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Abstract: Systematically collected hospitalization records provide valuable insight into disease patterns

and support comprehensive national infectious disease surveillance networks. Hospitalization records

detailing patient’s place of residence (PoR) can be utilized to better understand a hospital’s case load

and strengthen surveillance among mobile populations. This study examined geographic patterns of

patients treated for cholera at a major hospital in south India. We abstracted 1401 laboratory-confirmed

cases of cholera between 2000–2014 from logbooks and electronic health records (EHRs) maintained

by the Christian Medical College (CMC) in Vellore, Tamil Nadu, India. We constructed spatial trend

models and identified two distinct clusters of patient residence—one around Vellore (836 records

(61.2%)) and one in Bengal (294 records (21.5%)). We further characterized differences in peak timing

and disease trend among these clusters to identify differences in cholera exposure among local and

visiting populations. We found that the two clusters differ by their patient profiles, with patients in

the Bengal cluster being most likely older males traveling to Vellore. Both clusters show well-aligned

seasonal peaks in mid-July, only one week apart, with similar downward trend and proportion of

predominant O1 serotype. Large hospitals can thus harness EHRs for surveillance by utilizing patients’

PoRs to study disease patterns among resident and visitor populations.

Keywords: spatial statistics; disease clusters; cholera; hospitalization; India; electronic health records

(EHR); mobile population

1. Introduction

In regions lacking robust infectious disease surveillance mechanisms, health authorities can

substantially benefit from utilizing detailed hospitalization records that typically include the

patient’s demographic information, personal data, confirmed diagnosis, and history of illness [1–3].

With increasing computerization of medical records and diagnostic improvements, electronic

hospitalization records (EHRs) can be effectively utilized for individualized treatment and healthcare

management and as a tool for targeted disease surveillance [4–7]. In resource-poor areas, the use of

EHRs for disease monitoring on local and regional scales could be of high value, especially if the

patient profile, hospital capture geographic area, and sources of exposure are well understood.
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Three location-based pieces of information are relevant to source-tracking of a disease—the

patient’s place of residence (PoR), the place of exposure (PoE), and the place of health care (PoH)

(Figure 1). PoE is typically determined based on patient recall and epidemiological investigations and

ideally could be recorded in medical history or EHR. PoR is likely to be reported by the patient during

admission into a hospital, which is often the PoH. In some situations of mild infection, two or more of

these locations may be the same. For example, if the individual consumes contaminated water collected

from a well close to their home, suffers diarrhea, and self-medicates with over-the-counter antidiarrheal

drugs, we might conclude that PoR, PoH, and PoE are the same. For severe cases that require medical

assistance and hospitalization, both PoR and PoH are known, but there may be substantial uncertainty

regarding PoE. Detailed PoR and PoE information are often collected in investigations following

disease outbreaks and may not be part of a standard diagnostic questionnaire.

Figure 1. Location-based information relevant to disease source-tracking: Place of Residence (PoR),

Place of Exposure (PoE), and Place of Hospitalization (PoH).

Individual EHRs may contain information about PoE, PoR, and PoH, as well as time-stamped

information on laboratory-confirmed disease vector or infectious agents. These EHR-derived data can

be combined to create a unique and complete picture of infectious disease exposure, manifestation,

and treatment patterns. Detected patterns can be useful for characterizing a hospital capture area,

for example, by defining the average distance between PoR and PoH, or for identifying hotspots of

infections based on patient PoRs [5,8]. When PoE is not included in EHRs, PoH or PoR could be used

as a proxy, but only after careful examination of spatial patterns of hospitalizations.

The Christian Medical College (CMC) Hospital in the Indian city of Vellore in Tamil Nadu

state, plays an important role in documenting the changing landscape of cholera on the Indian

subcontinent and serves as a national reference laboratory. The Department of Microbiology at

CMC was instrumental in detecting the first outbreak of cholera caused by the O139 serogroup.

The outbreak started in Vellore in September 1992 and spread to Madras (now Chennai) by October

1992 [9]. This epidemic subsequently spread to Calcutta city in the Indian state of West Bengal, and the

country of Bangladesh [9]. The new serogroup designation O139, synonym “Bengal,” became the most

prevalent serogroup worldwide [10,11]. The Department of Microbiology at CMC has tracked the

progress of Vibrio cholerae (V. cholerae) O139 since first detection, documenting the virtual absence of O1

V. cholerae during 1992–1993, its reappearance in late 1993, and the prevalence of both O1 and O139

V. cholerae serogroups in Vellore since then [12]. The O139 serotype has been transported around the

world through trade and tourism and is now well-established in most South Asian countries [13,14]

Understanding the spatiotemporal patterns of cholera among patients at CMC is crucial for

managing the hospital’s caseload given travel and migration patterns around Chennai and Vellore.

Vellore is located near many major tourist destinations, and CMC Hospital is an important destination

for medical tourism in the subcontinent. CMC is also located three hours from Chennai, the second most

frequently visited destination for foreign tourists in India [15]. While foreign travel to Vellore peaks
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during January and February, domestic travel to both Chennai and Vellore peaks from October through

December [16], coinciding with major Indian festivals such as Diwali, Dusshera, and Christmas. During

these months, individuals are most likely to travel large distances through multiple transit modes

to visit hometowns and relatives. Skilled employment is the primary motivation for out-migration

from Chennai, especially to nearby centers such as Bengaluru [17]. There is also significant economic

migration between Tamil Nadu and the nearby states of Karnataka, Kerala, and Andhra Pradesh [17].

