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ABSTRACT In the fifth-generation (5G) mobile networks, the traffic is estimated to have a fast-changing

and imbalance spatial-temporal distribution. It is challenging for a system-level optimisation to deal with

while empirically maintaining quality of service. The 5G load balancing aims to address this problem

by transferring the extra traffic from a high-load cell to its neighbouring idle cells. In recent literature,

controller and machine learning algorithms are applied to assist the self-optimising and proactive schemes

in drawing load balancing decisions. However, these algorithms lack the ability of forecasting upcoming

high traffic demands, especially during popular events. This shortage leads to cold-start problems because

of reacting to the changes in the heterogeneous dense deployment. Notably, the hotspots corresponding

with skew load distribution will result in low convergence speed. To address these problems, this paper

contributes to three aspects. Firstly, urban event detection is proposed to forecast the changes in cellular

hotspots based on Twitter data for enabling context-awareness. Secondly, a proactive 5G load balancing

strategy is simulated considering the prediction of the skewed-distributed hotspots in urban areas. Finally,

we optimise this context-aware proactive load balancing strategy by forecasting the best activation time. This

paper represents one of the first works to couple the real-world urban event detection with proactive load

balancing.

INDEX TERMS Context-aware, data analytics, proactive load balancing, 5G, machine learning.

I. INTRODUCTION

In 5G, the proactive network optimisation boosts the net-

work in disposing the exponential traffic growth (600x to

2500x capacity increase [1]), stringent service requirements

(10,000 or more low-rate devices per cell site [2]), and reduc-

ing capital and operational expenditure (≈ 60× expenditure

increase [1]). Proactive load balancing is one of the optimisa-

tion methods, which can automatically pre-configure the cell

margins for fast convergence when the environment changes.

Nevertheless, traditional schemes have to satisfy not only

the regular-time demands but also the peak-hour demands

of users, which can cause network energy efficiency reduc-

tion [3]. To fill the gap, the context-aware proactive load

balancing will forecast high-resolution traffic demand and

quantify the environmental context to drive decision making.

The associate editor coordinating the review of this manuscript and

approving it for publication was Irfan Ahmed .

In other words, the ultra-dense heterogeneous networks will

have the intelligence to generate and utilise the context, such

as traffic patterns and user behaviours, to help the network

proactively deciding an energy-efficient optimisation scheme

[3]. The context is often challenging to uncover, unfold over

time, and it is difficult to collect personal data due to pri-

vacy concern. Therefore, public online data, such as online

event calendars and social networks, are usually applied for

research.

For this purpose, this work mainly contributes to three

aspects. Firstly, we use a 3-stage data-analytic based on Twit-

ter data to design the context-aware module for forecasting

the changes in traffic hotspots during events in urban areas.

Secondly, the prediction of hotspots is fed to a proactive load

balancing strategy to automatically configure cell margins.

Thirdly, we optimise this proactive load balancing strategy

through forecasting the earliest activation time with minimis-

ing the prediction errors.
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Generally, load balancing is required as a dynamic optimi-

sation process to cope with the varying traffic distribution [4].

Specifically, it handovers the UEs at the edge of overlap-

ping or adjacent cells from a congested cell to an idle

cell through adjusting handover parameters, such as offset

values [5], thresholds [6], and the number of handovers [7].

These adjustments are usually conducted according to the

output of the continuous optimisation iterations or the logic

controllers. For example, Fuzzy logic controllers were used in

[8], [9] for auto-tuning handover margins. These controller-

base methods have a cold-start problem because it has

insufficient information at the start-up and requires time to

converge. More challenges for these controller-based load

balancing methods are listed as follows:

• The controller-based algorithms are reactive to the prob-

lems, which is time-consuming in adjusting the offset,

and limited in adapting the fast-changing load [10].

• The target cells may have a re-overload occurrence

because the controllers potentially have an occurrence

of oscillations [8].

• The controller-based algorithms trigger all the neigh-

bouring cells to balance the load, which is inefficient for

intra-cell skewed UE-distribution [10].

