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CDͺͶL membrane retention 
enhances the immunostimulatory 
eơects of CDͺͶ ligation
Taha Elmetwaliͷȗǡ Asmaa Salmanͷǡǡ Wenbin Weiǡͺǡ Syed AǤ Hussainͻǡ Lawrence SǤ Youngͼ Ƭ 
Daniel HǤ Palmerͷǡͽ

In carcinomasǡ the nature of CDͺͶ ligand shapes the outcome of CDͺͶ ligationǤ To dateǡ the 
consequences of membraneǦbound CDͺͶL ȋmCDͺͶLȌ on its immuneǦstimulatory function are unknownǤ 
Hereǡ we examined the impact of mCDͺͶL versus soluble CDͺͶL ȋsCDͺͶLȌ on Tͺ bladder carcinoma 
gene expression proƤlingǤ Of ͺͷͶ diơerentially expressed genesǡ ;ͼ were upregulated and ͷͺ 
downregulated by mCDͺͶL versus sCDͺͶLǤ Gene ontology enrichment analysis revealed immuneǦ
stimulatory function as the most signiƤcant enriched biological process aơected by upregulated 
transcriptsǡ while those downregulated were critical for cell growth and divisionǤ Furthermoreǡ 
immature dendritic cells ȋiDCȌ responded to mCDͺͶL with enhanced maturation and activation over 
sCDͺͶL evidenced by higher expression levels of CD;ǡ CD;ͼǡ HLAǦDR and CDͻͺǡ increased secretion 
of ILͷ and ILͷͶ and higher tumourǦantigen ȋTAȌ uptake capacityǤ Furthermoreǡ autologus CD+ T cells 
responded to TAǦloaded mCDͺͶLǦactivated DC with increased proliferation and cytotoxic response 
ȋCDͷͶͽa and IFNǦγǦproducing CD+ CD;+ T cellsȌ to the tumourǦloaded autologous PBMCs compared 
to sCDͺͶLǤ Thusǡ these data indicate that mCDͺͶL enhances the immunostimulatory capacity over 
sCDͺͶLǤ Furthermoreǡ the ability of mCDͺͶL to also directly induce cell death in CDͺͶǦexpressing 
carcinomasǡ subsequently releasing tumourǦspeciƤc antigens into the tumour microenvironment 
highlights the potential for mCDͺͶL as a multiǦfaceted antiǦcancer immunotherapeuticǤ

he fundamental role of the CD40 receptor, a member of the TNFR superfamily together with its ligand (CD40L/
CD154) in co-ordinating immune responses has been widely recognised as an early event in initiating immune 
responses1. CD40, a 40-kD type 1 transmembrane protein is expressed in normal B cells, malignant hematopoie-
tic cells and antigen presenting cells (APC), including dendritic cells (DC) and monocytes2,3. Furthermore, acti-
vated CD4 + and CD8+ T cells also express CD40 receptor, where in absence of CD40 expression, CD8+ T cells 
were unable to diferentiate into memory cells or receive CD4 help4. In addition to hematopoietic cells, several 
carcinomas express CD40 receptor, including those of the ovary, liver, and bladder, despite receptor expression 
being undetectable in normal epithelium derived from the same tissue5. In contrast to the wide-spectrum of 
CD40 expression, the expression of CD40L, a 32-kD protein is restricted mainly to activated CD4+ T cells and, 
to a lesser extent, activated B cells and platelets6. In hematopoietic cells the importance of CD40-CD40L interac-
tion is well-recognized particularly in shaping adaptive immune responses, where the outcome of CD40 ligation 
is cell-type dependant, with CD40 activation in DC leading to diferentiation into IL12- and IFNγ-secreting 
cells and upregulation of co-stimulatory and adhesion molecules; while B cells respond by Ig-class switching7. 
Furthermore, the strength of CD40 ligation by CD40L can inluence the signalling outcome, with strong CD40 
ligation enhancing antigen processing and presentation in Burkitt’s lymphoma cells, compared to weak CD40 
ligation8.

Like other TNF family ligands, CD40L is naturally expressed as membrane-bound molecules that undergo 
cleavage from the membrane into a soluble form upon binding with the CD40 receptor via disintegrin and 
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metalloproteinases9,10. he membrane-bound and the soluble forms of CD40L also diferentially inluence the 
outcome of CD40-CD40L interaction in carcinomas, with membrane-bound CD40L (mCD40L) directly induc-
ing apoptosis11–13, whilst a blockade of the protein synthesis machinery is a prerequisite for cell death induction 
by soluble CD40L (sCD40L)14. hus the outcome of CD40-CD40L interaction is not only determined by the cell 
type but also by the strength and the mode of CD40 ligation.

We have previously generated a mutant form of CD40L that is resistant to proteolytic cleavage, with retained 
expression at the cell membrane and we have shown that this mCD40L can induce apoptosis in CD40-expressing 
carcinomas, indicating its potential as an anti-cancer therapy. Given the widespread expression of CD40 in 
immune cells, it is important to characterise its efects on immune cells and immune regulation to better under-
stand the potential of mCD40L as a cancer therapeutic. he current study addresses these issues and conirms 
the potential of mCD40L as a multi-faceted anti-cancer therapeutic with the capability to directly induce cancer 
cell apoptosis, at the same time robustly inducing several elements of the immune response, suggesting potential 
advantages over other immunostimulatory approaches.

In this study, we irst sought to investigate the gene expression proile following CD40 activation by either 
mCD40L delivered by replication-deicient recombinant adenoviral vector (RAdnCD40L) or sCD40L in the 
CD40-expressing bladder carcinoma T24 cells. he study focuses on data related to immune processing in order 
to better understand the diferential efect of mCD40L versus sCD40L on immune regulatory processes. We 
further investigated the efects of the diferent modes of CD40 ligation on immune cell activation and function.

Results
Transcriptional profiling to examine the differential effects of membraneǦbound CDͺͶL 
ȋmCDͺͶLȌ and soluble CDͺͶL ȋsCDͺͶLȌ on CDͺͶǦexpressing carcinoma cells with a focus on 
immune functionǤ Previously, we have shown that mCD40L can directly induce apoptosis in CD40-
expressing carcinomas, through a mechanism involving sustained activation of the pro-apoptotic JNK pathway 
and downregulation of the pro-survival PI3K/AKt pathway11,12. In contrast, induction of cell death by sCD40L 
requires inhibition of the protein synthesis machinery14.

