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July 22, 2019 Muon Ionization Cooling Experiment RAL-P-2019-003

First demonstration of ionization cooling by the Muon Ionization
Cooling Experiment

MICE collaboration

High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, pro-

ton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for

new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely

well-characterised neutrino beams. A muon beam may be created through the decay of pions produced

in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source

requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling

is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experi-

ment collaboration has constructed a section of an ionization cooling cell and used it to provide the first

demonstration of ionization cooling. We present these ground-breaking measurements.

Fundamental insights into the structure of matter and

the nature of its elementary constituents have been

obtained using beams of charged particles. The use

of time-varying electromagnetic fields to produce sus-

tained acceleration was pioneered in the 1930s [1–6].

Since then, high-energy and high-brightness particle

accelerators have delivered electron, proton, and ion

beams for applications that range from the search for

new phenomena in the interactions of quarks and lep-

tons, to the study of nuclear physics, materials science,

and biology.

Muon beams are created using a proton beam strik-

ing a target to produce a secondary beam compris-

ing many particle species including pions, kaons and

muons. The pions and kaons decay to produce ad-

ditional muons that are captured by electromagnetic

beamline elements to produce a tertiary muon beam.

Capture and acceleration must be realised on a time

scale compatible with the 2.2µs muon lifetime at rest.

The energy of the muon beam is limited by the energy

of the primary proton beam and the intensity is limited

by the efficiency with which muons are accepted into

the transport channel. High-brightness muon beams

have not yet been produced at energies comparable to

state-of-the-art electron and proton beams.

Accelerated high-brightness muon beams have been

proposed as a source of neutrinos at a neutrino factory

and to deliver multi-TeV lepton-antilepton collisions

at a muon collider [7–13]. Muons have properties that

make them ideal candidates for the delivery of high

energy collisions. The muon is a fundamental parti-

cle with mass 207 times that of the electron, making

collisions possible between beams of muons and anti-

muons at energies far in excess of those that can be

achieved in an electron-positron collider such as the

proposed International Linear Collider [14], the Com-

pact Linear Collider [15–17] or the electron-positron

option of the Future Circular Collider [18]. The energy

available in collisions between the constituent gluons

and quarks in proton-proton collisions is significantly

less than the proton-beam energy because the collid-

ing quarks and gluons each carry only a fraction of

the proton’s momentum. This makes muon colliders

attractive to take the study of particle physics beyond

the reach of facilities such as the Large Hadron Col-

lider [19].

Most of the proposals for accelerated muon beams

exploit the proton-driven muon beam production

scheme outlined above. In these proposals the tertiary

muon beam has its brightness increased through beam

cooling before it is accelerated and stored. Four cool-

ing techniques are in use at particle accelerators: syn-

chrotron radiation cooling [20]; laser cooling [21–23];

stochastic cooling [24, 25]; and electron cooling [26].

In each case the time taken to cool the beam is long

compared to the muon lifetime. Frictional cooling of

muons, in which muons are electrostatically acceler-

ated through an energy-absorbing medium at energies

significantly below an MeV, has been demonstrated

but only with low efficiency [27–30].
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The novel technique demonstrated in this paper, ion-

ization cooling [31, 32], is expected to occur when a

suitably prepared beam passes through an appropriate

material (the absorber) and loses momentum through

ionization. Radio-frequency cavities restore momen-

tum along the beam direction only. Passing the muon

beam through a repeating lattice of material and accel-

erators causes the ionization cooling effect to build up

in a time much shorter than the muon lifetime [33–35].

Acceleration of a muon beam in a radio-frequency ac-

celerator has recently been demonstrated [36] and re-

duced beam heating, damped by the ionization cool-

ing effect, has been observed [37]. However, ioniza-

tion cooling has never previously been demonstrated.

Such a confirmation is important for the development

of future muon accelerators. The international Muon

Ionization Cooling Experiment (MICE) [38] was de-

signed to demonstrate transverse ionization cooling,

the first observation of which is presented here. The

brightness of a particle beam can be characterised by

the number of particles in the beam and the volume

occupied by the beam in position-momentum phase

space. The phase space considered in this paper is the

position and momentum transverse to the direction of

travel of the beam: u = (x, px, y, py), where x and y

are coordinates perpendicular to the beam line, and px
and py are the corresponding components of momen-

tum. The z-axis is the nominal beam axis.