The causes of the above challenges come from two main

categories. Firstly, the drawbacks are the nature of con-

trollers. Secondly, traffic is unpredictable. In order to over-

come these issues, several proactive load-balancing methods

based on machine learning have been proposed to deal with

the unpredictable traffic by learning, forecasting, then adjust-

ing cell margins [11]–[14]. Cellular data, such as cell load,

call blocking ratio, UE and BS distribution, are usually used

to learn prior knowledge for the proactive optimisation. The

related works will be reviewed in the next section.

The paper is organised as follows: Section II reviews

the related works about proactive load balancing and high-

lights the gaps for requiring context-awareness. Section III

introduces the framework of context-aware proactive load

balancing for an urban area. Section IV states a 3-stage

data-analytics of generating spatial-temporal traffic pattern

and executing event hotspots detection through using Twitter

data. Then, Section V proposes a strategy of balancing load

based on the production from the 3-stage data-analytics. This

section also provides an urban-area simulation example of the

context-aware proactive load balancing and its quantification

optimisation. Finally, Section VI concludes this paper.

II. RELATED WORKS

Traditional proactive load balancing methods are developed

based onmachine learning algorithms to forecast the cell load

condition in which the profit will be maximised. In detail,

the algorithms adjust cell margin (offset) according to the

relationship among the traffic load, packet loss ratio, and the

offset. Many machine learning methods can be applied for

modelling this relationship, such as regression or reinforce-

ment learning. Specifically, these methods decide the offset

with maximising reward in a particular load condition with

maintaining the packet loss ratio. For example, Q-learning

is used in this way to continuously self-tune the Reference

Signal Received Power (RSRP) margin [12], [13]. Moreover,

the paper [11] proposed a polynomial regression following a

similar way to highlight the proper decision. These traditional

algorithms can relieve the pressure of slow convergence and

potential oscillations. However, they have some common

drawbacks because the learning process is only cellular data-

driven. For example,

• They lack the knowledge of user behaviours, such as

mobility and preference [10].

• The conditions with burst high traffic demands

are not considered, such as during popular events.

In other words, they are proactive to usual conditions

(daily traffic) but reactive to the irregularly burst traffic

(during events).

• There exists unnecessary cell expansion for the skewed

intra-cell demands distribution [10].

If the mobility of each user is known, the first two gaps

can be filled and free up the high-load cell proactively based

on the exact locations and their associated distance with the

BS [16], [17], but the user tracking in such a detailed level

is still challenging. To address the gaps mentioned above,

context-aware methods were proposed based on heteroge-

neous data sources, such as social networks and GPS. The

basic idea of the context-awareness is to extract any valuable

information from the homogeneous datasets and forecast the

demands and behaviours of users. For example, the work

[15] forecast the user distribution of potential high-loaded

areas and suggested to activate the nearest idle cell to expand

margins by considering the interference and theQoS. Another

similar work is done in [10].

Nevertheless, two problems need to be considered before

the actual implementation of real-world data analytics. The

first one is estimating the correlation between social network

data and cellular key performance indicators (KPI). The sec-

ond problem is modelling and forecasting users’ behaviours,

especially the upcoming events.

The correlation between the social network data and the

cellular KPIs can be modelled by linear regression or a statis-

tic correlation estimation. The linear regression fits the obser-

vations and gives parameters of the positive correlation. The

strength of correlation becomes higher with a lower spatial

granularity (resolution), so it is a trade-off to choose a better

spatial resolution or higher correlation. The papers [18], [19]

worked on correlation modelling. Moreover, the work [20]

studied trade-off with different spatial granularity.

The event detection is to retrieve necessary user-behaviour

information of a planned public occasion, such as schedule

and attendance. The attendees glance at events from online

events calendar and social networks in advance, which make

the occurrence of events detectable [21], [22]. The general

process is to model the daily seasonal trend as regularity

and detect the event as outliers. Such outliers are classi-

fied into the category of irregularity (anomaly). For example,
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FIGURE 1. The detailed framework of proposed algorithm.

the work [22] proposed a Twitter-based festival detection

algorithm using the boxplot. Also, the Twitter-based event

detection is introduced in [21], [23], [24].