Given this mobile population, hospital-based surveillance in this region provides valuable information

on endemic diseases and novel pathogens [18].

Cholera is a highly variable disease driven by local environments as well as seasonal and

community-level factors governing disease transmission. Toxigenic cholera has a median incubation

period of 1.4 days, with 95% of cases developing symptoms within five days [19]. Due to the variety

of drivers and quick onset, establishing exposure-disease associations for cholera at the individual

level can be challenging [19]. In such situations, one can utilize point processes, or stochastic processes

whose events or results are observed within a study area and treated as a realization of a random point

process in two-dimensional space [20]. Point process methods are based on individual events in a

study region and therefore offer a distinct advantage to standard epidemiological modeling methods

that are based on data aggregated in space and time [20].

This study examined geographic patterns of cholera-related hospitalization records maintained by

CMC Hospital in Vellore, Tamil Nadu State, India. These records were used to examine spatiotemporal

patterns of cholera based on patient PoR during 2000–2014. We used laboratory confirmed clinical

isolates of V. cholerae abstracted from CMC logbooks and electronic databases to generate the 15-year

record of cholera at the hospital. We geocoded each patient’s self-reported town and region, and

developed point process models to identify clusters of PoR. Identified clusters were then modeled to

examine their temporal characteristics, including peak timing and disease trend. These models were

studied in conjunction with temporal covariates including holidays and weekends to characterize

temporal and demographic differences between the two clusters.

2. Materials and Methods

2.1. Data Abstraction and Geocoding

Over 1900 laboratory-confirmed records of cholera between 1992 and 2014 were abstracted from

stored logbooks (1992–2004) and electronic databases (2004–2014) maintained by the Department

of Microbiology at CMC [21]. Approvals for data use and analysis were obtained from the CMC

Institutional Review Board and by the Tufts Institutional Review Board. A laboratory definitive

isolation of V. cholerae O1, O139, or non-agglutinating serotypes was used as the case definition

for cholera. Continuous information was available for 15 years (1 January 2000–31 December 2014;

5479 days) and included 1401 records. Each record included the following fields for each patient: Date

of Hospitalization, Town, State/Region, Age, Sex, and Serotype, which we used to create a cluster

population profile. We standardized the Date of Hospitalization to a year-month-day format and

removed 31 records with missing Town or Region from the dataset. The Town and Region fields

were also standardized to reflect the most recent spelling of each place and were geocoded using

the ggmap [22] R package. This automated geocoding process provided a latitude and longitude

corresponding to the centroid of the town extent reported by each cholera patient as their PoR. Cases

that could not be geocoded in the first round were flagged and examined for spelling errors. The Town

and Region information was corrected for obvious typos, and for ambiguous entries, the nearest Town

and State name was found from Google Maps. After corrections, a second round of geocoding was

implemented. Overall, 1366 (97.5%) of records were successfully geocoded. A flowchart of the two-step

geocoding process is shown in Figure 2, and a map of the geocoded records is provided in Figure 3.

R Version 3.5.1 [23] and RStudio Version 1.1.463 [24] software were used for all data processing and

statistical analyses.
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Figure 2. Flowchart of analytical process.

Figure 3. Map of cholera patients’ places of residence as observed at Christian Medical College (CMC)

hospital in Vellore, Tamil Nadu state, India.
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2.2. Examination of Point Patterns

Based on geocoded patient PoRs, analysis was limited to patient PoRs in India and its direct

neighbors (Bangladesh, Bhutan, Nepal, and Pakistan). The boundaries of these countries were

downloaded using the maps R package [25] and converted to an observational window in the UTM

44N projection using maptools [26], rgeos [27], sp [20,28], and spatstat [29] R packages. Cholera

intensity was defined as the number of cases per unit area using the complete geocoded dataset.

A simple point pattern was created, and the kernel smoothed intensity function of the point pattern was

mapped as an exploratory tool. The intensity was first modelled using a cross-validated bandwidth of

the isotropic Gaussian kernel to minimize mean-square error and then by maximizing the log-likelihood

cross-validation over all data points [30–32]. The default standard deviation of the isotropic Gaussian

kernel, calculated based on the point pattern extent, was further adjusted by multiplying it by factors

of 0.25, 0.50, 0.75, and 1.0. This preliminary investigation further defined the search for two clusters

within the dataset.

2.3. Point Process Modeling

A series of point process models with only two-dimensional spatial trend (x and y) were

investigated to characterize the two clusters. Smoothed Pearson residuals and Akaike Information

Criterion (AIC) were collected from each model. The three models with the lowest AIC were utilized

to extract boundaries for the two identified spatial clusters—one around Vellore and one in eastern

India including the Indian state of West Bengal and the country of Bangladesh (henceforth “Bengal”).

Boundaries of the smoothed residual field equaling zero were extracted to define cluster boundaries

from each model. Each case was then classified as belonging to either the Vellore or the Bengal cluster

per extracted boundaries from each model. Cases consistently classified as belonging to one cluster

across all three models were designated as stable clusters.

