
This is a repository copy of How to Build a Mixed-Criticality System in Industry.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156999/

Version: Accepted Version

Conference or Workshop Item:
Zhe, Jiang orcid.org/0000-0002-8509-3167 (2019) How to Build a Mixed-Criticality System 
in Industry. In: Proceedings of the 7th International Workshop on Mixed Criticality Systems,
15 Dec 2019, HongKong. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


How to Build a Mixed-Criticality System in Industry?
— From the perspective of system architecture

Zhe Jiang12

1University of York, York, United Kingdom
2 Renesas Electronics Europe GmbH, Bourne End, United Kingdom

Abstract—In the last decade, the rapid evolution of diverse
functionalities and execution platform led safety-critical systems
towards integrating components/functions/applications with dif-
ferent ‘criticality’ in a shared hardware platform, i.e., Mixed-
Criticality Systems (MCS)s. In academia, hundreds of publi-
cations has been proposed upon a commonly used model, i.e.,
Vestal’s model. Even so, because of the mismatched concepts
between academia and industry, current academic models can not
be exported to a real industrial system. This paper discusses the
mismatched concepts from the system architecture perspective,
with a potential solution being proposed.

I. INTRODUCTION

Safety-critical systems play an important role in many

medical and industrial fields [33]. In safety-critical systems,

integrating components with different levels of criticality

(e.g., Automotive Safety and Integrity Levels (ASILs) in ISO

26262 [19].) onto a shared hardware platform has become

increasingly important [13]. This results from the diverse

functionalities required by modern safety-critical systems (e.g.,

automated driving [27]), and the rapid evolution of execution

platform [32]. Such systems are called Mixed-Criticality Sys-

tems (MCS)s [6], [9].

Nowadays, the popularity of MCS has been raised to an

unexpected height in both academia and industry. In academia,

almost 300 papers related to MCS have been published in the

recent decade, and tens of related papers are still published

each year [9]. In industry, requirements regarding ‘integrat-

ing applications with different criticality levels in a shared

platform1’ have been added in the almost all safety-related

standards [15], e.g., DO-178C, EN50128, ISO26262, etc..

However, numerous unsolved challenges lead to a dilemma

of building MCS practically [9], [15], e.g., optimization of

system model, effectiveness of task allocation and resource

management etc.. From the experience of the machine learning

community, a unified direction between academia and industry

can significantly accelerate the developments of the whole

area. However, the mismatches between academia and industry

are currently slowing down the development of MCS. Some

mismatches have been already recognized by different re-

searchers and engineers. For instance, Graydon and Bate [17]

highlighted different meanings of ‘criticality’ are applied be-

tween research models and industrial standards. Ernst and

di Natale [13] argued that a fundamental methodology in

academia (i.e., graceful degradation) is not applicable in an

1Formal definition (including naming) and specific requirements of MCS
have not been finalized yet.

industrial system, because of the potential causes of the

disastrous consequences. Esper et al. [14] highlighted that

the importance of isolation is not sufficiently considered in

academia.

A. System Architecture in MCS

System architecture is a conventional and important topic

in embedded and computing systems, but it has been rarely

considered in the MCS arena.

It is very important to consider MCS from the perspective

of the system architecture. Specifically, no matter how com-

plicated the model built in academic research, and how the

perfect standards listed in industrial standards, a consistent

target of the activities is ‘achieving a MCS can be applied in

the real world’; and the first step of the target is building the

system architecture correctly. Hence, the system architecture

can be deemed as a vital interface/connection between industry

and academia in the MCS area.

B. Contribution

This paper is the first work considering MCS from the

system architecture perspective, which specifically discusses

the vital mismatches in academia and industry, and proposes

potential solutions from the perspective of the system architec-

ture. Due to the limitation of pages, a prototype MCS architec-

ture, specific design details, related analysis, and experimental

evaluation are planned to be presented in our next paper.

It is important to highlight that the objective of this work

is not to judge the correctness of different understandings

of MCS. Instead, the main intention is showing the impacts

of mismatches in MCS between academia and industry, and

trying to provide solutions from the rarely considered system

architecture perspective. The author sincerely wishes a fre-

quent communication between academia and industry in the

future.