However, these techniques have not been coupled with the

proactive optimisation to enable the network with context-

awareness. This work aims to use a 3-stage data-analytics

on Twitter data to detect the events in a real-world urban

area associated with hotspots and correlate the social network

traffic to cellular traffic, which is introduced in detail in the

next sections.

III. THE FRAMEWORK OF CONTEXT-AWARE PROACTIVE

5G LOAD BALANCING FOR URBAN AREAS

The framework is visualised in Fig. 1 of integrating social-

network data analytics into the proactive load balancing for

gaining the desired context-awareness. This framework owns

two functional blocks, data sources and context-aware proac-

tive network optimisation. The optimisation block is divided

into four minor functions: social data collection, social data

filtering, 3-stage data analytics, and proactive optimisation.

The first two functions (collection and filtering) are common

in the related works, such as in the event-based network

managements [24] and the context-aware load sharing [10].

The core contributions of this work are the functions of the

3-stage data analytics and proactive optimisation.

A. SOCIAL DATA COLLECTION

This function is designed to capture raw Tweets from online

platforms and pre-process them to produce a formatted

dataset.

1) Capture: There are three main ways to capture raw

social network data. The first way is crawling through

the Application Programming Interface (API), such as

the Twitter search and stream API. This method is

economical in implementation but facing difficulties in

efficiently gaining a complete dataset. The second way

is collecting from volunteers to have a complete dataset

but time-consuming. The third way is to cooperate

with the service providers to obtain the privacy-free

datasets. We use the third way to capture 0.6 mil-

lion geo-tagged Tweets for the Greater London and

surrounding suburbs area for two weeks (time resolu-

tion in seconds).

2) Parse: The raw data have many fields which need to be

parsed into the required fields. In this paper, we select

the geolocations, time, and Tweets text as the fields to

be analysed.

3) Format: The parsed data fields need to be formatted and

stored as the proper file that can be fed to data-analytics

programs.We choose to use the Comma-SeparatedVal-

ues (CSV) format which is well supported by Python,

Matlab, and Excel.

The formatted data are ready-to-use and contain the whole

information in the required fields. To pre-process them for

particular research objectives, a filter is required.

B. SOCIAL DATA FILTERING

The filter is designed by researchers to reduce irrelevant data

from the dataset and further provide a numeric expression of

the data in dimensions with interests.

1) Coordinates: This process is to filter the formatted

data according to the region of interests. For exam-

ple, the raw Tweets in this research come from the

Greater London and surrounding suburbs, but our

interest is in the urban region. Therefore, the coordi-

nates (bottom left: [51.494417, −0.182733], top right:

[51.541160,−0.057710]) are selected to filtered the

Tweets in the region for research. The Tweets loca-

tions in the first week are visualised on the map

in Fig. 2a. It shows that the spatial distribution varies

with different density.

2) Numeric: A numeric expression is to statistically count

the density of data in different dimensions, such as

using the histogram to describe the discrete Tweets

density on the map. Fig 2b provides a continuous den-

sity map using Kernel Density Estimation (KDE). The

density map shows varying density with ‘peak’ and

‘valley’. In detail, the ‘peak’ indicates a high-traffic

region with the ‘valley’ as the boundary.

After generating the numeric expressions, the pre-process

is finished. The data are ready to be fed to the 3-stage

data-analytics.

VOLUME 8, 2020 8407
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FIGURE 2. The Tweets locations (15/02/2016-21/02/2016) are plotted on map and their density is described by Kernel Density Estimation (KDE).
The map has corner coordinates (bottom left: [51.494417, −0.182733], top right: [51.541160,−0.057710]).