In line with our previous work, bladder carcinoma T24 cells transduced with RAdncCD40L for 36 hours 
exhibited signiicant reduction in cell viability, while sCD40L (1 µg/ml, 36 h) treatment did not show any cell 
viability reduction (Fig. 1A) despite full sCD40L biological activity (Fig. 1B) evidenced by phosphorylation of 
JNK, PI3k/Akt and ERK kinases in addition to IKβα degradation, where sCD40L addition resulted in compa-
rable levels of AKT and JNK phosphorylation to those transduced with RAdnCD40L at 20 min treatment. he 
ability of CD40L monoclonal neutralizing antibody to restore cell viability in RAdnCD40L-infected cells further 
attributes cell death to mCD40L expression (Fig. 1C). Furthermore, the inability of sCD40L to induce any cell 
death in AdM-infected cells also excludes any synergy between the adenoviral vector proteins and CD40-CD40L 
interaction in mCD40L-induced cell death (Fig. 1C).

Inhibition of protein synthesis machinery appeared to be a prerequisite for T24 cell death induced by sCD40L 
(Fig. 1D), since pre-treatment of T24 cells with cycloheximide (CHX) at a concentration of 30 µg/ml for 3 hours 
followed by sCD40L (1 µg/ml) and CHX (30 µg/ml) treatment for 36 hours resulted in signiicantly reduced cell 
viability compared to either single treatment alone. Co-culturing T24 cells with CHX and sCD40L resulted in 
strong sustained JNK phosphorylation (Fig. 1E) at 10, 30 and 60 minutes compared to transient JNK phosphoryl-
ation at 10 minutes by sCD40L, while CHX treatment alone did not induce JNK phosphorylation.

To fully appreciate the diferential efects of mCD40L and sCD40L on the outcome of CD40 ligation, we 
examined the transcriptional proiling of the bladder carcinoma T24 cells in response to CD40 ligation by either 
mCD40L or sCD40L. Gene expression data from three biological experiments for each treatment were analysed 
with limma sotware. Diferentially expressed genes were identiied with the criteria of absolute fold change 
greater than 2 and p value less than 0.05 (Fig. 2A). A total 410 genes were found to be diferentially expressed 
by mCD40L compared to sCD40L treatment (RAdnCD40L/sL) (Fig. 2B), of which 286 genes were upregulated, 
while 124 genes were downregulated. On comparison of sCD40L to untreated control cells (sL/CNT), 12 genes 
were diferentially expressed. Whilst, only 12 genes showed reduced expression in RAdMock infected cells com-
pared to untransduced cells (AdM/CNT). Hierarchical clustering analysis of those transcripts with absolute fold 
change (Fc) ≥2 and p value < 0.05 induced by mCD40L compared to sCD40L treatment indicates clusters of 
functionally annotated gene sets (Fig. 2C).

To assist interpretation, gene ontology enrichment (GO) analysis of those transcripts either upregulated (286 
genes) or downregulated (124 genes) by mCD40L compared to sCD40L treatment was performed utilising the 
web-available protein-protein interaction networks String database (https://string-db.org). he top 10 functional 
pathways of the upregulated genes were predominantly implicated in immune-related functions, whilst those 
of downregulated genes appeared to be critical for cell cycle and proliferation (Fig. 3 and Supplementary Data 1 
and 2 respectively).

MCDͺͶL induces higher expression of transcripts involved in immune responses compared to 
sCDͺͶL in CDͺͶǦexpressing carcinoma cellsǤ Results from gene ontology enrichment analysis suggest 
that mCD40L upregulates the immune-activation machinery. herefore, we validated the expression of a selection 
of transcripts (Table 1) including genes with critical roles in antigen processing and presentation, cell adhesion 
molecules, cytokines, cytokine receptors, chemokines and co-stimulatory molecules. hus, T24 cells were infected 
with RAdnCD40L or treated with sCD40L and gene expression validation was carried out at the transcriptional 
level (Fig. 4A) by qRT-PCR techniques and at the protein level (Fig. 4B) by western blot analysis, with signiicant 
correlation with the corresponding microarray data (Fig. 4C). Furthermore, some of the genes negatively regu-
lated by mCD40L (Table 1), including peptidyl arginine deiminase, type II (PADI2), the most negatively afected 
transcript (Fc, 8.82; P = 3.07 × 10−11), topoisomerase (DNA) II alpha (TOP2A), Slit guidance ligand 2 (SLIT2) 
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Figure 1. RAdnCD40L but not sCD40L induces cell viability reduction in T24 bladder carcinoma cells. T24 
cells were infected with 100 multiplicity of infection (MOI) of either recombinant adenovirus expressing GFP 
control, RAdMock (AdM) or RAdnCD40L (AdnL) or let untreated as a control or treated with 1 µg/ml of 
sCD40L (sL). (A) Cell viability was assessed 36 hours post-treatment using WST-1 assay. Results represent 
mean of triplicate samples ± SD. Two-tailed t-test of AdnL/AdM*, AdnL/sL** and AdM/sL***. (B) Total cell 
lysates were probed with anti-phospho -JNK, -AKT and –ERK, anti- β-actin, anti-ikβα and anti-CD40L Abs. 
(C) T24 cells were infected with 100 MOI of either RAdMock (AdM) or RAdnCD40L (AdnL) or let untreated 
as a control or treated with sL, AdM-infected cells were either treated with sL or let untreated as a control, 
RAdnCD40L-infected cells were either treated with 5 µg/ml of anti-CD40L neutralizing mAb or let untreated, 
cells were incubated for 36 hours before cell viability assessment by WST-1 reagent. Results represent mean 
of triplicate samples ± SD. Two-tailed t-test AdM + sL/sL*, AdM/AdnL**, AdnL/sL*** and AdnL + Ab/
AdnL****. (D) T24 cells were pre-treated with cycloheximide (CHX) at a concentration of 30 µg/ml for 
3 hours before addition of sL (1 µg/ml) and CHX (30 µg/ml). Following 36 hours incubation, cell viability was 
assessed with results represent mean of triplicate samples ± SD. Two-tailed t-test CHX/CHX + sL* = 0.0015 and 
CHX + sL/sL** p = 0.0011 (E). Total cell lysates were probed with anti-phospho −JNK, −AKT, and β-actin as a 
loading control.
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and protein tyrosine phosphatase, receptor type, U (PTPRU) were also validated by RT-PCR. RT-PCR analysis of 
PADI2, TOP2A, SLIT2 and PTPRU indicate reduced expression corresponding to the microarray data (Fig. 4D).