II. THE STATE-OF-THE-ART IN ACADEMIA

Mismatches/gaps of MCS between academia and industry

can be equally discussed 1) from research models to industrial

standards, and 2) from industrial standards to research models.

This paper starts with a review of the state-of-the-art in

academia.

In the last decade, most of the MCS related research

proceeds from the real-time community [14]. Most (not all)



of the works about MCS are based on a model proposed by

Vestal [35], which is also mainly discussed in this paper2.

The model assumes that the system has several modes of

execution (i.e., L ∈ {1, 2, 3, 4, ...}), and contains a finite

set of sporadic tasks. Each task τi is defined by its period

(Ti), relative deadline (Di), a criticality/assurance level (li),

and a set of worst-case execution time (WCET) estimates

({Ci,1, Ci,2, Ci,3, Ci,4, ...}
3.). The different WCET estimates

are meant to model estimations of the WCET in the differ-

ent system modes. Specifically, the measured WCET from

the normal system mode might be used as Ci,1, whereas

at each higher system mode, the subsequent estimates (i.e.,

Ci,2, Ci,3, Ci,4, ...) are assumed to be obtained by more pes-

simistic WCET analysis techniques or by considering safety

margins imposed by certification authorities. The system ini-

tializes from mode 1 (i.e., L = 1), and all the tasks are

scheduled to execute on the core (s). During the run-time,

if the system is running in the mode k (i.e., L = k), and if

any task τi exceeds its execution budget (i.e., Ci,k), the system

will switch to the mode k+1 (i.e., L = k+1). Meantime, tasks

with criticality level less than k (e.g., l < k) are suspended.

It is important to highlight that this paper describes

Vestal’s model from a generalized perspective. In the earliest

model [35], only a single-core MCS with two system modes

(i.e., Low- and High-criticality modes) is discussed. After-

wards, the research model was further extended by different

researchers, e.g., the extension on multiple system modes and

criticality levels, re-activation of the dropped tasks, consider-

ation of a multi-core and many-core architectures, etc.. (see

Burns and Davis [9]). In the context of the theoretic model,

practical frameworks are also being developed (e.g., Missimer

et al. [28], Kim et al. [26], etc.).

A. System Architecture of Academic MCS Models

Details of implementation (including system architecture) of

MCS are rarely discussed in academia. Most (not all) of the

works about MCS just simply treat it as a normal embedded

architecture [9]:

Hardware Level. To the best of our knowledge, the essential

hardware requirements of Vestal’s model are never discussed.

Even though some papers introduced hardware architectures

within a MCS context (e.g., [5], [23], etc.), the requirements

are always ignored.

OS Level. In order to achieve the extra privilege (compared to

the application level), a system monitor in charge of the mode

switch has to be implemented in the OS level [29]. Meantime,

the system monitor can be implemented in different ways.

For example, Kim et al. [26] achieved the system monitor via

modifying the Linux kernel; Missimer et al. [28] implemented

the system monitor as an additional hypervisor.

Application Level. Applications with different criticality lev-

els (l) are implemented in the application level. As summa-

2In order to make the discussion more generic, the concepts of the earliest
Vestal’s model is extended in this paper, please also see Esper et al. [15].

3The model assumes: Ci,1 ≤ Ci,2 ≤ Ci,3 ≤ Ci,4, ...

rized by Burns and Davis [9], isolation between applications

is an essential requirement of Vestal’s model. However, the

detailed requirements of isolation have not been specified,

which is even ignored by most of the academic research.

Based on the review and discussion, a preliminary system

architecture of the academic MCS model can be built in

Figure 1.

Fig. 1. System Architecture of Vestal’s Model in System Mode k (L = k)

However, the current system architecture of the academic

model (e.g., Figure 1) can not be applied to an industrial

product directly, because of mismatches between academic

model and industrial standards.

III. INDUSTRIAL CONCEPTS REGARDING MCS

Currently, the requirements of MCS are not clearly guided

by any safety-related standards from industry. In this section,

we introduce the concepts related to MCS, followed by a

specific discussion with system architecture perspective in

Section IV.