C. 3-STAGE DATA ANALYTICS

This function analyses the Twitter data by machine learning

and statistic methods, such as using unsupervised learning

and box-plot. They are used to build a spatial-temporal traffic

pattern in state 1 and 2. The final stage is detecting the

hotspots changes in anomaly (events) based on the modelled

traffic pattern. (see Section IV for the detailed procedures)

1) Stage 1 - Spatial Traffic Pattern: As stated in [3],

the traffic variations usually followed the regular

behaviours of users day by day, so it became the access

point for modelling traffic distribution and variation

rules which will allow a better prediction of where

diverse traffic volumes are requested by users. For

example in Fig 2b, each ‘peak’ is a high-traffic region

with the ‘valley’ as the boundary. It is naturally to

partition the region into several traffic-based regions

and model the traffic in different Region of Interest

(RoI).

2) Stage 2 - Hotspots: In each RoI, the traffic distribution

is also skewed. Some spots have high traffic demands,

so they are named traffic hotspots. The histogram is

an efficient way to find the hotspots in each RoI.

However, the distribution of hotspots is not constant.

The anomaly conditions also exist, such as during

events.

3) Stage 3 -Anomaly detection: This stage is to detect

the time and location of the irregularities (anomaly

conditions) to provide a new ranking of the hotspots

in the RoI with an event happening. The popular public

events can influence the spatial traffic pattern with new

temporal-spatial hotspots emerging [10] resulting in a

dramatic rise of dropped calls [24].

Such forecasting of new hotspots can be an alert that the cells

associated with the hotspots require optimisation. The cell

margins are estimated to be proactively set according to the

predicted cell load.

D. PROACTIVE OPTIMISATION

This function provides a framework of coupling the predicted

hotspots with the network model to forecast network

performance following the fuzzy rules of proactive load

balancing. An optimisation of the proactive load balancing

strategy is provided to estimate the best activation time.

(see Section V for the detailed procedures and an example

of implementation)

1) Irregularity Check: Anomaly detection may cause

wrong alerts because of scarce data or other reasons.

The network requires a mechanism for checking if

the network indeed operates in the way of predic-

tions. In that case, the system will continue monitoring

the network performance and reserving the choice to

switch back to traditional optimisation.When the check

is passed, a network model is required to forecast net-

work performance.

2) Network Model: This model simulates the network

operation according to the context-awareness. It is

needed to quantify the profit and the cost of future

optimisation. Proactive decisions are made if the profit

is acceptable.

3) Decision Maker: This function aims to associate the

hotspots with cellular network optimisation. The cells

adjust their margins to prepare for the upcoming traf-

fic. Finally, such a simulated performance provides a

suggestion if the current parameter configuration is

beneficial. The profit also depends on the activation

time.

4) Activation Time: The proactive optimisation requires

to decide the best time to be activated. It is better

to start the optimisation earlier, but more errors will

occur. Therefore, a design for balancing the trade-off

is required.

The description of the framework ends here. The next

section starts the detailed explanation of the 3-stage

data-analytics for forecasting the events hotspots.

IV. 3-STAGE DATA-ANALYTICS FOR TRAFFIC PATTERN

AND EVENT HOTSPOTS DETECTION

On the one hand, the traffic pattern includes regular user

demands distribution which owns natural convenience for

prediction. On the other hand, the anomaly in traffic pattern
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FIGURE 3. The process of using DBSCAN to partition the region into
clusters according Tweets density.

(e.g., traffic burst during popular events) also exists so that the

system needs to alert the changes in advance. This section

proposes the process of generating traffic pattern and the

forecasting of hotspots’ changes.

A. STAGE 1: SPATIAL TRAFFIC PATTERN

The RoIs are used to divide the urban area into small regions.

Each region has a high-density ‘peak’ which represents

the aggregation of demands in the urban area. To config-

ure the RoIs, we select an unsupervised learning algorithm,

Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) [25]. This clustering algorithm groups together

the data at ‘peaks’ (with many nearby neighbours) and marks

the data in ‘valley’ (with nearest neighbours far away) as

noise.

We present a brief process of DBSCAN in Fig. 3 explained

as the following steps:

1) In the first step, each point has a range with a radius

ε. In the ε radius circle, the core points in clusters own

neighbours ≥ minPoints (which is 2 in this example).

The edge points hold neighbours but < minPoints.

Also, the noise has no neighbour in the circle.

2) Then, the DBSCAN ignores the noise and clusters the

data points into different groups (dash line circles).