In line with our previous indings, indicating that mCD40L induces cell death in CD40 positive carcinomas 
by inluencing the balance between apoptotic and survival signals, through posttranscriptional stabilization of 
TNFR-associated factor 3 (TRAF3) and destabilization of TRAF6, with no evidence of mCD40L inducing tran-
scriptional activity in regards to TRAF3 and TRAF612, no changes in the transcriptional levels of TRAF2, TRAF3, 
TRAF5 and TRAF6 have been detected, however TRAF1 was upregulated in RAdnCD40L compared to sCD40L 
(AdnL/sL; FC 30.5: p = 2.8 × 1013) and conirmed as well by RT-PCR analysis (Fig. 4D). Furthermore, we have 
also shown previously that mCD40L-induced NORE1A (RASSF5) expression contributes to mCD40L-induced 
cell death in JNK-independent mechanism13. Indeed RAdnCD40L but not sCD40L induced RASSF5 expression 
at the transcriptional level (AdnL/sL; FC 9.6: p = 1.62 × 10−12), that has been conirmed by western blot analysis 
(Fig. 4B).
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Figure 2. Microarray gene expression analysis. Gene expression levels were analysed by the Afymetrix 
Expression Console sotware with the RMA-sketch worklow as a default settings. (A) Normalized microarray 
data (Treatment vs Control) were visualised by GraphPad 7 Volcano blot analysis with blue-coloured squares 
representing genes with either P value > 0.05 and/or expression Fc < 2 compared to control treatment, 
red-coloured squares represent those with ≥2 Fc and P value ≤ 0.05. (B) Chart indicating the number of 
signiicantly altered genes (≥2 Fc with P value < 0.05) in RAdnCD40L-infected cells compared to RAdMock 
cells (AdnL/AdM), RAdnCD40L-infected cells compared to sCD40L (AdnL /sL), RAdMock-infected cells 
compared to untreated cells (AdM/CNT) and sCD40L-treated compared to untreated cells (sL/CNT). (C) 
Signiicantly altered genes (≥2 Fc and P value ≤ 0.05) were visualised by hierarchical clustering heat map 
highlighting the diferential expression levels between AdnL compared to AdM, sCD40L (sL: 1 µg/ml) treated 
and untreated control (CNT) cells. Gene expression values were row-scaled to have mean value of 0 and 
standard deviation of 1.
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MCDͺͶL enhances dendritic cell ȋDCȌ maturation and activationǤ he importance of dendritic cells 
(DC) as professional antigen presenting cells (APC) stimulating cytotoxic T lymphocytes is well-established15. 
his requires DC maturation and activation. Following antigen uptake, DC undergo phenotypic alteration and 
express higher levels of co-stimulatory molecules including CD54, CD83, CD80 and CD8616. Activation of CD40 
on DC surface induces functional maturation and enhances the capacity of DC to induce T cell proliferation and 
secretion of cytokines including IL-1, IL-6, IL-8, IL10, IL12 and TNF-α17–19.
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Figure 3. Gene annotation enrichment of diferentially altered transcripts in RAdnCD40L-transfected T24 
cells compared to sCD40L-treated cells. Transcripts with signiicant alteration (≥2 Fc and P value ≤ 0.05) in 
RAdnCD40L-transfected T24 cells compared to sCD40L-treated cells were analyzed by the online-available 
string sotware http://string-db.org/ for pathways enrichment. he top 10 signiicant pathways in either 
upregulated or downregulated transcripts with the number of genes in each pathway are highlighted by Fisher’s 
exact test p value analysis.
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Our inding that mCD40L signiicantly up-regulates expression of several transcripts involved in immune 
responses in CD40-expressing carcinoma cells promoted us to investigate the efects of mCD40L compared with 
sCD40L on DC maturation and activation. hus, immature DC were generated from CD14 + monocytes iso-
lated from peripheral blood of at least 5 diferent healthy donors by culturing with IL4 + GM-CSF for 5 days. 
Immature DC were then co-cultured with the CD40- pancreatic cell line CFPAC-1 cells either transduced with 
RAdnCD40L, or treated with sCD40L or with maturation cocktail (MC: IL-1β, 25 ng/mL, TNFα, 50 ng/mL, IFNγ, 
1000 U/mL, IL-6, 1000 U/mL, PGE2, 10−6 M, LPS, 100 µg/mL) as a positive control. Ater 24 hours, DC were 
retrieved from the co-cultures or let for a further 24 hours. Retrieved DC were examined for cell surface matu-
ration and activation molecules including CD40, CD83, HLA-DR, CD54 and CD86 by FACS analysis. IL-12 and 
IL-10 in co-culture media samples collected at 24 and 48 hours were also assayed by ELISA.

As shown in Fig. 5, DC co-cultured with CFPAC-1 cells expressing mCD40L exhibited higher expression 
levels maturation and activation (Fig. 5A) with higher detection levels of IL-12 and IL-10 in samples collected at 
24 and 48 hours points (Fig. 5B) compared to sCD40L. However, mCD40L-induced maturation and activation of 
DC were comparable to those induced by MC, indicating enhanced DC activation by mCD40L over sCD40L. his 
was clearly attributable to mCD40L expression since RAdMock-transduced or untransduced CFPAC-1 cells failed 
to induce DC maturation. To conirm that CFPAC-1 cells were transduced with equal amounts of RAdMock and 
RAdnCD40L, the expression levels of mCD40L and GFP were examined by FACS analysis. As shown in Fig. 5C, 
similar levels of GFP expression were detected in both RAdMock and RAdnCD40L-infected cells, with mCD40L 
only expressed in RAdnCD40L-infected cells.

To examine the tumour antigens uptake capacity of activated DC generated across diferent treatments, acti-
vated DC were pulsed with equal amount of CFSE-labelled necrotic CFPAC-1 cells at 1:1 ratio for 1 h at 37 °C, 
followed by FACS analysis for CFSE uptake. As shown in Fig. 5D mCD40L-activated DC exhibited signiicantly 
higher CFSE-labelling compared with those activated by MC, whilst sCD40L-activated DC exhibited only limited 
antigen-uptake. Taken together, these results indicate that mCD40L induces efective functional DC activation 
signiicantly more than sCD40L.

mCDͺͶLǦactivated DC enhance TǦcell proliferation and cytotoxic T lymphocyte ȋCTLȌ response 
compared with sCDͺͶLǤ To assess the ability of mCD40L-activated DC to stimulate T cell proliferation, 
retrieved DC from diferent treatment were pulsed with CFPAC-1 cell lysate at a ratio of 1:5 (DC: tumour cell 
equivalent) for 24 hours. Tumour-loaded DC were incubated with CFSE-labelled autologous CD3+ T cells 
at a responder to-stimulator (R:S) T-cell/DC ratio of 10:1. To evaluate the T cells response on day 5, we ana-
lyzed CD3+ T cells for CD8+ T cells by gating CFSE negative or low stained CD3 + CD8+ T cells utilizing 
anti-CD3-paciic blue and anti-CD8-AlexaFluor 700 respectively, based on CFSE dilution20 as a result of T cell 
proliferation compared with CFSE strong staining of unproliferated T cells. A minimum of 100,000 CD3 + cells 
were analyzed for CD8 + populations by low cytometry. he results were expressed as the percentage of CFSE 
low or negative cells relative to CD3 + CD8+ T cells.