A. Context

In order to make the discussion precise, the context of

this paper is restricted in automotive systems, which is a

classic safety-critical system developing towards MCS. In the

automotive industry, ISO26262 [19] is the key guidance of

safety concepts, which is extended from IEC61508 (a generic

safety standard for all the electrical/electronic/programmable

electronic (E/E/PE) elements). Hence, this paper mainly dis-

cusses the MCS-related concepts in ISO26262 and IEC61508.

Note that, the concepts regarding MCS in automotive sys-

tems are very similar to other safety-critical systems (e.g.,

avionics, railway, etc.), and the discussion in this paper is

generic to be applied to other areas.

B. Criticality Level Assignment

Four different criticality levels are supported in ISO26262,

which is named as Automotive Safety Integrity Level (ASIL)

(i.e., l ∈ {A,B,C,D} and A < B < C < D). The

determination of the criticality level is normally achieved via

safety analysis, i.e., Hazard Analysis (HA), Failure Modes and

Effects Analysis (FMEA), and Fault Tree Analysis (FTA)4.

4Description of the methodologies and specific procedures do not help the
discussion of this paper, please see ISO26262 [19] or related textbook.



Here, we only describe the three parameters directly deter-

mining the criticality levels, as the first industrial concept of

this paper (IC-I), i.e., severity, exposure, and controllability5.

TABLE I
INDUSTRIAL CONCEPT I (IC − I ):

CRITICALITY LEVEL DETERMINATION

Severity Exposure Controllability
C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

S: Severity, E: Exposure, C: Controllability, QM: Quality Management

As shown in Table I, severity, exposure and controllability

are used to define the criticality levels of the functions.

Generally speaking, the severity defines the estimation of the

extent of harm to one or more individuals that can occur in a

potentially hazardous situation, the associated exposure is the

likelihood of the occurrence of harm, and the controllability

is the ability to avoid a specified harm or damage through the

timely reactions of the agents involved (e.g. the driver of the

vehicle) possibly with support from external measures.

C. Integrating Multiple Criticality Levels

Not only in ISO26262 but also almost in all the safety-

related standards, an essential requirement regarding ‘integrat-

ing tasks with different criticality levels in a same platform’

is given (industrial concept II (IC-II)):

‘If freedom from interference between elements implement-

ing safety requirements cannot be argued in the preliminary

architecture, then the architectural elements shall be devel-

oped in accordance with the highest ASIL for those safety

requirements. (ISO26262-3:2018)’

D. Criticality Level Decomposition

Criticality level decomposition is one of the widely used

methodologies in industry, which ‘allows the apportion of

the ASIL of a safety requirement between several elements

that ensure compliance with the same safety requirement

addressing the same safety goal.6. (ISO26262-9:2018)’ — i.e.,

industrial concept III (IC-III), see Figure 2 for an example.

In the design of an industrial automotive system, criticality

level decomposition can be found in both hardware and

software (e.g., software redundancy). Hence, the impacts from

criticality level decomposition in MCS have to be particularly

analysed and discussed.

5A specfic description of the 3 parameters is outside the scope of this work,
please see ISO26262 [19].

6A specfic description is outside the scope of this work, please see
ISO26262-9:2018 [19]

Fig. 2. Example of Criticality Level Decomposition

IV. MISMATCHES BETWEEN ACADEMIA AND INDUSTRY

Mismatches of MCS concepts between academia and in-

dustry have been already discussed and analysed by different

researchers and engineers, e.g., [13], [14], [17]. Some of the

mismatches have been correctly recognized and fixed in the

latest research. For example, in the early academic research,

the concept of criticality level was assigned to both system

and applications, and caused confusions [17]. Recently, the

‘system criticality level’ has been changed to ‘system mode’,

in order to distinct with ‘application criticality’.

This section discusses the still existing mismatches, and

analyse them from the perspective of system architecture.

A. Hardware Level

In academia, requirements of hardware are never specifically

discussed. No matter the practical frameworks or the exper-

iments within the context of academic models, the hardware

platforms are not particularly selected [13].

Criticality Level Assignment. As defined in safety-related

standards (e.g., IEC61508, ISO26262), different criticalities

are also assigned to the hardware, which lead to the different

requirements in the design and verification.

Nowadays, commonly used safety-critical systems in indus-

try are not particularly designed for a MCS execution context.