2.4. Temporal Modeling

A list of Indian national holidays [33] and holidays for the state of Tamil Nadu [34] were compiled

for the study period. Holidays from Tamil Nadu represented culturally significant festivals, which

may align with increased long-distance travel to Tamil Nadu. Each date in the dataset was coded for

binary holiday and binary weekend (Saturday or Sunday). Here, 1565 days (28.6% of the study period)

were classified as weekends, and holidays accounted for 888 days (16.2% of the study period).

Cholera cases were then compiled into daily time series of counts for the two stable clusters.

Negative binomial regressions were used to model cholera counts in each cluster. The models were

built from a basic regression equation with only linear trend and expanded to include yearly seasonality,

weekends, and holidays (Table 1). The estimates of β2 and β3 regression coefficients and their error

values were used to calculate peak timing and its variance using the δ-method [35,36]. Overall model

fit was assessed based on percentage of variability explained (VE) by each model, calculated as shown

in Equation (1).

VE =
(D0 −Dr)

D0
∗ 100% (1)

where D0—null deviance and Dr—residual deviance. VE were also compared to AIC values.

Table 1. Negative binomial models with trend, seasonality, weekends, and holidays.

Model Model Formulation *

I: Trend ln(E[c]) = β0 + β1t
II: Trend + Seasonality ln(E[c]) = . . .+ β2sin(2πωt) + β3cos(2πωt)

III: Trend + Seasonality +Weekends + Holidays ln(E[c]) = . . .+ β4W + β5H

* Variables: c = cholera counts, t = days since the start of the study (e.g., t = 1, for 1 January 2000), ω = frequency
calculated as 1/365.25, W =weekends, H = holidays.
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3. Results

3.1. Exploratory Analysis

The complete geocoded dataset contained 1366 laboratory-confirmed cases of cholera. Given the

short incubation period of toxigenic cholera, the largest volume of PoR was expected in the vicinity

of CMC Hospital, from Tamil Nadu and neighboring Andhra Pradesh and Kerala states. As shown

in Figure 4 which presents case counts aggregated by state, this expectation holds true. However, a

notable number of patients also had a PoR in the Indian state of West Bengal and in the country of

Bangladesh, which are located hundreds of kilometers away from Tamil Nadu (Figure 5).

 

Figure 4. Number of patients treated for cholera at CMC Vellore by year and month, with reported

place of residence by Indian state. The following states and territories are not shown due to low case

counts (under five cases in complete dataset): Delhi, Goa, Mizoram, Nagaland, Punjab, and Sikkim.
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Figure 5. Number of patients treated for cholera at CMC Vellore by year and month from the country

of Bangladesh and the Indian states of Tamil Nadu and West Bengal.

3.2. Point Process Intensity

Cholera case intensity, or the number of cases per unit area, was examined to investigate whether

the observed clusters are consistent. As seen in Figure 6, Vellore consistently appears to be an important

cluster for all smoothing kernel values. The extent of this cluster increases with increasing kernel size.

As the magnitude of adjusted bandwidths increases, a region of moderately high case intensity is also

observed in the Eastern portion of the study extent, spanning Bangladesh and eastern Indian states

(Figure 6c–f). The cross-validated bandwidth intensity maps (Figure 6a,b) display a very narrow radius

of case intensity around Vellore, indicating that the large percentage of cases from Vellore may mask

lower case intensities from other regions.

Figure 6. Isotropic Gaussian kernel smoothed intensity (cases per unit area) in CMC dataset. Each panel

represents a bandwidth: (a) cross-validation; (b) likelihood cross-validation; and isotropic Gaussian

kernel adjustment factors of: (c) 0.25, (d) 0.50, (e) 0.75, and (f) 1.

3.3. Point Process Modeling

A set of 14 models representing several families of spatial trends were investigated to describe this

dataset (Table 2). The three models with the lowest AIC identified two clusters—one around Vellore

with 836–841 cases, and one in Bengal with 294–493 cases (Figure 7). Cases consistently classified as
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belonging to one cluster across all three models were designated as stable clusters. Thus, the stable

Vellore cluster had 836 cases (61.2% of the geocoded dataset), the stable Bengal cluster had 294 cases

(21.5% of the geocoded dataset), and 326 cases were not part of either cluster (17.3% of the geocoded

dataset). The Vellore cluster has a large average radius of approximately 306 km, indicating that CMC

Vellore hospital has a large local capture area around Tamil Nadu, Andhra Pradesh, and Kerala states.

The stable Bengal cluster has a small average radius of approximately 194 km located much farther

away from CMC Vellore (Figure 7).

Table 2. Cases within Vellore and Bengal clusters based on spatial trend models.

Model No. Trend AIC *
Cases in

Vellore Cluster
Cases in

Bengal Cluster
Cases in Joint

Cluster

15 sin(x) + cos(y) 58,132 836 493 -
14 cos(y) + x 58,351 841 294 -
8 cos(y) 58,475 836 470 -

11 sin(x) + y 60,160 800 500 -
13 cos(x) + y 60,244 798 500 -
3 y 60,536 800 500 -
12 sin(y) + x 61,123 - - 1135
7 sin(y) 61,511 - - 1327
9 sin(x + y) 62,028 - - 1339
2 x 62,060 843 291 -
5 sin(x) 62,193 - - 1339
6 cos(x) 62,214 - - 1339
10 cos(x + y) 62,419 - - 1339
1 1 62,558 - - 1339

* AIC—Akaike Information Criterion.