The phase space volume occupied by the beam and

the phase space density of the beam are conserved

quantities in a conventional accelerator without cool-

ing. The normalised root-mean-square (RMS) emit-

tance is often used as an indicator of the phase space

volume occupied by the beam and is given by [39]

ε⊥ =
4

√

|V|
mµ

, (1)

where mµ is the muon mass and |V| is the determi-

nant of the covariance matrix of the beam in trans-

verse phase space. The covariance matrix has elements

vij = 〈uiuj〉 − 〈ui〉 〈uj〉. The distribution of individ-

ual particle amplitudes also describes the volume of

the beam in phase space. The amplitude is defined

by [40]

A⊥ = ε⊥R
2(u, 〈u〉) , (2)

where R2(u,v) is the square of the distance between

two points, u and v, in the phase space, normalised to

the covariance matrix:

R2(u,v) = (u− v)T V
−1 (u− v). (3)

The normalised RMS emittance is proportional to the

mean of the particle amplitude distribution. In the

approximation that particles travel near to the beam

axis, and in the absence of cooling, the particle am-

plitudes and the normalised RMS emittance are con-

served quantities. If the beam is well described by

a multivariate Gaussian distribution then R2 is dis-

tributed according to a χ2 distribution with four de-

grees of freedom so the amplitudes are distributed ac-

cording to

f(A⊥) =
A⊥

4ε2
⊥

exp

(−A⊥

2ε⊥

)

. (4)

The rate of change of the normalised transverse emit-

tance as the beam passes through an absorber is given

approximately by [32, 39, 41]

dε⊥
dz

⋍ − ε⊥
β2Eµ

∣

∣

∣

∣

dEµ

dz

∣

∣

∣

∣

+
β⊥(13.6MeV/c)2

2β3EµmµX0
, (5)

where βc is the muon velocity, Eµ the energy,

∣

∣

∣

dEµ

dz

∣

∣

∣

the mean energy loss per unit path length, X0 the ra-

diation length of the absorber and β⊥ the transverse

betatron function at the absorber [39]. The first term

of this equation describes ‘cooling’ by ionization en-

ergy loss and the second describes ‘heating’ by multi-

ple Coulomb scattering. Equation 5 implies that there

is an equilibrium emittance for which the emittance

change is zero.

If the beam is well described by a multivariate gaus-

sian distribution both before and after cooling then

the downstream and upstream amplitude distributions

fd(A⊥) and fu(A⊥) are related to the downstream

and upstream emittances εd
⊥

and εu
⊥

by

fd(A⊥)

fu(A⊥)
=

(

εu
⊥

εd
⊥

)2

exp

[

−A⊥

2

(

1

εd
⊥

− 1

εu
⊥

)]

.

(6)

Many particles in the experiment described in this

paper do not travel near to the beam axis. These par-

ticles experience effects from optical aberrations, as

well as geometrical effects such as scraping, in which
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high amplitude particles outside the experiment’s aper-

ture are removed from the beam. Scraping reduces

the emittance of the ensemble, and selectively removes

those particles that scatter more than the rest of the en-

semble. Optical aberrations and scraping introduce a

bias in the change in RMS emittance that occurs due

to ionization cooling. In this paper the distribution of

amplitudes is studied. In order to expose the behaviour

in the beam core, independently of aberrations affect-

ing the beam tail, V and ε⊥ are recalculated for each

amplitude bin, including particles that are in lower am-

plitude bins and excluding particles that are in higher

amplitude bins. This results in a distribution that, in

the core of the beam, is independent of scraping ef-

fects and aberrations.