3) Finally, we calculate the centroid which is the mean

of all the locations of points in the cluster. Moreover,

the Voronoi diagram visualises the boundaries of dif-

ferent clusters.

The above data analytic is tested with the London Twitter

data. We denote the ‘peaks’ as the areas with Tweets densities

that are larger than the average density. The map is approxi-

mately a rectangle with ignoring the Earth curvature. In that

case, the average density is the total number of Tweets over

the map area, so the minPoints = 5 and ε = 4.90 × 10−4.

Under this circumstance, the result of DBSCAN is shown

in Fig 4. It divided the urban area into 541 clusters (RoIs)

according to Tweets density. The dense cells usually located

at commercial areas and tourist attractions, such as Westmin-

ster and the British Museum.

B. STAGE 2: HOTSPOTS

In each RoI, the Tweets have a skewed distribution which will

generate some hotspots. The histogram counts Tweets in the

pixels of each RoI and products a heatmap with highlight-

ing the hotspots. For example, in the RoI consisting of the

Leicester Square and Trafalgar Square (RoI 13 in the spatial

traffic pattern as shown in Fig 5), the pixel of Trafalgar Square

(yellow hotspot) is more crowded than its neighbours.

FIGURE 4. The Tweets density-based clusters on map. Corners
coordinates (bottom left: [51.494417, −0.182733], top right:
[51.541160,−0.057710]).

FIGURE 5. The usual aggregation of users in each day generates some
hotspots that users like to stay and use the network. For example, in the
region of Trafalgar Square and Leicester Square, the first one attracts
more people. It is indicated by the higher number of Tweets in the
histogram.

The Fig. 5a displays the daily from 15/02/2016 to 21/02/2016.

It shows that the hotspots are commonly distributed around
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FIGURE 6. The process of building regularity and detecting network anomaly (irregularity).

a coordinate (−0.128, 51.508) in the seven days, and

the hotspots point to Trafalgar Square. This phenomenon

becomesmore evident in the weekly hotspot pattern (Fig. 5b).

In consequence, the pixel becomes hotspot if it is regularly

hot in an extended period.

However, the hotspots will change along with the

occurrence of social events because the users will aggregate

at a new location. The network self-optimisation requires a

long time to converge for balancing the changed distribu-

tion of load. To alleviate this problem, the event detection

(or the network irregularity/anomaly detection) is required to

pre-configure the network before the changes of the hotspots.

C. STAGE 3: NETWORK ANOMALY DETECTION

There are two main steps of anomaly detection:

• Model the regularity (trend and seasonality) of the

training data set.

• Detect the anomaly by finding the outliers in the

modelled regularity.

In this work, we use the temporal traffic to model the

regularity and detect the outliers. Fig. 6 illustrates the process.

The detailed steps are shown as follow:

1) Firstly, the spatial traffic pattern has used the DBSCAN

to divide the region into several RoIs. We denote the

number of Tweets N ⊂ R in the region K ⊂ R
2, then

let n ∈ N and the clusters (RoI) c ∈ K, so the number

of Tweets in a RoI c in different time intervals t ⊂ Z+

is nct (Tweets per hour).

2) Then, for each RoI, a line chart of temporally changing

traffic and its corresponding box-plot can be generated.

Each box-plot offers a box of the majority and a max-

imum threshold (ncmax). Such a threshold describes the

regular traffic range that regular social network traffic

is lower than it.

3) Finally, in the testing data set, if current Tweets per

hour (nct ) grows higher than the threshold (n
c
max). This

hour will be regarded as the start of an event in this

RoI. Then the algorithm automatically highlights the

irregular outliers and records the details of these out-

liers, including the time period t , subarea (RoI) (c),

count (nct ), threshold (n
c
max), and term frequency (wct ).

The term frequency refers to the five most-appeared

key works in Tweets.