 

Figure 7. Boundaries and cases included in the Vellore (purple) and Bengal (green) stable clusters.

3.4. Temporal Effects and Patient Profile

In Figure 8, time series of counts show the temporal dynamics of cholera cases for the two stable

clusters, and the histograms reflect the distributional shape of the temporal process. The first bar of

the histograms indicates a high proportion of days with no cholera cases (88% for Vellore and 95%

for Bengal). The time series plots show that both clusters have prolonged periods with no cases and

occasional spikes of higher counts.
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Figure 8. Daily time series and histograms for cholera cases in the stable Bengal (upper row) and

Vellore (lower row) clusters.

Approximately 14% and 15% of cholera cases were reported during a holiday and 22% and 25%

during a weekend for the Vellore and Bengal clusters, respectively (Table 3). Patients in the Bengal

cluster were on average older (34 compared to 23 years old in the Vellore cluster) and predominantly

male (63% compared to 56% in the Vellore cluster). The proportion of patients with cholera serotype

O1 and O139 were similar in both clusters (Table 3). The consecutive model building process shown in

Table 4 demonstrates improvement in AIC and VE when adding the seasonality term for both clusters,

and only for the Vellore cluster when adding the calendar effects (holidays and weekends). Results

from the final negative binomial regression model (Model III) with trend, seasonality, and calendar

effects are shown in Table 5.

Table 3. Summary and effect of temporal covariates on case intensity for the stable clusters.

Variable Measure Vellore Bengal

Total Cases Count 836 294
Holiday Count (%) 116 (13.88) 45 (15.31)
Weekend Count (%) 181 (21.65) 72 (24.49)

Male Count (%) 468 (56.05) 185 (62.93)
Age Mean (Sd) 25.73 (23.14) 33.92 (18.81)

O1 serotype Count (%) 574 (68.66) 180 (61.22)
O139 serotype Count (%) 49 (5.86) 12 (4.08)

Table 4. Summary of negative binomial model fit for the Vellore and Bengal stable clusters.

Model
Vellore Bengal

AIC * VE (%) ** AIC VE (%)

I: Trend 4865 1.93 2308 1.02
II: Trend + Seasonality 4815 4.05 2288 2.81

III: Trend + Seasonality +Weekends +
Holidays

2290 4.72 2290 2.96

* AIC—Akaike Information Criterion; ** VE (%)—percent variability explained.
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Table 5. Summary of trend, peak timing estimates, and weekend and holiday effects of cholera cases

for the Vellore and Bengal clusters.

Variable Vellore Bengal

Trend as % change in disease counts per 30 days −0.519 (−0.667, −0.371) −0.455 (−0.690, −0.222)
Weekend effect as % difference −31.27 (−42.96, −17.52) −18.67 (−39.00, 7.31)
Holiday effect as % difference −9.47 (−27.78, 12.73) 2.18 (−28.08, 42.33)

Peak timing in days 186.2 (170.5, 202.0) 194.6 (171.5, 217.8)
Peak timing July 7 ± 16 days July 14 ± 23 days

Both clusters show a steady declining trend with cholera cases decreasing on average by 0.5%

every 30 days. The Vellore cluster shows approximately 31% less cases reported during weekends

(95% CI: −42.96% to −15.52%), while the Bengal cluster does not show a significant weekend effect.

Holidays have no clear effect on either cluster. The average peak timing of reported cases was in early

to mid-July, one week apart (7 July for Vellore and 14 July for Bengal), with the Bengal cluster having a

wider confidence interval for peak timing than the Vellore cluster (± 23 days compared to ± 16 days).

4. Discussion

Detailed EHRs with accurate case information and patient PoR allow public health practitioners

and data analysts to better understand the profile of hospitalized population and monitor infectious

disease patterns. Our study demonstrates that patients diagnosed with cholera and treated at CMC

Hospital represent a wide range of residential locations (PoR). These PoRs can be classified into two

distinct geographic clusters—Vellore (61% of cases) and Bengal (22%). We found that the two clusters

differ by their patient profiles, with patients in the Bengal cluster being most likely older males who are

traveling to Vellore [21]. Both clusters show well-aligned seasonal peaks in mid-July, only one week

apart, and they also show the same proportion of predominant O1 serotype.

Travel and migration are complex phenomena which cannot fully explain the link between

observed PoR in Bengal and PoH in Vellore. However, we hypothesize that PoR locations as far as

the Bengal cluster may indicate established travel patterns. Per the 2011 Indian Census, 1% of the

population in the Bengal cluster was born in Tamil Nadu, which may explain why patients from this

region may have travelled to the Vellore vicinity [37]. Employment opportunities may also motivate

travel between these regions [17]. Given a median incubation period of 1.4 days [19], we posit that

long-distance travel (over 1000 km) with symptomatic cholera seems unlikely. This hypothesis is

generally supported in the literature—in an assessment of cholera-related hospitalization for children

under five in Bangladesh, rural distances to hospital are classified in groups of less than 3 km, 3–5 km,

5–7 km, and greater than 7 km [38]. Other studies report mean distance to hospital of 4.9 and 6.7 km [39],

and a maximum distance of 16.8 km [40]. Given this range of reported distances, we conclude that

patients would likely not travel more than a few kilometers to seek treatment for cholera. Therefore,

distances of greater than 1000 km between Vellore (PoH) and Bengal (PoR) observed in our dataset

lead us to suspect that place of exposure (PoE) for the visiting population is within the Vellore cluster

boundary. However, sound conclusions on this topic require further inquiry and microbiological

analysis that are outside the scope of the current study.