Change in phase space density provides a direct

measurement of the cooling effect. The k-Nearest

Neighbour (kNN) algorithm provides a robust non-

parametric estimator of the phase space density of the

muon ensemble [42, 43]. The separation of pairs of

muons is characterised by the normalised squared dis-

tance, R2
ij(ui,uj), between muons with position ui

and uj. The density, ρi, associated with the ith parti-

cle is estimated by

ρi(ui) =
k

n|V| 12
1

vik
=

2k

nπ2|V| 12
1

R4
ik

, (7)

where vik is the volume of the hypersphere, centred on

ui, that intersects the particle having the kth smallest

Rij and n is the number of particles in the ensemble.

An optimal value for k has been used, k = n4/(4+d) =√
n, with phase space dimension d = 4 [43].

The MICE collaboration has built a tightly focus-

ing solenoid lattice, absorbers and instrumentation to

demonstrate ionization cooling of muons. A schematic

of the apparatus is shown in figure 1.

A transfer line [44–46] brought a beam, composed

mostly of muons, from a target [47] in the ISIS syn-

chrotron [48] to the cooling apparatus. The muons had

a nominal momentum of 140 MeV/c. A variable thick-

ness brass and tungsten diffuser allowed the incident

beam emittance to be varied between 4 and 10 mm.

The tight focussing (low beta function) and large

acceptance required by the cooling section was

achieved using twelve superconducting solenoids. The

solenoids were contained in three warm-bore modules

cooled by closed cycle cryocoolers. The upstream and

downstream modules (the ‘spectrometer solenoids’)

were identical, each containing three coils to provide

a uniform field region of up to 4T within the 400 mm

diameter warm bore for momentum measurement, and

two ‘matching’ coils to match the beam to the central

pair of closely spaced ‘focus’ coils which focussed the

beam onto the absorber. The focus coils were a pair of

split-field coils designed for peak on-axis fields of up

to 3.5 T contained within one module with a 500 mm

diameter warm bore which contained the absorbers.

For the data reported here the focus coils were oper-

ated in ’flip’ mode with a field reversal at the centre.

Because the magnetic lattice was tightly coupled the

cold mass suspension systems of the modules were

designed to withstand the longitudinal cold-to-warm

forces of several hundred kN which could arise dur-

ing an unbalanced quench of the system. At maxi-

mum field the inter-coil force on the focus coil cold

mass was of the order of 2 MN. The total energy stored

in the magnetic system was of the order of 5 MJ and

the system was protected by both active and passive

quench protection systems. The normal charging and

discharging time of the solenoids was several hours.

The entire magnetic channel was partially enclosed by

a 150 mm thick soft-iron return yoke for external mag-

netic shielding. The magnetic fields in the tracking

volumes were monitored during operation with cali-

brated Hall probes.

One of the matching coils in the downstream spec-

trometer solenoid was not operable due to a failure of a

superconducting lead. While this necessitated a com-

promise in the lattice optics and acceptance, the flexi-

bility of the magnetic lattice was exploited to ensure a

clear cooling measurement.

The amplitude acceptance of approximately 30 mm,

above which particles scrape, was large compared

to a typical accelerator. Even so significant scrap-

ing was expected and observed for the highest emit-

tance beams. Ionization cooling cells with even larger

acceptances, producing less scraping, have been de-

signed [33–35]. The magnetic lattice of MICE was

tuned so that the beam had a focus near to the absorber

resulting in a small beam width, shown in figure 1, and

large angular divergence. The tight focussing, corre-

sponding to a region of small β⊥, yielded an optimal
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Figure 1: The MICE apparatus along with the calculated magnetic field, Bz [T], and nominal horizontal width

of the beam, σ(x) [mm]. The modelled field is shown on the beam axis and 160 mm from the axis in the hori-

zontal plane. The readings of Hall probes, situated 160 mm from the beam axis, are also shown. Dashed lines

indicate the position of the tracker stations and absorber. The nominal RMS beam width is calculated assuming

a nominal input beam using linear beam transport equations. Acronyms used in the schematic are described in

the text.

cooling performance, as implied by equation 5.

Materials with low atomic number such as lithium

and hydrogen have a long radiation length relative to

the rate of energy loss and consequently low equilib-

rium emittance, making them ideal absorber materials.