The number of Tweets nct is an indicator of the net-

work traffic. As indicated in [19], the estimated Down-Link

(DL) traffic load r̂DL in cluster c in time interval t can be

described as

r̂ctDL = 10bDL (
nct

τ
)aDL τ (1)

where [aDL = 0.88 kb/Tweet bDL = 2.37 kbps] and τ is

ratio between time interval and one second (e.g, in this work

τ = 3600 s/hour). Note that, r̂DL is service-neutral that it

represents the generated traffic from all services. Accord-

ing to this correlation, the burst of Tweets’ traffic during

an event represents an irregular increase of network traffic.

In this paper, nct is selected as the indicator of network traffic

changes and the occurrence of events.

We collected the advertisements of four events in London

from the online event calendar as shown in Table 1. The

information from online event calendars has been published

at least four days before the events happen. We match the

published event location with the spatial traffic pattern to get

which RoI the event belongs. Then, the 3-stage data-analytics

method is applied to the London dataset to detect the network

anomaly.

The results of anomaly detection are shown in Table 2.

It displayed the irregular time when the Tweets per hour were

higher than the cluster threshold. For example, the first event

‘GrimsbyWorld Premiere’ caused network traffic irregularity

from 18:00 until 23:00, and the traffic peaks arrived at 19:00

(16 Tweets/hour) and 21:00 (14 Tweets/hour). The third event

‘Craft Beer Rising’ event attracted high traffic demand from

13:00 to 23:00 on 26/02/2016. We find that the start time of

Tweets irregularity does not precisely match the start time on

the event calendar. It is because users have different arriving

time and network usage behaviours. As the number of Tweets
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TABLE 1. The details of events form the online calendars. We allocate the nearest cluster to each event location according to the distance to each centroid.

TABLE 2. The results of event (irregularity) detection.

is positively correlated to cellular traffic, the Tweets irregu-

larity becomes the alarm for upcoming high traffic demands.

Furthermore, the detected most-frequently used words match

the topic keywords in the event calendar.

According to the results of detection, we can forecast the

changes of hotspots by highlighting the event location as

the new high-traffic region. For example, Fig. 7 (a) and (c)

present the hotspots of regularity and on the ‘irregular’ day of

the first event ‘Grimsby World Premiere’. The traffic ranking

of the pixels has changed and the hottest pixel altered from the

Trafalgar Square to the Leicester Square. In our algorithm,

once the outlier is detected, the event-detection algorithm

automatically allocates the event pixel to be the first position

in the hotspots ranking (as visualised in Fig. 7 (b)). This fore-

casting pattern alerts the network of upcoming high traffic

demand at least one hour ahead. Besides, the traffic pattern

changed back to regular conditions after the end of the ‘World

Premiere’ (Fig. 7 (d)).

The 3-stage data-analytics also determine the relationship

between cells and hotspots according to the hotspots locations

and ranks. For example, the hotspots can be in the high-load

cell or on the cell edge. We need the fuzzy rules to decide

the strategy for each condition. Therefore, we summarise the

corresponding relations as follows:

• The cell is predicted to be high-load with event hotspot.

(output 1)

• The cell is predicted to be the nearest neighbouring cell

to the event hotspot. (output 1)

• The cell is predicted to be the neighbouring cell to the

event hotspot but not the nearest one. (output 0)

• Other conditions. (output -1)

In the first and second conditions, the event hotspots

influence the cells most so that they are the cells to be

optimised (output 1). The output 0 indicates that the cells

are still close to the event hotspot but not directly involved.

Moreover, the output 0 denotes that the cells become far from

the event hotspot. The next section will provide the strategy of

associating proactive optimisation focusing on the predicted

hotspots.
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FIGURE 7. The actual and predicted traffic patterns before and after the event. We transfer the Tweets distribution in cluster 13 into a histogram that
describes the Tweets occurrence in each pixel. The pixel with more Tweets is regarded as a hotspot. The regular hotspot is usually attractive for
users. In contrast, the irregular hotspot brings a sudden burst of Tweets and disappears after the event.

V. PROACTIVE OPTIMISATION WITH

CONTEXT-AWARENESS: LOAD

BALANCING USE CASE

A. OPTIMISATION FRAMEWORK

The framework in Fig. 8 optimises network configurations

based on the forecasting of hotspots from the 3-stage data-

analytics. It consists of four major functions: irregularity

check, network model, decision maker, and activation time.