This presented investigation is subject to several challenges and limitations. One underlying

challenge is that the detection of disease clusters is determined by the accuracy of the underlying data.

In our study many of the records before 2004 were collected from paper logbooks and validated with

data from one of two hospital databases. The address entries had to be checked for discrepancies such

as misspelling or misspecification of town or region. These non-standard data entry methods led to

several uncertainties regarding the abstracted fields. There were also discrepancies between the two

databases in use at CMC. Some entries were duplicated with varying patient attribute details, and some

others were not diagnosed with cholera per one database. Attempts were made to resolve discrepancies

by using matched records if available and treating different entries of cholera (despite potential of being
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the same case stored in different databases) as different cases. However, the transitional nature of data

migration to EHR databases makes it difficult to retrospectively analyze the accuracy of the records.

Spatial uncertainty regarding patient PoR also directly affects observed cluster boundaries. Several

geographic boundaries and place names have changed since the reported case date. For example,

Calcutta was renamed Kolkata in 2001, Pondicherry was renamed Puducherry in 2006, and the Indian

state of Uttaranchal was created in 2000 and renamed Uttarakhand in 2007. Several entries were

corrected in the second round of geocoding (Figure 2) to address changing geographies. Despite these

challenges, EHRs utilized in this dataset were quite robust. Over 97% of the dataset was geocodable

with minor data cleaning, indicating that hospitalization datasets often have very high quality and

fidelity. Since only the Town and Region for each patient was abstracted to protect patient privacy,

there was also inherent spatial uncertainty in the exact location of each PoR. A few studies have utilized

high spatial resolution information from hospitalization records for source-tracking [4,5,41]; however,

we were unable to abstract this level of detail in our dataset. Utilizing the centroid of a town as the PoR

was a useful but coarse assumption for this study. The accuracy of future studies can be improved by

geocoding the complete patient address obtained with appropriate patient consent and IRB approval.

Patient travel information contained in EHRs can also help characterize the PoE more precisely for a

thorough investigation of disease transmission among and across communities [4].

Another limitation is that hospital-based surveillance only allows us to observe extreme cases that

require intensive care. Such systems can only detect a narrow range of cases and do not capture less

severe cases that did not require hospitalization, patients who cannot afford hospitalization, or patients

who self-medicate. According to the PoR-PoE-PoH framework introduced in Figure 1, our analysis

does not capture cases with missing PoH. Therefore, any epidemiological study utilizing hospitalization

records cannot make conclusions about prevalence or incidence in the general population. Furthermore,

hospitals have limited capacity, and we do not have information about upstream admission and

testing decisions which led to each record observed in our dataset. However, we demonstrate that

hospitalization records are extremely valuable for understanding mobile patient populations. Given

the distribution of patient PoRs in this dataset, we conclude that CMC Hospital’s capture area for

cholera includes a local population from Tamil Nadu, Andhra Pradesh, and Kerala states and a visiting

population from the Bengal region. This information is particularly useful for hospital administrators

making daily decisions regarding staffing, procurement of laboratory supplies, seasonal testing

schedules, and other factors that affect the quality of patient care. Knowledge of patient demographics

and disease-specific peak timing across mobile populations is also extremely important to effectively

manage outbreaks that may quickly overwhelm even large regional hospitals.

Like most infectious diseases, cholera exposure and manifestation are determined by a complex set

of factors. Our study offers a preliminary inquiry considering spatiotemporal properties of the cholera

caseload in this region. This analysis would benefit from additional demographic, socioeconomic,

and public health covariates in the model. Traditional variables used in epidemiological clustering

analysis include meteorological characteristics temperature, humidity, precipitation; and individual

patient characteristics age, sex, and water and sanitation access [42]. However, given the ambiguity

in PoE, it is difficult to determine an appropriate spatial extent for environmental data extraction.

While demographic characteristics can be abstracted at the district level, access to water and sanitation

facilities is extremely spatially and demographically variant, and information on these facilities was

not available at a scale relevant for this study. In the presence of better information, existing methods

to develop local patient profiles from EHRs [21] can be supplemented with PoR and PoE information

to improve surveillance efforts and help rapidly characterize susceptible populations in the event of an

outbreak. Local authorities can also implement simpler surveillance solutions by similarly geocoding

patient PoRs to characterize the burden of local and imported cases of any disease over time.

Moving forward, we recommend permanent solutions to improve primary data collection across

EHR fields through standardized data entry formats. For example, address entry can be streamlined by

using dropdown menus for key fields instead of text boxes or manual entry systems. Hospital database
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interfaces could also display warning signs for incorrectly entered data and limit implausible values

while entering patient age, sex, and town. These steps can establish a more streamlined data-to-results

pipeline for active up-to-date surveillance results. With ongoing improvements in hospital data

infrastructure, we expect rapid advances in the spatial and temporal resolution provided by EHRs for

optimal local and regional infectious disease surveillance. Utilizing accurate PoR and PoE information

in conjunction with the methods presented in this analysis can produce high-quality hospital-based

predictive models of multiple locally significant diseases.