As shown in Fig. 6A, incubation of CFPAC-1 tumour lysate-loaded mCD40L-activated DC loaded with 
autologus CD3+ T cells stimulated higher percentage of CD3+ T cell proliferation into CD8+ T cells com-
pared with MC-activated DC, however signiicantly higher than those stimulated with sCD40L-activated DC or 
DC isolated from RAdMock-transduced CFPAC-1 co-culture, or untreated CD3+ T cells. To evaluate the func-
tional cytotoxic activity of these in vitro expanded T cells, we examined CD107a degranulation and intracellular 
IFN-γ production. he importance of CD107a degranulation for immediate lytic function by T lymphocytes is 

Gene Description ID RefSeq P-value Fc

Chemokine (C-C motif) ligand 5 CCL5 NM_001278736 8.45E-14 120.35

Chemokine (C-C motif) ligand 20 CCL20 NM_001130046 1.01E-12 29.37

Intercellular adhesion molecule 1 ICAM1 NM_000201 1.13E-12 26.2

Colony stimulating factor 1 (macrophage) CSF1 NM_000757 9.65E-12 12.73

Vascular cell adhesion molecule 1 VCAM1 NM_001078 8.05E-08 9.23

Inducible T-cell co-stimulator ligand ICOSLG NM_001283050 5.66E-09 7.06

Transporter 2, ATP-binding cassette TAP2 NM_000544 1.71E-09 5.12

Interferon, gamma-inducible protein 30 IFI30 NM_006332 2.67E-09 5.08

Tumor necrosis factor TNF NM_000594 1.99E-08 3.43

Colony stimulating factor 2 (granulocyte-
macrophage)

CSF2 NM_000758 7.05E-08 3.08

Major histocompatibility complex, class I, F HLA-F NM_001098478 2.00E-07 2.86

Activated leukocyte cell adhesion molecule ALCAM NM_001243280 1.66E-07 2.8

Beta-2-microglobulin B2M NM_004048 1.54E-06 2.69

Slit guidance ligand 2 SLIT2 NM_001289135 3.08E-07 −2.77

Topoisomerase (DNA) II alpha TOP2A NM_001067 9.76E-08 −2.79

Protein tyrosine phosphatase, receptor type, U PTPRU NM_001195001 9.26E-09 −3.88

Peptidyl arginine deiminase, type II PADI2 NM_007365 3.07E-11 −8.82

Table 1. Expression validation of a selection of genes diferentially expressed by mCD40L compared to sCD40L 
(RAdnCD40L/sL).
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well-recognized21. hus, proliferated T cells in response to CFPAC-1-tumour lysate-loaded activated DC gener-
ated across diferent treatments were stimulated with irradiated cell lysate-loaded autologous PBMC. GolgiStop 
and anti-CD107a PE Ab were added 1 hour ater stimulation and incubated for 5 hours. Retrieved T cells were 
stained with anti-CD3-Paciic blue, anti-CD4-FITC and anti-CD8-AlexaFluor 700. Following ixation and per-
meabilization with Cytoix/Cytoperm solution, cells were stained with anti-IFN-γ APC and analysed for CD3+ 
CD8+ CD4− cells with positive CD107a and IFN-γ staining.

As shown in Fig. 6B, T cells expanded via mCD40L-activated DC exhibited a higher percentage of CD107a 
degranulation and IFN-γ production compared to sCD40L, indicating that mCD40L-activated DC are 
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functionally active and are capable of inducing increased T cell proliferation and cytotoxic response compared to 
sCD40L-activated DC.