Therefore the cooling due to both liquid hydrogen and

lithium hydride absorbers was studied.

The liquid hydrogen was contained within a 22 l ves-

sel [49] in the warm bore of the focus coil. Hydro-

gen was liquefied by a cryocooler and piped through

the focus coil module into the absorber body. When

filled, the absorber presented 349.6 ± 0.2mm of liq-

uid hydrogen along the beam axis with a density of

0.07053 ± 0.00008 g/cm3. The liquid hydrogen was

contained by a pair of aluminium windows covered

by multi-layer insulation. A second pair of windows

provided secondary containment to protect against the

possibility of failure of the primary containment win-

dows. The total thickness of all four windows on the

beam axis was 0.79± 0.01mm.

The lithium hydride absorber was a 65.37±0.02mm

thick disk with a density of 0.6957 ± 0.0006 g/cm3.

The isotopic composition of the lithium used to pro-

duce the absorber was 95 % 6Li and 5 % 7Li. The

cylinder had a thin coating of parylene to prevent

ingress of water or oxygen. Configurations with no

absorber installed at all and with the empty liquid hy-

drogen containment vessel were also studied.

Detectors placed upstream and downstream of the

apparatus measured the momentum, position, and

species of each particle entering and leaving the cool-

ing channel so that the full four-dimensional phase

space, including the angular momentum introduced by

the solenoids, could be reconstructed. Particles were

recorded by the apparatus one at a time, which en-

abled high-precision instrumentation to be used and

particles other than muons to be excluded from the

analysis. Each ensemble of muons was accumulated

over a number of hours of operation of the experi-

ment. This is acceptable as collective effects are not

4



expected at a neutrino factory and in a muon collider

collective effects become significant only at very low

longitudinal emittance [50]. Data-taking for each ab-

sorber was separated by a period of weeks due to op-

erational practicalities. The phase space distribution

of the resulting ensemble was reconstructed using the

upstream and downstream detectors. Emittance recon-

struction in the upstream detector system is described

in [51].

Upstream of the cooling apparatus, two time-of-

flight detectors (TOFs) [52, 53] measured particle

velocity. A complementary velocity measurement

was made upstream by threshold Cherenkov counters

Ckov A and Ckov B [54]. Scintillating fibre trackers,

positioned in the uniform-field region of each of the

two spectrometer solenoids, measured particle posi-

tion and momentum upstream and downstream of the

absorber [45, 55, 56]. Downstream, an additional TOF

detector, a mixed lead and scintillator pre-shower de-

tector (KL), and a totally active scintillator calorime-

ter, the Electron Muon Ranger (EMR) [57, 58] iden-

tified electrons produced in muon decay and allowed

cross-validation of the measurements made by the up-

stream detectors and the trackers.

Each tracker consisted of five planar scintillating fi-

bre stations. Each station comprised three views, each

view composed of scintillating fibres laid at an angle

of 120◦ with respect to the other views. Each view

was made of two layers of 350µm diameter scintillat-

ing fibres. Groups of seven scintillating fibres were

read out together by cryogenic Visible Light Photon

Counters [59, 60]. The position of a particle crossing

the tracker was inferred from the coincidence of sig-

nals from the fibres and momentum was inferred by

fitting a helical trajectory to the positions with appro-

priate consideration for energy loss and scattering in

the fibres.

Each TOF was constructed from two orthogonal

planes of scintillator slabs. Photomultiplier tubes at

each end of every TOF slab were used to determine

the time at which a muon passed through the appara-

tus with a 60 ps resolution [52]. The momentum reso-

lution of particles for which the radius of the helix in

the tracker was small was improved by combining the

TOF measurement of velocity with the measurement

of momentum in the tracker.

A detailed Monte Carlo simulation of the experi-

ment was performed to study the resolution and effi-

ciency of the instrumentation and to determine the ex-

pected performance of the cooling apparatus [61–63].

The simulation was found to give a good description

of the data [51].