Improvements to the outlined methodology as well as primary data collection can help create an

active surveillance network based on high-resolution spatial and temporal data. While this analysis

only studies the hospitalization record of cholera from CMC Vellore, this methodology can be expanded

to many more diseases and centers. EHRs can also be combined with health survey and morbidity data

for a more complete picture of regional infectious disease burdens. As capacities for data storage and

analysis increase exponentially, robust data standards can be used to develop a hospitalization record

network, which allows epidemiologists to gather, analyze, and monitor large amounts of high-quality

data at multiple scales. Such data must be curated in machine-readable format in secure and accessible

data repositories to facilitate further research.

5. Conclusions

This study utilizes patients’ place of residence (PoR) and demographic information to identify

two distinct clusters of patient origin based on EHRs at CMC Hospital in Vellore, India. Information

regarding demographic characteristics and disease peak timings among resident and visitor populations

is essential for effective care delivery and outbreak management. The PoR-PoH-PoE framework can

be harnessed for disease source-tracking among mobile populations and for developing national

hospital-based surveillance networks. Spatial and temporal models utilizing hospitalization records

can thus provide valuable information for researchers, public health professionals, and decision makers

about population profiles and patterns of infections.

Author Contributions: Conceptualization: E.N.N., B.V., and H.W.; methodology: A.V., T.M.A.F., E.N.N., S.A.,
and B.V.; analysis and visualization: A.V., T.M.A.F., and M.C.; database validation and curation: M.A.H., S.A.,
N.K., B.V., and A.V.; sample testing: S.A., N.K., and B.V.; writing—original draft preparation: A.V., T.M.A.F., and
E.N.N.; writing—review and editing: A.V., T.M.A.F., E.N.N., M.A.H., H.W., and B.V.; supervision: E.N.N. and B.V.;
project administration: T.M.A.F.; funding acquisition: E.N.N.

Funding: This research was partially supported by the Tufts Institute of Innovation grant on Innovative Public
Health Engineering Strategies to Reduce Water-Associated Disease Burden in Developing Countries. This research
is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via 2017-17072100002. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of ODNI, IARPA, or the US Government. The US Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Acknowledgments: We thank our colleagues from CMC Vellore, India, for helping with data collection and
contributing insight and expertise that greatly assisted the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Short, D.; Frischer, M. Supporting the evidence-based treatment of individual drug users: The case for

‘patient profile decision analysis’. Int. J. Drug Policy 2005, 16, 143–147. [CrossRef]

2. Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst

2014, 2. [CrossRef]

3. O’Sullivan, D.; McLoughlin, E.; Bertolotto, M.; Wilson, D.C. Mobile case-based decision support for intelligent

patient knowledge management. Health Inform. J 2007, 13, 179–193. [CrossRef]

4. Gil-Prieto, R.; Walter, S.; Alvar, J.; de Miguel, A.G. Epidemiology of leishmaniasis in Spain based on

hospitalization records (1997–2008). Am. J. Trop. Med. Hyg. 2011, 85, 820–825. [CrossRef]

http://dx.doi.org/10.1016/j.drugpo.2004.02.002
http://dx.doi.org/10.1186/2047-2501-2-3
http://dx.doi.org/10.1177/1460458207079839
http://dx.doi.org/10.4269/ajtmh.2011.11-0310


Int. J. Environ. Res. Public Health 2019, 16, 4257 13 of 14

5. Mor, S.M.; DeMaria, A., Jr.; Naumova, E.N. Hospitalization Records as a Tool for Evaluating Performance

of Food- and Water-Borne Disease Surveillance Systems: A Massachusetts Case Study. PLoS ONE 2014, 9,

e93744. [CrossRef]

6. Birkhead, G.S.; Klompas, M.; Shah, N.R. Uses of electronic health records for public health surveillance to

advance public health. Annu. Rev. Public Health 2015, 36, 345–359. [CrossRef] [PubMed]

7. Klompas, M.; Cocoros, N.M.; Menchaca, J.T.; Erani, D.; Hafer, E.; Herrick, B.; Josephson, M.; Lee, M.; Payne

Weiss, M.D.; Zambarano, B.; et al. State and Local Chronic Disease Surveillance Using Electronic Health

Record Systems. Am. J. Public Health 2017, 107, 1406–1412. [CrossRef] [PubMed]

8. Chui, K.K.C.; Steven, A.; Naumova, E.N. Snowbirds and infection–new phenomena in pneumonia and

influenza hospitalizations from winter migration of older adults: A spatiotemporal analysis. BMC Public

Health 2011, 11. [CrossRef] [PubMed]

9. Nair, G.B.; Ramamurthy, T.; Bhattacharya, S.K.; Mukhopadhyay, A.K.; Garg, S.; Bhattacharya, M.K.; Takeda, T.;

Shimada, T.; Takeda, Y.; Deb, B.C. The Spread of Vibrio cholerae O139 in India. J. Infect. Dis 1994, 169,

1029–1034. [CrossRef]

10. Albert, M.J.; Ansaruzzaman, M.; Bardhan, P.K.; Faruque, A.S.G.; Faruque, S.M.; Islam, M.S.; Mahalanabis, D.;

Sack, R.B.; Salam, M.A.; Siddique, A.K.; et al. Large epidemic of cholera-like disease in Bangladesh caused

by Vibrio cholerae 0139 synonym Bengal. Lancet 1993, 342, 387–390.

