3D hypersurfaces of 4D polyhedra.

As the first step, we construct the 2D surface (call it S) of a
closed 3D polyhedron (call it P ) from a plane. This can be done
employing a net N of the surface S, which is simply an unfolded
form of that surface. The net has to be accompanied by appropriate
gluing instructions that determine which pairs of edges of the net
have to be identified with one another; such a space with gluing
instructions is also called a quotient space [51]. The net N can then
be folded and “glued” to become the surface S.

The procedure is made clearer by inspecting specific examples.
We start by constructing the surface of a tetrahedron [Fig. 2(a)],
which can be unfolded [Fig. 2(b)] into its net, an equilateral tri-
angle [Fig. 2(c)]. The appropriate gluing is such that each half of
each edge is identified with the other half of the same edge, with
each midpoint of the edges becoming a different vertex and the
three vertices of the net meeting at the same point to become the
fourth vertex, V , of the tetrahedron. Similarly, other polyhedra
can be unfolded; Figs. 2(d)–2(f ) show a symmetric unfolding of
a cube.

To simulate light propagation on the surface of a polyhedron,
we let light propagate on its unfolded net, identifying the corre-
sponding edges optically. This is done by removing the appropriate
wedges of space. Figure 2(g) shows the net of a tetrahedron realized
in this way. Three SC wedges each cancel an angle π , outlining
the net of the tetrahedron. We ran a raytracing simulation of our
setup, with three different light-ray trajectories, also shown in
Fig. 2(g). The net of the tetrahedron in Fig. 2(g) (the large triangle,
without the SC wedges) can be printed and folded to form the
tetrahedron; this results in continuous light-ray trajectories that
correspond to the desired geodesics on the surface of a tetrahedron
[Fig. 2(h)]. Figure 2(j) and 2(k) show the equivalent for the net of
a cube.

Figures 2(i) and 2(l) show virtual views of observers respectively
living on the surface of a tetrahedron and of a cube. However, to
be able to demonstrate the features of such a view, we have added
a third dimension perpendicular to the surface; the resulting 3D
space is a tensor product of the 2D surface and one-dimensional
Euclidean space R. Without this added dimension, the image
would have to be one-dimensional, without much information
content. We have also inserted a ball into this space for the observer
to look at. Due to the finite size of the surface, observers see many
copies of the ball corresponding to many different rays from the
ball to their eyes.

4. SIMULATING CURVED 3D SPACES

Having explained how to simulate (and in principle demonstrate)
light propagation in a 2D curved space, we include an additional
dimension. To this end, consider a 4D polyhedron P . Its hyper-
surface S is three-dimensional and composed of faces, which are

3D polyhedra. In a similar way as described in the previous section,
we can construct the net N of P , which will be a composition of
3D polyhedra with the appropriate gluing instructions, which
identify pairs of 2D faces of these 3D polyhedra with one another.
If we are able to insert the appropriate SC wedges that transfer light
between the two 2D faces to be identified in each pair, then light
propagation in this structure will be the same as light propagation
on a real 3D hypersurface of the 4D polyhedron.

This can indeed be done for the simplest 4D polyhedron, the
so-called five-cell or four-simplex. This object can be obtained
from a 3D tetrahedron by adding an extra vertex to it (lying outside
the 3D space of the tetrahedron, in the fourth dimension) and
connecting it with all four vertices of the tetrahedron. There will
be five 3D faces of the resulting five-cell, one originating from
each triangular face of the original tetrahedron, plus the original
tetrahedron itself [52].

It is not difficult to construct the net of the five-cell. All five faces
are tetrahedra, so the net consists of an inner tetrahedron that has a
tetrahedron stuck to each one of its triangular faces [see Fig. 3(a)].
Folding this net into the fourth dimension such that all the outer
vertices coincide without tearing the net then constructs the five-
cell. This procedure is hard to picture by the human brain, as we
experience only three spatial dimensions. However, this “folding
without tearing” can be done optically by constructing the net of
the five-cell and employing six SC wedges, each edge of the inner
tetrahedron being the tip of one SC wedge. In the case of a regular
five-cell, which is composed exclusively of regular tetrahedra, since
the dihedral angle (the angle between neighboring faces) of a regu-

lar tetrahedron is α = tan−1(2
√

2), each SC wedge should cancel
an angle ε = 2π − 3α ≈ 2.59 rad.

Raytracing simulations of this setup are shown in Figs. 3(b) and
3(d). Figure 3(b) shows the unfolded net with a light-ray trajectory
that follows a geodesic in this space. Figure 3(d) shows the view on
the hypersurface S by an observer also located in S. A white sphere
has been placed in S, as shown in Fig. 3(c).

Similarly, the net of a hypercube can be simulated [see Fig. 3(e)].
Figure 3(f ) shows a light-ray trajectory in this net; Fig. 3(g) shows
the net with a sphere placed inside it, and Fig. 3(h) shows a ray-
tracing simulation of the view on the hypersurface (including the
sphere) by an observer located in the center of the net.

5. DISCUSSION

Our method of simulating light propagation on the surface of
a polyhedron by unfolding it into the net closely resembles the
concept of non-Euclidean transformation optics [26]. There,
one starts from non-Euclidean virtual space (e.g., the surface of
a sphere attached to a plane), which is mapped to physical space
(e.g., a plane). The map between the two spaces induces a refractive
index profile in physical space, and light is directed by this profile to
follow lines that correspond to geodesics in virtual space.