The data presented here were taken using beams

with a nominal momentum of 140 MeV/c and with a

nominal normalised RMS emittance in the upstream

tracking volume of 4 mm, 6 mm and 10 mm. These

settings are denoted ‘4-140’, ‘6-140’ and ‘10-140’ re-

spectively. Beams with a higher emittance have cor-

respondingly higher amplitude and occupy a larger re-

gion in phase space. For each beam setting, two sam-

ples were considered for the analysis. The ‘upstream

sample’ contained particles identified as muons using

the upstream TOF detectors and tracker, for which the

muon trajectory reconstructed in the upstream tracker

was fully contained in the fiducial volume and for

which the reconstructed momentum fell within the

range 135 MeV/c to 145 MeV/c, which was signifi-

cantly larger than the 2 MeV/c momentum resolution

of the tracker. The ‘downstream sample’ was that sub-

set of the upstream sample for which the reconstructed

muons were fully contained in the fiducial volume of

the downstream tracker. The samples each had be-

tween 30,000 and 170,000 events. The distributions

in phase space of the particles in the two samples are

shown in figure 2. The strong correlations between

y and px and between x and py are due to the angu-

lar momentum introduced by the solenoidal field. The

shorter tail along the semi-minor axis than the semi-

major axis in these projections arises from scraping in

the diffuser.

The distribution of amplitudes in the upstream and

downstream samples for each of the 4-140, 6-140, and

10-140 data sets is shown in figure 3. The nominal

acceptance of the magnetic channel is also indicated.

A correction has been made to account for the mi-

gration of events between amplitude bins that arises

due to the detector resolution and to account for ineffi-

ciency in the downstream detector system. The correc-

tion is described in the Methods section. Distributions

are shown for the case where there was no absorber

(‘No absorber’), where the liquid hydrogen vessel was

empty (‘Empty LH2’), where the liquid hydrogen ves-
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Figure 2: Distribution of the beam in phase space for the 6-140 Full LH2 setting: (above the diagonal) mea-

sured in the upstream tracker and (below the diagonal) measured in the downstream tracker. Measured particles’

positions are shown, coloured according to the amplitude of the particle.

sel was filled (‘Full LH2’), and where the lithium hy-

dride absorber was present (‘LiH’). The distributions

were normalised to allow a comparison of the shape

of the distribution between different absorbers. Each

pair of upstream and downstream amplitude distribu-

tions is scaled by 1/Nu
max, where Nu

max is the number

of events in the most populated bin in the upstream

sample.

The behaviour of the beam at low amplitude is the

key result of this paper. For the ‘No absorber’ and

the ‘Empty LH2’ configurations, the number of events

with low amplitude in the downstream sample is simi-

lar to that observed in the upstream sample. For the

6-140 and 10-140 configurations for both the ‘Full

LH2’ and the ‘LiH’ samples, the number of events

with low amplitude is significantly larger in the down-

stream sample than in the upstream sample. This in-

dicates an increase in the number of particles in the

beam core when an absorber is installed, which is ex-

pected if ionization cooling occurs. This effect can

only occur because energy loss due to ionization is a

non-conservative process.

A reduction in the number of muons at high ampli-

tude is also observed, especially for the 10-140 set-

ting. While some of this effect arises due to migration

of muons into the beam core, a significant number of

high amplitude particles migrated away from the beam

acceptance due to optical mismatch and were scraped

on apertures.

A χ2 test was performed to determine the confi-

dence with which the null hypothesis that, for the same

input beam setting, the amplitude distribution in the

downstream samples of the ‘Full LH2’ and ‘Empty

LH2’ configurations are compatible, and the amplitude

distribution in the downstream samples of the ‘LiH’

and ‘No absorber’ configurations are compatible. The
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butions are normalised to the bin in the upstream distribution with the most entries (see text). Coloured bands

show the uncertainty, which is dominated by systematic uncertainties. Vertical lines indicate the approximate

channel acceptance above which scraping occurs.

test was performed on the uncorrected distributions as-

suming statistical uncertainties only. Systematic ef-

fects are the same for the pairs of distributions tested

and cancel. The probability of observing the effect

seen in the data, assuming this null hypothesis is cor-

rect, is significantly less than 10−5 for all beam set-

tings and all pairs of ‘Full LH2’ and ‘Empty LH2’ and

all pairs of ‘LiH’ and ‘No absorber’, therefore the null

hypothesis was rejected.