In automotive systems, only a single-criticality system can be

supported by the latest MCUs/SoCs targeting safety-critical

systems from the world’s top 3 (in terms of market share)

automotive semiconductor suppliers [3]: FS-SBCs [2] in NXP

Semiconductors, PRO-SIL family [1] in Infineon Technolo-

gies, and the RHx series [4] in Renesas Electronics are all

developed towards the same direction: satisfying the highest

criticality level of the hardware platform, with increased scal-

ability, reduced complexity and decreased power consumption

compared to traditional safety-related methodologies, rather

than supporting a MCS context.

As strongly regulated in IC-II, due to lack of sufficient sepa-

ration/isolation to provide freedom from interference between

elements with different criticality levels, the whole hardware

platform used to achieve a MCS is required to inherit the

highest criticality level of the applications in the software.

Criticality Level Inversion. As described in the previous

sub-section, current hardware platforms are not particularly

designed for a MCS context, which may cause criticality level

inversion during the system mode switch. Taking a classic



extension of Vestal’s model, i.e., Adaptive Mixed Criticality

(AMC) [7], as an example, whilst the system executes in the

high-criticality mode, low-criticality tasks are terminated to

ensure the execution of high-criticality tasks. However, low-

criticality tasks may have outstanding requests/instructions un-

derway at the hardware level. Instructions/requests latched in

the pipelines of the CPU(s) can be easily removed via specific

instructions. However, already requested I/O operations, which

are latched in the hardware buffers, cannot be cleared timely.

In this case, the requests from low-criticality tasks that are

already sent still block the accesses of I/O requests from high-

criticality tasks — i.e., criticality level inversion. For more

detailed analysis and experiments regarding I/O overhead can

be found in our previous paper [23].

With an increased number of processors and frequency

of I/O requests [20], [24], criticality level inversion may

significantly reduce the effectiveness of the system mode

switch, and further cause the corruption of the whole system.

Hence, in order to avoid the criticality level inversion in MCS,

the platform is required to support the function ‘remove the

already request I/O instructions from hardware’.

B. OS level

As shown in Figure 1, drivers, Operating System (OS), and

system monitor are the three key components in the OS level.

The implementation of the components can be either combined

or separated.

Criticality Level Assignment. There are two possible situa-

tions of assigning criticality levels to the drivers and OSs:

• If applications with different criticality levels access

shared drivers and OS, the drivers and OS are required

to keep the highest criticality level of the system.

• If applications with different criticality levels access

separated and independent drivers and OSs, the drivers

and OSs are required to inherit the criticality level of

the accessing application. For example, virtualization and

kernel separation [28].

When it comes to the system monitor, according to IC-II,

the system monitor is required to inherit the highest criticality

level of the applications in the software, because all the tasks

have to be dependant on the system monitor for resource

sharing and system mode switch.

System Monitor and System Mode Switch. As reviewed

in Section III-B, system mode switch is the key strategy

in academia, which guarantees the execution of the more

critical tasks. Specifically, the system starts from a low-

criticality mode and can be changed to a higher-criticality

mode in a predefined condition (e.g., over-execution of a task),

which causes the termination of the low-criticality tasks. This

procedure has to be achieved via a privileged system monitor

(e.g., hypervisor), which is implemented in the OS level by

most of the practical works within the context of academic

models.

However, system mode switch is a key mismatch of MCS

between academia and industry — i.e., system mode switch

is never defined by any safety-related standards (according

to the best of our knowledge). As discussed by Graydon

and Bate [17], and Ernst et al [13], ‘terminating/killing tasks

in any criticality level can potentially cause a catastrophic

consequence’.

Consider that, to bridge this key issue, it is very vital

to understand the conclusion from Graydon et al. [17] and

Ernst et al [13], which leads to an earlier stage before

academic model – i.e., criticality level assignment (see IC-

II in Section III-B). As shown in Table I, the criticality

level is directly determined by three parameters, i.e., severity,

exposure, and controllability. Among these parameters, only

severity indicates the severity class of terminating a specific

module. Therefore, with the system mode switch, terminating a

low-criticality task can cause a more severe consequence than

terminating a high-criticality task. For example, terminating

an ASIL A task with {S3, E2, C2}7 is much more dangerous

than terminating an ASIL B task with {S1, E4, C3}.