11. Nair, G.B.; Shimada, T.; Kurazono, H.; Okuda, J.; Pal, A.; Karasawa, T.; Mihara, T.; Uesaka, Y.; Shirai, H.;

Garg, S. Characterization of phenotypic, serological, and toxigenic traits of Vibrio cholerae O139 bengal.

J. Clin. Microbiol 1994, 32, 2775–2779. [PubMed]

12. Jesudason, M.V.J.; Jacob, T. The Vellore Vibrio Watch. Lancet 1996, 347, 1493–1494. [CrossRef]

13. Faruque, S.M.; Sack, D.A.; Sack, R.B.; Colwell, R.R.; Takeda, Y.; Nair, G.B. Emergence and evolution of Vibrio

cholerae O139. Proc. Natl. Acad. Sci. USA 2003, 100, 1304–1309. [CrossRef] [PubMed]

14. Bharati, K.; Bhattacharya, S.K. Cholera Outbreaks in South-East Asia. In Cholera Outbreaks; Nair, G.B.,

Takeda, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 87–116.

15. Ministry of Tourism. India Tourism Statistics at a Glance. Available online: http://tourism.gov.in/

sites/default/files/Other/India%20Tourism%20Statistics%20at%20a%20Glance%202014New.pdf (accessed on

6 August 2017).

16. Nielsen India Pvt. Ltd. Tourism Survey for Tamil Nadu (January–December 2014) Final Report. Available

online: http://tourism.gov.in/sites/default/files/Other/Executive%20Summary%20%20State%20Report%20-

%20Tamilnadu.pdf (accessed on 8 August 2017).

17. Rajan, S.I.; D’Sami, B.; Raj, S.A. Non-Resident Tamils and Remittances: Results from Tamil Nadu Migration Survey

2015; State Planning Commission, Government of Tamil Nadu: Chennai, India, 2015.

18. Waldor, M.K.; Mekalanos, J.J. Emergence of a New Cholera Pandemic: Molecular Analysis of Virulence

Determinants in Vibrio cholerae O139 and Development of a Live Vaccine Prototype. J. Infect. Dis 1994, 170,

278–283. [CrossRef] [PubMed]

19. Azman, A.S.; Rudolph, K.E.; Cummings, D.A.; Lessler, J. The incubation period of cholera: A systematic

review. J. Infect 2013, 66, 432–438. [CrossRef] [PubMed]

20. Bivand, R.; Pebesma, E.J.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York,

NY, USA, 2013.

21. Cruz, M.S.; Alarcon-Falconi, T.M.; Hartwick, M.A.; Venkat, A.; Ehrlich, H.Y.; Anandan, S.; Ward, H.D.;

Veeraraghavan, B.; Naumova, E.N. From hospitalization records to surveillance: The use of local patient

profiles to characterize cholera in Vellore, India. PLoS ONE 2017, 12, e0182642. [CrossRef]

22. Kahle, D.; Wickham, H. ggmap: Spatial Visualization with ggplot2. R J 2013, 5, 144–161. [CrossRef]

23. R Core Team. R: A Language and Environment for Statistical Computing; Version 3.5.1.; R Foundation for

Statistical Computing: Vienna, Austria, 2018.

24. RStudio Team. RStudio: Integrated Development Environment for R; Version 1.1.463.; RStudio, Inc.: Boston, MA,

USA, 2018.

25. Becker, R.; Wilks, A.R.; Brownrigg, R.; Minka, T.P.; Deckmyn, A. maps: Draw Geographical Maps. Version 3.2.0.

Available online: https://cran.r-project.org/web/packages/maps/index.html (accessed on 2 November 2019).

26. Bivand, R.; Lewin-Koh, N. maptools: Tools for Reading and Handling Spatial Objects. Version 0.9-2. 2017.

Available online: https://cran.r-project.org/web/packages/maptools/index.html (accessed on 2 November 2019).

http://dx.doi.org/10.1371/journal.pone.0093744
http://dx.doi.org/10.1146/annurev-publhealth-031914-122747
http://www.ncbi.nlm.nih.gov/pubmed/25581157
http://dx.doi.org/10.2105/AJPH.2017.303874
http://www.ncbi.nlm.nih.gov/pubmed/28727539
http://dx.doi.org/10.1186/1471-2458-11-444
http://www.ncbi.nlm.nih.gov/pubmed/21649919
http://dx.doi.org/10.1093/infdis/169.5.1029
http://www.ncbi.nlm.nih.gov/pubmed/7852571
http://dx.doi.org/10.1016/S0140-6736(96)91733-X
http://dx.doi.org/10.1073/pnas.0337468100
http://www.ncbi.nlm.nih.gov/pubmed/12538850
http://tourism.gov.in/sites/default/files/Other/India%20Tourism%20Statistics%20at%20a%20Glance%202014New.pdf
http://tourism.gov.in/sites/default/files/Other/India%20Tourism%20Statistics%20at%20a%20Glance%202014New.pdf
http://tourism.gov.in/sites/default/files/Other/Executive%20Summary%20%20State%20Report%20-%20Tamilnadu.pdf
http://tourism.gov.in/sites/default/files/Other/Executive%20Summary%20%20State%20Report%20-%20Tamilnadu.pdf
http://dx.doi.org/10.1093/infdis/170.2.278
http://www.ncbi.nlm.nih.gov/pubmed/8035010
http://dx.doi.org/10.1016/j.jinf.2012.11.013
http://www.ncbi.nlm.nih.gov/pubmed/23201968
http://dx.doi.org/10.1371/journal.pone.0182642
http://dx.doi.org/10.32614/RJ-2013-014
https://cran.r-project.org/web/packages/maps/index.html
https://cran.r-project.org/web/packages/maptools/index.html