The fractional increase in the number of particles

with low amplitude is most pronounced for the 10-

140 beams. High amplitude beams have high ε⊥ and a

larger transverse momentum relative to the stochastic

increase in transverse momentum due to scattering, so

undergo more cooling, as predicted by equation 5. For

the magnet settings and beams studied here the equi-

librium emittance of the experiment is close to 4 mm.

As a result only modest cooling is observed for the 4-

140 setting in both the ‘Full LH2’ and the ‘LiH’ con-

figuration.

The ratio of the downstream to the upstream ampli-

tude distribution is shown in figure 4. In the ‘No ab-

sorber’ and ‘Empty absorber’ configurations, the ratio

is consistent with 1 for amplitudes less than 30 mm,

confirming the conservation of amplitude in this re-

gion irrespective of the incident beam. Above 30 mm

the ratio drops below unity, indicating that there are

fewer muons downstream than upstream due to the
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beam scraping on apertures. The presence of the ab-

sorber windows does not strongly affect the amplitude

distribution. The liquid hydrogen absorber windows

were designed to be as thin as possible so that when

installed, scattering in the windows would not cause

significant heating. For the 6-140 and 10-140 data

sets, the addition of liquid hydrogen or lithium hy-

dride absorber material causes the ratio to rise above

unity for low amplitude particles, corresponding to the

beam core. This indicates an increase in the number of

particles in the beam core and demonstrates ionization

cooling.

The density in phase space is an invariant of a sym-

plectic system, therefore an increase in phase space

density is also an unequivocal demonstration of cool-

ing. Figure 5 shows the normalised density of the

beam ρi(ui)/ρ0 as a function of α, the fraction of

the upstream sample that has a density greater than

or equal to ρi. To enable comparison between differ-

ent beam configurations, the densities for each con-

figuration have been normalised to the peak density

in the upstream tracker, ρ0. To enable comparison

between upstream and downstream distributions, the

fraction of the sample is always relative to the total

number of events in the upstream sample. The trans-

mission is the fraction of the beam where the density
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Figure 5: The upstream and downstream normalised beam density quantiles, indicated by orange and green

lines respectively, as a function of the fraction of the upstream sample. For each configuration, the density is

normalised to the highest density region in the upstream sample. Uncertainty is indicated by the thickness of

the coloured bands and is dominated by systematic uncertainty.

in the downstream tracker reaches zero. For the ‘No

absorber’ and ‘Empty LH2’ cases the density down-

stream in the highest density regions is indistinguish-

able from the density upstream. A small amount of

scraping is observed for the 4-140 and 6-140 beams.

More significant scraping is observed for the 10-140

beam. In all cases, for ‘Full LH2’ and ‘LiH’, the phase

space density increases. The increase is more signif-

icant for higher emittance beams. These observations

demonstrate the ionization cooling of the beam when

an absorber is installed. In the presence of an absorber,

beams with larger nominal emittance show a greater

increase in density than those with a lower nominal

emittance, which is consistent with equation 5.

Ionization cooling has been unequivocally demon-

strated for the first time. The MICE collaboration

has built and operated a section of solenoidal cool-

ing channel and demonstrated the ionization cooling

of muons using both liquid hydrogen and lithium hy-

dride absorbers. The effect has been observed both

from observation of an increase in the number of parti-

cles having a small amplitude (figures 3 and 4) and an

increase in the phase space density of the beam (fig-

ure 5). The results agree well with simulation (fig-

ure 4). The ground-breaking demonstration of ioniza-

tion cooling presented here is a significant advance in

the development of high-brightness muon beams. The

seminal results presented in this paper encourage fur-

9



ther development of high-brightness muon beams as a

tool for the investigation of the fundamental properties

of matter.
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Methods

Data-taking and reconstruction

Data were buffered in the front-end electronics and

read out after each target actuation. Data storage was

triggered by a coincidence of signals in the photmulti-

plier tubes (PMTs) serving a single scintillator slab in

TOF1. The data recorded in response to a particular

trigger are referred to as a ‘particle event’.