Discussion
In immune cells, CD40-CD40L interaction is critical in orchestrating immune responses including DC matura-
tion and activation with ability to initiate T-cell responses22.
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Figure 5. DC maturation and activation by mCD40L. Immature DC (iDC) were co-cultured with CFPAC-1 
cell pre-transduced with 50 MOI RAdMock (AdM) or RAdnCD40L (AdnL) or treated with sCD40L (sL; 1 µg/
ml) or the maturation cocktail (MC) as a positive control. Activated DC were retrieved from the co-cultures 
ater 24 h for FACS analysis or let for a further 24 h for culture media sampling. (A) Expression of CD40, 
CD83, HLA-DR, CD54 and CD86 were examined by FACS analysis on DC retrieved ater 24 hours from 
diferent co-cultures. Matching isotype antibodies (Iso) staining were also conducted to ensure the speciicity 
of the utilised antibodies (Abs) in detecting target expression. Results represent the mean of three biological 
experiments ± SD. Two-tailed t-test analysis of AdL/sL*, AdnL/AdM** and sL/CNT***. (B) IL-12 and IL-10 
were quantiied by ELISA within samples collected from diferent co-cultures at 24 and 48 hours points. Results 
mean of three biological experiments ± SD. Two-tailed t-test analysis of sL/CNT* (IL-12; 24 h, p = 0.0032; 48 h, 
p = 0.0046: IL-10; 24 h, p = 0.0.0318; 48 h p = 0.0059), AdnL/AdM** (IL-12; 24 h, p = 0.0014; 48 h, p = 0.0016: 
IL-10; 24 h p = 0.0.0051; 48 h p = 0.0049) and AdnL/sL*** (IL-12; 24 h p = 0.0037; 48 h p = 0.0017: IL-10; 
24 h p = 0.0.0037; 48 h p = 0.0016). (C) Activated DC pulsed with CFSE-labelled necrotic CFPAC-1 cells at 
1:1 ratio for 1 h at 37 °C, were analyzed by FACS analysis for CFSE uptake. Results represent the mean of three 
biological experiments ± SD. Two-tailed t-test analysis comparing sL/CNT*, AdnL/AdM** and AdnL/sL***. 
(D) mCD40L expression was examined in AdnL-transduced CFPAC-1 cells in addition to GFP to ensure equal 
adenoviral infection compared to AdM control.
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However, in CD40 + carcinomas, CD40 ligation via mCD40L but not sCD40L has been reported to induce cell 
cycle arrest and apoptosis11–14, through a mechanism involves constitutive activation of the pro-apoptotic JNK 
pathway and downregulation of PI3K11,12, a known anti-apoptotic efector and regulator of gene expression23.
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Figure 6. T-cell proliferation and cytotoxic response to mCD40L-activated DC compared with sCD40L. 
DC co-cultured for 24 hours with CFPAC-1 cells (CFPAC-1 CNT) alone or CFPAC-1 cells pre-transduced 
with 50 MOI RAdMock (AdM) or RAdnCD40L (AdnL) or treated with sCD40L (sL; 1 µg/ml) or the MC 
were retrieved and loaded with CFPAC-1 tumour lysate. (A) CFSE-labelled autologus CD3+ T cells were 
incubated with tumour cell lysate-loaded DC at a responder to-stimulator (R:S) T-cell/DC ratio of 10:1 for 
5 days or cultured alone as a negative control. Retrieved CD3+ T cells were examined for CD8+ T cells by 
gating CD3 + CD8+ T cells population utilizing anti-CD3-Paciic blue and anti-CD8-Alexa Fluor 700. CD8+ 
T cells were selected by gating CD3 and CD8 double stained cells with negative or low CFSE. he results were 
expressed as the percentage of CFSE negative or low cells with Paciic blue and Alexa Fluor 700 positive staining 
and represent the mean of three biological experiments ± SD. Two-tailed t-test analysis comparing diferent 
treatments including sL/CNT*(p = 0.1515, p = 0.0334), AdnL/sL**(p = 0.0059, p = 0.0148), AdnL/AdM*** 
(p = 0.0083,p = 0.0132) and MC/CNT****(p = 0.0091, p = 0.0024). (B) In vitro expanded T cells obtained from 
co-culture with DC loaded with tumour lysate for 7 days were stimulated for 5 hours with irradiated CFPAC-1 
cell lysate-loaded autologous PBMCs. Unstimulated CD3+ T cells were used as a negative control (unstimulated 
T cells). Protein transport inhibitor, GolgiStop and anti-CD107a PE Ab were added 1 hours ater stimulation. 
Cells were stained with anti-CD3-Paciic blue, anti-CD8-AlexaFluor 700 and anti-IFN-γ APC. Anti-CD3, -CD8 
positive stained were gated by low cytometery and analyzed for CD1017a and IFN-γ positive staining cells. 
Results represent the mean of three biological experiments ± SD. Two-tailed t-test analysis comparing diferent 
treatments including sL/CNT* (p = 0.3671, p = 0.5739), AdnL/sL** (p = 0.0043, p = 0.0025), AdnL/AdM*** 
(p = 0.0008, p = 0.0068) and MC/CNT**** (p = 0.0066, p = 0.0026) for IFN-γ and CD1017a positive cells 
respectively.
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In line with that, mCD40L but not sCD40L induced cell death in the CD40+ T24 cells. However, 
sCD40L-induced cell death required protein synthesis inhibition by CHX, suggesting that sCD40L induces potent 
survival signals capable of suppressing its pro-apoptotic efects. CHX treatment appears not only shiting the bal-
ance between sCD40L-induced survival and pro-apoptotic signals by disrupting the survival signals but also by 
enhancing the pro-apoptotic JNK activation by prolonging its activity, a critical requirement in mCD40L-induced 
cell death.

In view of broadly understanding the diferential efects of CD40 ligation by mCD40L versus sCD40L, we 
compared the T24 cells transcriptome following CD40 ligation by sCD40L (24 h) and mCD40L (24 h), and by 
subjecting our microarray data to absolute fold change (Fc) ≥ 2 and p value < 0.05, we ensured that only signif-
icant transcriptional changes are selected. Furthermore, by utilising the gene ontology enrichment (GO) anal-
ysis we were able to categorise the diferentially altered transcripts based on the signiicance of their functional 
pathways. Where, the top 10 signiicant functional pathways of those upregulated or downregulated by mCD40L 
compared to sCD40L were identiied. Upregulated transcripts were predominantly implicated in immuno-related 
functions, while those downregulated were pivotal for cell cycle and proliferation (Fig. 3). Interestingly, mCD40L 
not only upregulated genes enhancing immunostimulatory function but also downregulated those negatively 
impacting this process, such as SLIT2, which is involved in inhibition of chemotaxis and adhesion of monocytes 
to activated human endothelial cells and to immobilized ICAM-1 and VCAM-1 cells24.

To examine the transcriptional activity underlying mCD40L-induced cell death, we examined transcriptional 
changes of TNFR-associated factors (TRAFs) including TRAF1, 2,3,5 and 6, as CD40 lacks any intrinsic kinase 
activity and only rely on recruiting TRAFs to its cytoplasmic domain in order to convoy its signals25–27.

Interestingly, only TRAF1 among other TRAFs molecules including TRAF2, TRAF3, TRAF5 and TRAF6 was 
upregulated by mCD40L (AdnL/sL: Fc 30.5: p = 2.8 × 1013), reconirming our previous observation that mCD40L 
induced JNK activation and PI3K down-regulation is mediated by post-transcriptional stabilization and desta-
bilization of TRAF3 and TRAF6 respectively11,12. RASSF5 (NORE1A), another important molecule that medi-
ates mCD40L-induced cell death in JNK-independent mechanism13 also was upregulated by mCD40L but not 
sCD40L (AdnL/sL; FC 9.6: p = 1.62 × 10−12). Taken together, these data further reassure our microarray results.

CD40 ligation on surface of immature DC promotes DC maturation and activation demonstrated by cytokine 
production, induction of costimulatory molecules on their surface, and cross-presentation of antigen15,18. 
However, for induction of higher level of h1-polarizing cytokine IL-12 secretion by DC, a combination of 
CD40L and IFN-γ are required28–30. Indeed, DC stimulation with sCD40L alone appeared to be less eicient, 
demonstrated by low level of IL-12 secretion and reduced antigen-uptake capacity by sCD40L-activated DC. In 
contrast, mCD40L-activated DC not only enhanced the antigen-uptake but also induced higher levels of IL-12 
secretion, albeit higher IL-10 was also observeed, however the IL-12:IL-10 ratio remains signiicant. In agreement 
with our results, CD40L-expressing DCs was reported to induce higher IL-12 expression compared to TNF-α 
activated DC, moreover addition of IL-10 did not compromise CD40L-induced DC activation31.