Interestingly, we can think of the surface of the polyhedron P
as described earlier as a non-Euclidean virtual space, and regard
the quotient space (i.e., the unfolded net along with the gluing
instructions) as physical space. Physical space might appear flat
at first sight; however, due to identifying the pairs of edges (and
hence eliminating the deficit angles), it is not flat at the vertices of
the quotient space—the curvature is concentrated exactly at these
vertices. This introduces a new concept into transformation optics,
extending its ideas and capabilities.
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Fig. 2. Optical simulation of the surface of a regular tetrahedron and a cube. Unfolding of the surface of a regular tetrahedron (a) and of a cube (d) into
the respective nets (c) and (f ). (b), (e) Intermediate stages of unfolding. Edges labeled with the same number are identified (“gluing instructions”); in (b) and
(e), arrows indicate how each of these edges of the surface splits into two edges in the equivalent net. V is the fourth vertex of the tetrahedron; in the unfolded
and partially folded net, it appears as three separate vertices. To achieve a symmetric unfolding, one of the cube faces has been divided into four right tri-
angles; C is the center of that face. (g), (j) Instead of mechanically folding the net and gluing corresponding edges together, corresponding edges are “opti-
cally glued,” i.e., imaged, by SC wedges. Rays trace out geodesics on this (optically glued) surface; three rays (red, green, blue) are shown in each case. (h),
(k) Mechanical folding and gluing of the net and the simulated ray trajectories confirm that the trajectories are continuous. (i), (l) Photorealistic simulation
of the view of a white sphere on a surface as seen from within the surface, with an added third, Euclidean, dimension perpendicular to the surface. The cyan
lines show the edges of the tetrahedron and the cube, respectively. Details of the raytracing simulations can be found in Supplement 1, Section 5.

Note that in this paper we have simulated only positive defi-
cit angles, corresponding to curved spaces with positive (Gauss)
curvature. This was done by “canceling” a wedge of space with
an angle ε at the tip. However, there exist also spaces with nega-
tive Gauss curvature, the prime example being the pseudosphere
[53]. A question then arises as to whether our method can be
adapted to such spaces as well. It seems to be difficult because
instead of “canceling” a part of space, we would have to “add” a
wedge of space to the edge. One idea is to create two SC wedges

with positive deficit angles, ε1 and ε2, and then map each edge
of one SC wedge into a corresponding wedge of the other SC
wedge such that the tips are mapped into each other, and there-
fore optically identified. This would result in a single apparent
SC wedge in which the angles of (non-canceled) space of the two
constituent SC wedges, 2π − ε1 and 2π − ε2, add up, resulting
in a deficit angle that can be positive or negative; the next chal-
lenge is to combine such apparent SC wedges into meaningful
spaces.

https://doi.org/10.6084/m9.figshare.11396007
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Fig. 3. Raytracing simulations of the 3D hypersurface of a five-cell (left) and of a hypercube (right). (a), (e) Gluing instructions: faces with the same num-
bers are identified; in unnumbered faces, the identified face is not visible. (a) Four outermost vertices, labeled V, are identified; after folding, they form the
fifth vertex of the five-cell. In the case of the hypercube (e), the four outermost vertices, all labeled C, are identified, forming the center of the eighth cubic cell
of the hypercube. (b) One light-ray trajectory (red line) is shown from the outside of the net. The view from within the hypersurface is shown in (d), where a
white sphere has been placed within the space as shown in (c). (f ), (g), (h) Similar simulations have also been performed for the hypercube. See Section 5 of
Supplement 1 for details of the raytracing simulations.

6. CONCLUSION

In this paper, we have demonstrated a new approach for the optical
simulation of curved spaces. As examples of curved 2D surfaces
we have used surfaces of simple platonic bodies that can be seen as
piecewise flat approximations to the surface of a sphere. We have
also extended our approach to 3D hypersurfaces of 4D polyhe-
dra, namely, the five-cell and the hypercube. To do this, we have
employed a mechanism that connects the edges or faces to be glued.
This can be achieved by using either wedges of negative refractive
index (or ray-optical approximations thereof ), or a combination
of absolute optical instruments modified by the methods of trans-
formation optics. For concave polyhedra, it would be difficult
to perform the optical gluing physically; however, light propa-
gation even on such surfaces can be visualized using numerical
simulations.

Experimental simulations of curved spaces “suggest new
insights and offer considerable intuition” [15], and we hope that

our ideas also have this effect, with or without experimental reali-

zation. In fact, inspired by this research, a few of us have already

started to investigate wave optics and quantum motion on the

surface of polyhedra [54]. We hope that our work will open up

further new possibilities in the exciting field of light propagation

in curved spaces, a field at the crossing of transformation optics,

negative refraction, geodesic lenses, absolute optical instruments,

general relativity, and quantum gravity.

The ability to realize such systems experimentally would enable

optical simulations of wave mechanics and quantum mechanics

[55] in such spaces. Although we have used elements of Regge

calculus in this paper to purely realize optical curvature, the rela-

tion to gravity is evident. Localized solutions of general relativity

such as cosmic strings and their related dynamics have motivated

laboratory tests employing metamaterials, see, e.g., [30,32]. The

methodology outlined and demonstrated in this work provides a

new and complementary approach along these lines.

https://doi.org/10.6084/m9.figshare.11396007
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