Each TOF station was composed of a number of

scintillator slabs that were read out using a pair of

PMTs, one mounted at each end of the slab. The re-

construction of the data began with the search for co-

incidences in the signals from the two PMTs serving

each slab in each TOF plane. Such coincidences were

referred to as ‘slab hits’. ‘Space points’ were then

formed from the intersection of slab hits in the x and

y projections of each TOF station separately. The po-

sition and time at which a particle giving rise to the

space point crossed the TOF station was then calcu-

lated using the slab position and the times measured

in each of the PMTs. The relative timing of TOF0

and TOF1 was calibrated relative to the observed time

taken for electrons to pass between the two detectors,

on the assumption that they travelled at the speed of

light.

Signals in the tracker readout were collected to re-

construct the helical trajectories (‘tracks’) of charged

particles in the upstream and downstream trackers

(TKU and TKD respectively). Multiple Coulomb scat-

tering introduced significant uncertainties in the recon-

struction of the helical trajectory of tracks with a bend-

ing radius less than 5 mm. For this class of track mo-

mentum was deduced by combining the tracker mea-

surement with the measurements from nearby detec-

tors. Track-fit quality was characterised by the χ2 per

degree-of-freedom

χ2
df =

1

n

∑

i

δx2i
σ2
i

(8)

where δxi is the distance between the fitted track and

the measured signal in the ith tracker plane, σi is the

resolution of the position measurement in the tracker

planes and n is the number of planes that had a signal

used in the track reconstruction. Further details of the

reconstruction and simulation may be found in [63].

Beam selection

Measurements made in the instrumentation upstream

of the absorber were used to select the input beam

for the study of ionization cooling presented in this

paper. The input beam (the ‘upstream sample’) was

composed of those events that satisfied the following

criteria:

• Exactly one space point was found in TOF0 and

TOF1 and exactly one track in TKU;

• The track in TKU had χ2
df < 8 and was con-

tained within the 150 mm fiducial radius over

the full length of the tracker;

• The track in TKU had a reconstructed momen-

tum in the range 135–145 MeV/c corresponding

to the momentum acceptance of the cooling cell;

• The time-of-flight between TOF0 and TOF1

was consistent with that of a muon given the

momentum measured in TKU; and

• The radius at which the track in TKU passed

through the diffuser was smaller than the dif-

fuser aperture.

The beam emerging from the cooling cell (the ‘down-

stream sample’) was characterised using the subset of

the upstream sample that satisfied the following crite-

ria:

• Exactly one track was found in TKD; and

• The track in TKD had a χ2
df < 8 and was

contained within the 150 mm fiducial radius of

TKD over the full length of the tracker.

The same sample-selection criteria were used to select

events from the simulation of the experiment, which

includes a reconstruction of the electronics signals ex-

pected for the simulated particles.

Correction for detector effects

The amplitude distributions obtained from the up-

stream and downstream samples were corrected for

the effects of detector efficiency and resolution and to

take account of migration of events between amplitude

bins. The corrected number of events in a bin, N corr
i ,

was calculated from the raw number of events, N raw
j ,

using

N corr
i = Ei

∑

j

SijN
raw
j , (9)
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where Ei is the efficiency-correction factor and Sij ac-

counts for detector resolution and event migration. Ei

and Sij were estimated from the simulation of the ex-

periment. The uncorrected and corrected amplitude

distributions for a particular configuration are shown

in figure 1. The correction is small relative to the ion-

ization cooling effect; the ionization cooling effect is

clear even in the uncorrected distributions.
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Figure 1: Distribution of amplitudes with corrected and uncorrected distribution shown for the 10-140 LH2

full configuration. The uncorrected data is shown by open points while the corrected data is shown by filled

points. The upstream distribution is shown by orange circles while the downstream distribution is shown by

green triangles. Systematic uncertainty is shown by coloured bands. Statistical error is shown by bars and is

just visible for a few points.
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