Eicient DC maturation and activation is a key checkpoint in priming T cells, with the nature of DC matura-
tion inluencing IL-12 induction32, a critical h1 polarising cytokine33. DC maturation by CD40L is known not 
only to induces IL-12 production28, but also for its capacity to initiate h1-type responses against tumours34,35.

Indeed, autologus CD3+ T cells strongly responded to CFPAC-1 tumour lysate-loaded mCD40L-activated 
autologus DC with higher percentage of proliferation into CD8+ T cells compared to sCD40L.

Furthermore, the positive correlation between levels of T cell proliferation with levels of CFPAC-1 tumour 
uptake by activated DC (Fig. 5D) across diferent treatments, suggests CD3+ T cells proliferated in response to 
CFPAC-1 tumour antigens, particularly that tumour-unloaded activated DC are known to be incapable of elect-
ing T cell response36.

In line with that, incubation of irradiated CFPAC-1 tumour-loaded autologous PBMCs with CFPAC-1 tumour 
speciic CD3 + CD8+ T cells in response to CFPAC-1-tumour lysate-loaded mCD40L- activated DC stimulated 
CD3 + CD8+ T cells cytotoxic response and resulted in higher percentage of CD3 + CD8+ T cells with positive 
staining for IFN-γ and CD107a compared to those CFPAC-1 tumour speciic CD3 + CD8+ T cells generated 
in response to CFPAC-1-tumour lysate-loaded DC activated through other treatments including sCD40L and 
MC. Where, CFPAC-1 tumour lysate-loaded RAdMock-activated autologus DC or control CFPAC-1 tumour 
lysate-loaded CFPAC-1 retrieved-DC were not eiciently matured to elicit T cell response indicating that our 
observed T cell response is a mCD40L-dependant. Furthermore, in our model we selected the CD40- CFPAC-1 
cells to deliver mCD40L rather than a CD40 + cell line to avoid any potential confounding efects due to apoptotic 
induction by RAdnCD40L.

he mechanism by which mCD40L enhances immune responses is not yet fully understood, however it could 
be due to the signal potency delivered by mCD40L, given that mCD40L transduces prolonged signals compared 
to sCD40L in CD40 + carcinomas12. Furthermore, our microarray analysis revealed upregulation of STAT5a tran-
scription by mCD40L compared to sCD40L (AdnL/sL; Fc 2.9, p = 6.1 × 10−8), STAT5a is key regulator of inlam-
matory cytokines gene expression including TNFα, interferon-γ (IFN-γ), and interleukin-6 (IL-6)28. Inhibition 
of JAK3 pathway that mediates STAT5s expression in CD40-mediated DC maturation resulted in tolerogenic DC 
conversion37.

hus, mCD40L expression in transduced tumour cells may induce apoptosis in CD40-expressing carcino-
mas, liberating tumour associated antigens for uptake by tumour-iniltrating dendritic cells. At the same time, 
mCD40L expression on tumour cells may directly stimulate these DC for enhanced antigen presentation to 
CD8+ T-cells, promoting their proliferation and tumour-speciic cytotoxic responses. However, we cannot 
exclude possible role of CD4+ T cells for CD8+ T cell activation under this experimental condition, as we have 
not examined the puriied CD8+ T cells response.

Collectively, these inding suggest that mCD40L could be harnessed as a potent immunostimulatory cancer 
therapy given its ability to stimulate diferent facets of the immune response together with its ability to directly 
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induce cell death in CD40-expressing carcinomas, which itself may release tumour speciic antigens into the 
tumour microenvironment to further enhance anti-tumour immune responses (Fig. 7).

Materials and Methods
Cells and maintenanceǤ Bladder carcinoma cell line T24 cells and the pancreatic cell line CFPAC-1 cells 
(originally obtained from the ATCC, cat no ATCC HTB-4 and ATCC CRL-1918 respectively and routinely exam-
ined for mycoplasma by PCR every 6 month) were maintained in either RPMI 1640 or DMEM supplemented 
with 2 mM glutamine, 10% FBS. Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized 
healthy donors’ blood by using density gradient centrifugation on lymphoprep (Axis-Shield PoC AS, Oslo, 
Norway) according to the manufacturer’s instructions. Isolated PBMCs were washed twice with phosphate-buf-
ered saline (PBS) then resuspended in RPMI-1640 media. CD14 + monocytes and CD3+ T cells were isolated 
from fresh PBMCs by positive selection using anti-CD14 and anti-CD3-coated magnetic beads and magnetic 
columns according to the manufacturer’s instructions (Miltenyi Biotec, Germany). he purity of monocytes and 
T cells was routinely >95%, as assessed by low cytometry using anti-CD14 and anti-CD3 antibodies respectively.

Immature dendritic cells (iDC) were generated by culturing CD14 + monocytes in complete RPMI-1640 
medium supplemented with 10% FBS (Sigma-Aldrich), recombinant human IL-4 cytokine (800 U/ml) and gran-
ulocyte/monocyte-colony stimulating factor (GM-CSF; 800 U/ml) (PeproTech, London, UK). At day 3, cultured 
cells were topped up with medium containing IL-4 (400 U/ml) and GM-CSF (400 U/ml). At day 5, cells were 
harvested and analyzed for the expression of CD1a, CD14 and CD83 markers.

Recombinant adenovirus vectors and cell infectionǤ he replication-deicient E1, E3-deleted recom-
binant adenoviruses expressing either membrane-bound, noncleavable CD40L (RAdnCD40L), or GFP control 
(RAdMock) were constructed using methods as previously described38. Viruses were puriied by caesium chlo-
ride banding and dialyzed against a bufer containing 10 mM Tris-HCl (pH 8.0), 2 nM MgCl, and 5% sucrose. 
Virus titers were determined using the 50% tissue culture-infective dose method, based on the development of 
cytopathic efects in HEK 293 cells using serial dilutions to estimate adenovirus stock titer. Cells were infected in 
10% FBS DMEM with the appropriate multiplicity of infection (MOI) for 2 hours at 37 °C. he resistance of the 
membrane-bound CD40L mutant expressed and delivered by RAdnCD40L to cleavage from the cell membrane 
was conirmed and described previously12.

WSTǦͷ cell viability assayǤ Cells were plated in 96-well plates at 4000 cell/100 µl/ well and incubated at 
37 °C. Cell viability was assessed by adding WST-1 reagent (Roche) to the culture medium at 1:10 dilution. Cells 
were incubated at 37 °C and the optical density was measured by microplate ELISA reader at λ450 every 2 hours 
to a maximum of 6 hours. he amount of the formazan formed directly correlates to the number of metabolically 
active cells.