Int. J. Environ. Res. Public Health 2019, 16, 4257 14 of 14

27. Bivand, R.; Rundel, C. rgeos: Interface to Geometry Engine-Open Source (GEOS). Version 0.3-23. 2017.

Available online: https://cran.r-project.org/web/packages/rgeos/index.html (accessed on 2 November 2019).

28. Pebesma, E.; Bivand, R.S. sp: Classes and Methods for Spatial Data in R. Version 1.3-1. 2018. Available

online: https://cran.r-project.org/web/packages/sp/index.html (accessed on 2 November 2019).

29. Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns: Methodology and Applications with R; Chapman and

Hall/CRC Press: London, UK, 2015.

30. Diggle, P. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns; CRC Press: London, UK, 2013.

31. Loader, C. Local Regression and Likelihood; Springer: New York, USA, 2006.

32. Diggle, P. A kernel method for smoothing point process data. J. R. Stat. Soc. Ser. C 1985, 34, 138–147.

[CrossRef]

33. National Informatics Centre. National Portal of India. Available online: https://india.gov.in/calendar

(accessed on 24 January 2016).

34. National Informatics Centre. Public Holidays for the year 2016: Tamil Nadu Government Portal. Available

online: http://www.tn.gov.in/holiday/2016 (accessed on 24 January 2016).

35. Naumova, E.N.; MacNeill, I.B. Seasonality assessment for biosurveillance systems. In Advances in Statistical

Methods for the Health Sciences; Auget, J.L., Balakrishnan, N., Mesbah, M., Molenberghs, G., Eds.; Birkhäuser:

Boston, MA, USA, 2007; pp. 437–450.

36. Stashevsky, P.S.; Yakovina, I.N.; Alarcon Falconi, T.M.; Naumova, E.N. Agglomerative Clustering of Enteric

Infections and Weather Parameters to Identify Seasonal Outbreaks in Cold Climates. Int. J. Environ. Res.

Public Health 2019, 16, 2083. [CrossRef]

37. Office of the Registrar General and Census Commissioner. Table D-01: Population Classified by Place of Birth

and Sex; Ministry of Home Affairs, Ed.; Government of India: New Delhi, India, 2011.

38. Colombara, D.V.; Cowgill, K.D.; Faruque, A.S. Risk factors for severe cholera among children under five in

rural and urban Bangladesh, 2000–2008: A hospital-based surveillance study. PLoS ONE 2013, 8, e54395.

[CrossRef]

39. Root, E.D.; Rodd, J.; Yunus, M.; Emch, M. The role of socioeconomic status in longitudinal trends of cholera

in Matlab, Bangladesh, 1993–2007. PLoS Negl. Trop Dis 2013, 7, e1997. [CrossRef] [PubMed]

40. Nazia, N.; Ali, M.; Jakariya, M.; Nahar, Q.; Yunus, M.; Emch, M. Spatial and population drivers of

persistent cholera transmission in rural Bangladesh: Implications for vaccine and intervention targeting.

Spat Spatio-temporal Epidemiol 2018, 24, 1–9. [CrossRef] [PubMed]

41. Nikolay, B.; Salje, H.; Sturm-Ramirez, K.; Azziz-Baumgartner, E.; Homaira, N.; Ahmed, M.; Iuliano, A.D.;

Paul, R.C.; Rahman, M.; Hossain, M.J.; et al. Evaluating Hospital-Based Surveillance for Outbreak Detection

in Bangladesh: Analysis of Healthcare Utilization Data. PLoS Med 2017, 14, e1002218. [CrossRef] [PubMed]

42. Nair, G.B.; Takeda, Y. Cholera Outbreaks; Springer: Berlin/Heidelberg, Germany, 2014; Volume 379.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://cran.r-project.org/web/packages/rgeos/index.html
https://cran.r-project.org/web/packages/sp/index.html
http://dx.doi.org/10.2307/2347366
https://india.gov.in/calendar
http://www.tn.gov.in/holiday/2016
http://dx.doi.org/10.3390/ijerph16122083
http://dx.doi.org/10.1371/journal.pone.0054395
http://dx.doi.org/10.1371/journal.pntd.0001997
http://www.ncbi.nlm.nih.gov/pubmed/23326618
http://dx.doi.org/10.1016/j.sste.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/29413709
http://dx.doi.org/10.1371/journal.pmed.1002218
http://www.ncbi.nlm.nih.gov/pubmed/28095468
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Abstraction and Geocoding 
	Examination of Point Patterns 
	Point Process Modeling 
	Temporal Modeling 

	Results 
	Exploratory Analysis 
	Point Process Intensity 
	Point Process Modeling 
	Temporal Effects and Patient Profile 

	Discussion 
	Conclusions 
	References