Within a sufficient consideration of the industrial context,

two more items are also required to be considered during

system mode switch:

• Dependency: If a high-criticality application is dependant

on the inputs from a low-criticality task, terminating a

low-criticality application will also cause the corruption

of the high criticality application, also see IC-II in

Section III-B.

• Criticality Level Decomposition: As introduced in IC-

III, Section III-D Criticality level decomposition is a

commonly used methodology in industry, which allows

a high-criticality component to be decomposed to sev-

eral low-criticality components. Hence, in a MCS with

criticality level decomposition, simply terminating all the

low-criticality tasks during system mode switch will also

significantly corrupt the system [8].

Although system mode switch is an undefined concept in

industry, it can be somehow linked to ‘graceful degradation’

— i.e., a technique aimed at maintaining the more important

system functions available, despite failures, by dropping the

less important system functions. [19]

Hence, determining the right ‘important functions’ (rather

than the high-criticality functions) and terminating the ‘less

important functions’ is a methodology to implement system

mode switch in industry. Here, we propose a two-level analy-

sis: (see Figure 3).

• Step 1: Failure Modes Effect Analysis (FMEA)8: The

impacts of terminating each task in the current system

mode shall be analysed. Any task can cause catastrophic

consequence from its termination has to be kept in the

next system mode, i.e., important tasks.

• Step 2: Dependency Analysis: The dependency of the

important tasks (output from step 1) shall be analysed.

Any task that can cause corruption of an important task

7In ISO26262, a large number indicates a more critical situation.
8The description of FMEA is out-of-score, which can be found in

ISO26262 [19] or any text book of safety.



Fig. 3. 2-Level Analysis for System Mode Switch from Mode k to Mode
k + 1

due to its termination, has to be kept in the next system

mode.

The output of the two-step analysis is the complete task set

for the next (more critical) system mode.

Response Time Analysis. Due to introduction of the two-level

analysis, the response time analysis of the MCS model has to

be re-considered.

Similar as the academic model (i.e., Vestal’s model), the

response time of the proposed industrial model has to be

analysed in three phases, i.e., current system mode, next (more

critical) system mode, and system mode change [35]. The only

difference between the two analysis is the kept tasks in the next

system mode. Due to the limitation of the pages, a specific

analysis will be presented in our following paper.

C. Application Level

Tasks/applications with different criticality levels are nor-

mally implemented in the application level. As presented in

the previous sections, almost all the research works focus on

the schedulability and shared resource management among the

tasks.

While integrating the tasks with different criticality lev-

els, the essential requirement of industrial MCS is separa-

tion/isolation, see IC-II, Section III-B, which can be further

expanded to:

• Temporal Isolation: tasks with different criticality levels

shall be temporally separated, in order to avoid malfunc-

tion caused by consuming too high processor execution

time or by blocking a shared resource by one task.

• Spatial Isolation: tasks with different criticality levels

shall not exchange data (including using shared memory).

• Fault Isolation: Fault(s) from one task shall not be

propagated to tasks with different criticality levels.

Temporal isolation is one of the main targets of the aca-

demic models, and TDMA-based methodologies are com-

monly used. For example, Carvajal and Fischmeister [10]

proposed an open-source framework (Atacama) for real-time

Ethernet for MCS. Cilku et al. [11] introduced a TDMA-based

bus arbitration scheme. Goossens et al. [16] used a TDMA-

based approach to schedule concurrent memory requests of

the same physical memory. Even so, TDMA-based approaches

cannot satisfy the requirements on spatial and fault separation

and usually leads to resource waste.

Data and fault isolation are typically achieved via two

approaches:

• Physical separation segregates the tasks by allocating

unique hardware resources to tasks with different criti-

cality levels.

• Virtual separation: separate the components by estab-

lishing partitioned hardware provisions that allow mul-

tiple software components to run on the same hardware

platform.

Due to the lack of a hardware platform particularly designed

for MCS (see Section IV-A), achieving physical separation

can only utilize the technologies designed for other purposes,

e.g., ARM TrustZone. ARM TrustZone technology is centered

around the concept of two hardware-enforced protection do-

mains (secure world and non-secure world). Each world is

granted uneven privileges, with non-secure software prevented

from directly accessing secure world resources. LTZVisor [30]

and TZDKS [12] proposed MCS architectures using TrustZone

technologies, by implementing high-criticality tasks in the

secure world and low-criticality tasks in non-secure world.