Treatment of cells and RNA isolation and extraction for microarray analysisǤ T24 cells were 
infected with 50 MOI RAdMock or RAdnCD40L or let uninfected for 24 hours or treated with sCD40L at a inal 
concentration of 1 µg/ml (PeproTech, London, UK) for 24 hours, total RNA was extracted from cells using the 

CD40L CD40

Naïve CD8/CD4 T cells

Mature DCs immature DCs

Tumour-specific

CD8 T cells

Cytotoxic

response

CD8/CD4 T cells

CD4 T cells
Tumour cells

Ad-CD40L

Tumour antigens

Figure 7. Multiple mechanisms of action of mCD40L immunostimulatory therapy. mCD40L expression in 
transduced tumour cells may induce apoptosis in CD40-expressing carcinomas, liberating tumour associated 
antigens for uptake by tumour-iniltrating dendritic cells. At the same time, mCD40L expression on tumour 
cells may directly stimulate these DC for enhanced antigen presentation toward CD4 + and CD8+ T-cells, 
promoting their proliferation and tumour-speciic cytotoxic responses.
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EZ-RNA total isolation kit (Biological Industries, Israel) according to the manufacturer’s instructions with RNA 
integrity and quality conirmed by Agilent Bioanalyser.

cDNA probe synthesisǤ 200 ng of total RNA was converted to cDNA using a WT Expression kit (Ambion, 
Cambridge, MA, USA) according to the manufacturer’s procedures. Resultant cDNA was fragmented and labelled 
with biotin using an Afymetrix WT Terminal Labelling kit (Afymetrix, Santa Clara, CA, USA).

Microarray hybridisation analysisǤ Biotin-labelled cDNA was hybridised to Afymetrix Human Gene 1.0 
ST v1 arrays. Arrays were then washed and stained on an Afymetrix FS400 luidics station, followed by scanning 
utilising an Agilent G2500A GeneArray scanner according to the manufacturer’s instructions. GCOS sotware 
(Afymetrix) was used for instrument control and data acquisition. Gene level analysis was performed using the 
Afymetrix Expression Console sotware with the default settings of the RMA-sketch worklow39. Diferentially 
expressed probe sets were identiied via the linear models and empirical Bayes method40. Raw microarray data 
were submitted to the public repository Gene Expression omnibus (GEO) (GEO Accession: GSE98891).

RTǦPCR analysisǤ Using the RETROscript RNase reverse transcription kit (Ambion Europe, Huntingdon, 
UK) according to the manufacturer’s instructions, cDNA was synthesised from total RNA extracted by EZ-RNA 
total isolation kit (Biological Industries, Israel). RT-PCR was performed using PLATINUM Taq DNA polymer-
ase (Invitrogen) utilizing the human PTPRU-speciic primers: forward 5′-ggagaggctactctgcccg-3′ and reverse 
5′-ggtgaccgagttcagcgtctg-3′, the human TOP2A-specific primers: forward 5′-ggcaccgagaagacacctcct-3′ and 
reverse 5′-catctggaaccttttgctgggc-3′, the human SLIT2-speciic primers: forward 5′-ctcgttgtgctggtcctggag-3′and 
reverse 5′-gttcaggtcctgggcacagaag-3′, the human PADI2-speciic primers: forward 5′-gaactgtgaccgagagacaccc-3′ 
and reverse 5′-ggaacaggtaattatccttcatgcagc-3′ and the human TRAF1: forward 5′-gttcatgaaacagtggaaggc-3′ 
and reverse 5′-ggagaagaggctgacggtcct-3′. he amount of cDNA template used for the RT-PCR was adjusted 
on the basis of amplification of human GAPDH utilising the human GAPDH-specific primers: forward 
5′-cctccaaaatcaagtggggcg-3′ and reverse 5′-accaccaggtgctcagtgtag-3′ to ensure equal inputs between diferent 
samples.

QRTǦPCR measurement of cellular gene expressionǤ he following TaqMan gene expression assays 
for B2M (Hs00984230_m1), CCL20 (Hs01011368_m1), CCL5 (Hs00982282_m1), CSF1 (Hs00174164_m1), 
CSF2 (Hs99999044_m1), HLA-F (Hs01587840_m1), ICOSLG (Hs00391287_m1), IFI30 (Hs00173838_m1), 
TAP2 (Hs00241060_m1), TNF (Hs00174128_m1), VCAM1 (Hs00365486_m1), ALCAM (Hs00233455_m1) and 
ICAM1 (Hs00164932_m1) were all selected from the Applied Biosystems website (http://www.appliedbiosystems.
com) together with 18 S, GAPDH and HPRT1 rRNAs as a standard control, assembled onto a microluidics card 
(Applied Biosystems) and analysed using an ABI Prism 7900HT Sequence Detection System. Individual 50 µl 
qRT-PCRs were performed for selected candidates. he relative quantity (RQ) of RNA for each gene across the 
diferent treatments within the experiment was calculated as described previously41. he mean of the RQs from 
the three replicate pairs was calculated and used in further analysis.

Western blot analysis and antibodiesǤ Antibodies (Abs) against CD40L and IRF1 were from Santa Cruz 
Biotechnology. Phosphospeciic JNK, AKT and ERK antibodies, IκBα antibody and RASSF5 monoclonal anti-
body were all from Cell Signaling Technology. Monoclonal mouse anti-β-actin was from Sigma, UK. For immu-
noblotting, 10-50 µg protein was separated by SDSPAGE and transferred onto nitrocellulose membranes followed 
by blocking with 10% non-fat milk dissolved in TBS supplemented with 0.1% Tween 20. Ater three washes 
with TBS supplemented with 0.1% Tween 20, nitrocellulose membranes were incubated overnight at 4 °C with 
the primary Abs and for 1 hour at room temperature with the appropriate secondary Abs followed by enhanced 
chemiluminescence (Amersham Biosciences, Piscataway, NJ).

Immature DC activationǤ CFPAC-1 cells were transduced with either 100 MOI RAdMock or RAdnCD40L 
or let un-transduced as a negative control for 24 hours followed by co-culturing with iDC at a ratio of 1:2 cells to 
iDC. Uninfected CFPAC-1 and iDC co-culture control were either treated with soluble CD40L (1 µg/ml) or MC 
(IL-1β: 25 ng/mL (Enzo Life sciences, UK), TNFα: 50 ng/mL (Enzo life sciences, UK), IFNγ: 1000 U/mL (R&D 
Systems, Inc, USA), IL-6: 1000 U/mL (R&D Systems, Inc, USA), PGE2: 10−6 M (Sigma-Aldrich, Ltd, Dorset, 
England, UK), LPS: 100 µg/mL (Enzo Life Sciences, UK) or let untreated as a negative control for 24 hours. 
DC were harvested from the co-cultures by gentle pipetting using 2 mM EDTA-PBS without afecting adherent 
CFPAC-1 cells. Harvested DC were either used in other assays or analyzed by low cytometry to evaluate their 
activation status.

Flow cytometryǤ For mCD40L expression in CFPAC-1 cells transduced with RAdnCD40L, 3 × 105 cells 
were washed three times with ice-cold PBS bufer and incubated on ice for 20 min with 100 µl of diluted mouse 
anti-human CD40L-APC conjugate Ab or mouse isotype-APC Ab conjugate (ebioscience, San Diego, CA, USA) 
or let without treatment as negative control. Cells were then washed three times with ice-cold staining bufer 
(PBS with 1%BSA and 0.1% NaN3) analysed by low cytometry. For monocyte-derived DC activation markers, 
mouse anti-human mAb CD1a- PE-Cy7, CD14-PE, CD40-APC, and HLA-DR-Alexa Fluor 700 were from ebi-
oscience. For mouse anti-human mAb CD86-PE, CD83-APC and CD54-APC, were from BD bioscience, San 
Jose, CA, USA. Briely, DC were stained with mouse anti-human mAbs or the isotype control for 20 minutes, cells 
were washed twice with staining bufer. Flow cytometry was performed by acquiring cells using BD LSR Fortessa 
cell analyser (BD Bioscience). A minimum of 50,000 HLA-DR + cells were acquired per sample and data were 
analysed by FlowJo sotware version X (Tree Star, Ashland, USA)
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ILǦͷͶ and ILǦͷ quantiƤcationǤ CFPAC-1 cells transduced with either 50 MOI RAdMock or RAdnCD40L 
or un-transduced for 24 hours were co-cultured with iDC at a ratio of 1:2 cells to iDC. he uninfected CFPAC-1 
and iDC co-culture were either treated with soluble CD40L (1 µg/ml) (PeproTech) or maturation cocktail or let 
untreated as a negative control for 48 hours. For IL-10 and IL-12p70 assessment in the culture media, samples 
were collected at 24 and 48 hours following iDC-CFPAC-1 co-cultures, pre-cleared by centrifugation and assayed 
by Enzyme-Linked Immune Sorbent Assay (ELISA) kit (eBioscience, Hatield, UK) according to the manufactur-
er’s instructions utilizing the automated Modulus Microplate reader (Turner BioSystems, USA).

Activated DC phagocytic activityǤ CFPAC-1 cells were labelled with 5 µM carboxyluorescein diacetate 
succinimidyl ester (CFSE; Invitrogen, Paisley, UK) for 10 min, washed in 10% FBS culture medium then resus-
pended at 1 × 107 cells/mL in serum-free RPMI. Necrosis was then induced by six rapid freeze and thaw cycles. 
CFSE-labelled necrotic cells were incubated with activated DC at a 1:1 ratio for 1 hour at 37 °C. Following two 
PBS washes, DC were stained with anti HLA-DR AlexaFLuor700-conjugated mAb and uptake of necrotic cell 
material was analyzed by low cytometry as a percentage of HLA-DR and CFSE- positive cells in a minimum of 
50,000 cells acquired per sample.

CFSE labelingǤ Following two washes with PBS, T cells were incubated with 5µmol/L Carboxyluorescein 
diacetate succinimidyl ester (CFSE) for 15 minutes at 37 °C before the reaction was terminated by addition of 
RPMI-1640 containing 10% FBS. Cells were then washed in PBS and resuspended in standard growth medium 
for subsequent assays.

In vitro priming and proliferation of T cellsǤ For tumour cell lysis, CFPAC-1 cells (107/ml) were lysed 
by 5 cycles of heating at 42 °C for 10 min then rapid-freezing in liquid nitrogen. he cell lysate preparation was 
then passed through 0.22 µm syringe driven membrane ilter (Millipore). For pulsing pre-activated DC, DC 
were incubated with CFPAC-1-tumour cell lysate at the ratio of 1:5 (DC: tumour cell equivalent) for 24 hours. 
CFSE-labelled autologus CD3+ T cells were incubated with DC loaded with tumour cell lysate at a responder 
to-stimulator (R:S) T-cell/DC ratio of 10:1 at 2 × 106/mL for 5 days or cultured alone as a negative untreated 
control. Cultures were supplemented with fresh medium containing IL-2 (20 U/ml) and IL-7 (5 ng/ml) (all from 
PeproTech, London, UK) at day 3. On day 5, we analyzed CD3+ T cells (anti-CD3-paciic blue, BD bioscience, 
San Jose, CA, USA) for CD8+ T cells (anti-CD8-AlexaFluor 700, BD bioscience, San Jose, CA, USA) with low 
or negative CFSE staining based on CFSE dilution20 as a result of T cell proliferation. A minimum of 100,000 
CD3 + cells were analyzed for CD8 + population by low cytometry. he results were expressed as the percentage 
of CFSE low or negative cells relative to CD8+ T cells.

Eơector function of DCǦactivated T cellsǤ In vitro expanded T cells obtained from co-culture with DC 
loaded with tumour lysate for 7 days were assessed for CD107a degranulation and intracellular IFN-γ produc-
tion. Briely, 5 × 105 T cells were stimulated for 5 hours in a 96-well plate with irradiated (20 Gy) cell lysate-loaded 
autologous PBMCs, or let unstimulated as a negative control. GolgiStop (BD Biosciences) and anti-CD107a PE 
(BD Biosciences) were added 1 hour ater stimulation. Ater 5 hours, cells were stained with anti-CD3-Paciic 
blue, anti-CD4-FITC and anti-CD8-AlexaFluor 700 for 20 min at 4 °C. Following PBS washing, cells were ixed, 
permeabilized with Cytoix/Cytoperm solution and stained with anti-IFN-γ APC (BD Biosciences) at 4 °C for 
20 min then analysed by low cytometry. Samples were initially gated for CD3+ CD8+ CD4− T cells then the 
percentages for CD1017a and IFN-γ positive cells were determined in a minimum of 200,000 CD3+ T cells 
acquired cells.

Ethics approval and consent to participateǤ he use of blood samples for this study was approved by 
ethical permission from the National Research Ethics Committee (REC: 08/H1011/36). Appropriate approvals 
and informed written consent for study participation were obtained and the study was performed in accordance 
with the Declaration of Helsinki.

Data availability
he datasets generated during the current study are available from the corresponding author on reasonable 
request.
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