In virtual separation, virtualization technology is mostly

used. Specifically, the virtual machines (VMs) are logically

isolated in a virtualized system, which means the applications

executed in one VM can never affect another VM, even if

it breaks down. This is highly linked to the requirement on

isolation of data and fault. For example, Groesbrink et al. [18]

and Li et al [28] utilised hypervisor-based virtualisation to

separate system to independent partitions (i.e. VMs). Multi-

PARTES [34] and BlueIO [22] used para-virtualisation [31]

to establish an I/O virtualization system for a MCS. In these

methodologies, different system modes are assigned to the

VMs, and a secondary scheduling between the VMs is also

built to guarantee the more critical requests can be served ear-

lier. However, virtualization technologies involve complicated

resource management and complex path of instructions, which

significantly affect the performance and predictability of the

system, which is also the essential requirements of a real-time

system [21], [25].

D. Industrial Architecture of MCS

Based on the discussion in previous sub-sections, the indus-

trial MCS model is shown in Figure 4.

As shown in Figure 4, shared components among tasks with

different criticality levels inherit the highest criticality of the

executing tasks, including hardware platform, drivers, system

monitor, and OS. Meantime, tasks and OS with different

criticality levels are separated in the independent environment,

in order to avoid interference from time, space and faults.

V. CONCLUSION

Mixed Criticality Systems (MCS)s are a vital direction of

safety-critical systems in both academia and industry. How-

ever, due to the mismatched concepts between academia and

industry, it is nearly impossible to export an academic MCS



Fig. 4. System Architecture of Ideal Industrial MCS Model (System Mode L = 1)

model to an industrial system directly. This paper specifically

discusses and analyses the mismatches from a rarely consid-

ered perspective (i.e., system architecture), with the potential

solutions.

The key intention of this paper is encouraging more frequent

communication between academia and industry, which is able

to accelerate the evolution of the MCS area significantly.

REFERENCES

[1] Infineon: 32-bit TriCore Microcontroller. https://www.infineon.com/cms/
en/product/microcontroller/32-bit-tricore-microcontroller/. Accessed
Jan 12, 2019.

[2] The official website of nxp. https://www.nxp.com/. Accessed Jan 12,
2019.

[3] The overview of global automotive semiconductor markets from
2018 to 2020. https://www.researchandmarkets.com/reports/4702372/
automotive-semiconductor-market-report-trends. Accessed Jan 12,
2019.

[4] Renesas: Micro controllers. https://www.renesas.com/eu/en/products/
microcontrollers-microprocessors.html. Accessed Jan 12, 2019.

[5] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul. I/o contention aware
mapping of multi-criticalities real-time applications over many-core
architectures. 2016.

[6] S. Baruah. Mixed-criticality scheduling theory: Scope, promise, and
limitations. IEEE Design & Test, 35(2):31–37, 2018.

[7] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for
mixed criticality systems. In Real-Time Systems Symposium (RTSS),

2011 IEEE 32nd, pages 34–43. IEEE, 2011.
[8] K. Bletsas, M. Ali Awan, P. Souto, B. Åkesson, A. Burns, and E. Tovar.

Decoupling criticality and importance in mixed-criticality scheduling. In
6th International Workshop on Mixed Criticality Systems (WMC 2018),
pages 25–30, 2018.

[9] A. Burns and R. Davis. Mixed criticality systems-a review. Department

of Computer Science, University of York, Tech. Rep, pages 1–69, 2013.
[10] G. Carvajal and S. Fischmeister. An open platform for mixed-criticality

real-time ethernet. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2013, pages 153–156. IEEE, 2013.
[11] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. A tdma-based

arbitration scheme for mixed-criticality multicore platforms. In Event-

based Control, Communication, and Signal Processing (EBCCSP), 2015

International Conference on, pages 1–6. IEEE, 2015.
[12] P. Dong, A. Burns, Z. Jiang, and X. Liao. Tzdks: A new trustzone-

based dual-criticality system with balanced performance. In 2018 IEEE

24th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), pages 59–64. IEEE, 2018.
[13] R. Ernst and M. Di Natale. Mixed criticality systemsa history of

misconceptions? IEEE Design & Test, 33(5):65–74, 2016.

[14] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. How realistic is the
mixed-criticality real-time system model? In Proceedings of the 23rd

International Conference on Real Time and Networks Systems, pages
139–148. ACM, 2015.

[15] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. An industrial view on
the common academic understanding of mixed-criticality systems. Real-

Time Systems, 54(3):745–795, 2018.
[16] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A reconfig-

urable real-time sdram controller for mixed time-criticality systems. In
Proceedings of the Ninth IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, page 2. IEEE Press,
2013.

[17] P. Graydon and I. Bate. Safety assurance driven problem formulation
for mixed-criticality scheduling. Proc. WMC, RTSS, pages 19–24, 2013.

[18] S. Groesbrink, S. Oberthür, and D. Baldin. Towards adaptive resource
management for virtualized real-time systems. In 4th Workshop on

adaptive and reconfigurable embedded systems, 2012.
[19] I. ISO. 26262: Road vehicles-functional safety. International Standard

ISO/FDIS, 26262, 2011.
[20] Z. Jiang. Real-Time I/O System for Many-core Embedded Systems. PhD

thesis, University of York, 2018.
[21] Z. Jiang and N. Audsley. Vcdc: The virtualized complicated device

controller. In 29th Euromicro Conference on Real-Time Systems (ECRTS

2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
[22] Z. Jiang, N. Audsley, and P. Dong. Blueio: A scalable real-time

hardware i/o virtualization system for many-core embedded systems.
ACM Transactions on Embedded Computing Systems (TECS), 18(3):19,
2019.

[23] Z. Jiang, N. Audsley, P. Dong, N. Guan, X. Dai, and L. Wei. Mcs-iov:
Real-time i/o virtualization for mixed-criticality systems. In 2019 IEEE

Real-Time Systems Symposium (RTSS). IEEE, 2019.
[24] Z. Jiang and N. C. Audsley. Gpiocp: Timing-accurate general purpose

i/o controller for many-core real-time systems. In Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2017, pages 806–811.
IEEE, 2017.

[25] Z. Jiang, N. C. Audsley, and P. Dong. Bluevisor: A scalable real-time
hardware hypervisor for many-core embedded systems. In 2018 IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 75–84. IEEE, 2018.
[26] N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D. Smith, and D. E.

Porter. Supporting i/o and ipc via fine-grained os isolation for mixed-
criticality real-time tasks. In Proceedings of the 26th International

Conference on Real-Time Networks and Systems, pages 191–201. ACM,
2018.

[27] M. Kyriakidis, R. Happee, and J. C. de Winter. Public opinion on
automated driving: Results of an international questionnaire among 5000
respondents. Transportation research part F: traffic psychology and

behaviour, 32:127–140, 2015.
[28] Y. Li, M. Danish, and R. West. Quest-v: A virtualized multikernel for

high-confidence systems. arXiv preprint arXiv:1112.5136, 2011.
[29] J. L. Peterson and A. Silberschatz. Operating system concepts, volume 2.

Addison-Wesley Reading, MA, 1985.
[30] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral. Ltzvisor:

Trustzone is the key. In LIPIcs-Leibniz International Proceedings in

Informatics, volume 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[31] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on
concepts, taxonomy and associated security issues. In Computer and

Network Technology (ICCNT), 2010 Second International Conference

on, pages 222–226. IEEE, 2010.
[32] K. Seeger. Semiconductor physics. Springer Science & Business Media,

2013.
[33] N. R. Storey. Safety critical computer systems. Addison-Wesley

Longman Publishing Co., Inc., 1996.
[34] S. Trujillo, A. Crespo, and A. Alonso. Multipartes: Multicore virtual-

ization for mixed-criticality systems. In Digital System Design (DSD),

2013 Euromicro Conference on, pages 260–265. IEEE, 2013.
[35] S. Vestal. Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance. In Real-Time Systems

Symposium, 2007. RTSS 2007. 28th IEEE International, pages 239–243.
IEEE, 2007.