The following parts will introduce them in detail.

1) IRREGULARITY CHECK

The irregularity check function takes the responsibility of

checking and avoiding the following conditions:

• Errors of events detection.

• The network irregularity lasts for a short duration.

• The detected events do not come with the expected high

traffic increase.

In that case, it needs two checking items. Firstly, the web-

keywords check will compare the term frequency with the

topic keywords on the event calendar. Secondly, for the

involved BS itself, the cell traffic should be estimated and

justified that the cell indeed has a load increase caused by

the events. Accordingly, this function aims to minimise the

probability of wrong alarms.

2) NETWORK MODEL

The network model is required to forecast the network perfor-

mance according to the forecasting of network context. As the

context comes from real-world data-analytics, the network

model should satisfy the abstract requirements of the actual

network settings. For example, the filtered area in London is

an urban area, so the small cell density (dense deployment) is

80 cells/km2 [3]. There are several requirements to abstract

the network model from the dataset:

• Urban scenario: Different scenarios decide the

parameter setting of networks, such as the BS density

and frequency band. The dataset in this work is from

London, an urban area, so we consider an ultra-dense
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FIGURE 8. The framework of proactively making decisions of load
balancing based on the urban-area anomaly detection and forecasting
the hotspots’ changes.

heterogeneous network model (downlink) in [3] associ-

ated with orthogonal frequency division multiple access

(OFDMA). The network consists B BSs and N subcar-

riers, i ∈ B n ∈ N , and the region served by all BSs is

K ⊂ R
2, the cell area x ∈ K.

• Time scale: The time scale varies in different scenarios

from seconds to hours, so it is required to determine

a proper scale to suit both 3-stage data-analytics and

network optimisation. In the simulation, there does not

exist an exact time scale to describe the fluctuation of

traffic, so a discrete time normalisation is used. In this

study, the time is normalised to integer units, and we

perform static simulation of network performance at

different time snapshots t ∈ Z
+ and compare the perfor-

mance between the conditions with and without context-

awareness. Therefore, the transmit power and channel

gain of BS i to UE in x using channel n at time t are

Pni (x, t) and g
n
i (x, t).

• Channel model: Such a mathematical representation

describes the effect that wireless signals propagate

through a wireless channel. It is an essential element in

modelling the network. In this study, the channel model

does not influence the comparison between with and

without the context-awareness. Therefore, the path loss

channel model is free-space for computational conve-

nience, so the channel gain gni (x, t) = GtGr (
c

4πdi(x,t)f
)2,

where [Gt Gr ] are values of transmit and receive

antenna gain, [c f ] are the speed of light and frequency,

and di(x, t) is the distance betweenUE andBS i at time t .

• UE association: The load balancing requires to change

the UE association with different BSs for transferring

the extra load to idle cells. In this work, we bring channel

association variable ρni (x, t) and BS association variable

uni (x, t) in the model, if the value is 1 which means the

UE is associated with channel n or BS i at time t . The

power of noise is σ 2(x, t).

Based on the above parameter settings, the

signal-to-interference-plus-noise ratio (SINR):

γ ni (x, t) =
Pni (x, t)g

n
i (x, t)ρ

n
i (x, t)∑

j∈B,j 6=i

∫
K

Pnj (y, t)g
n
j (y, t)dy+ σ 2(x, t)

(2)

Then, according to Shannon’s theory, the transmit rate on

subscriber n is Rni (x, t) = Wlog2(1 + γ ni (x, t)), where W is

the channel bandwidth. And the average data rate for all the

UEs in BS i is

R̄i(x, t) =

N∑
n=1

Rni (x, t)u
n
i (x, t)

N∑
n=1

uni (x, t)

, ∀i, x, t (3)

The goal of load balancing is to handoff extra UEs

(with worse data rate) to their nearest neighbour BS. In other

words, this process is changing current BS association vari-

able uni (x, t) = 1 → 0 and the nearest neighbour BS

association unj (y, t) = 0 → 1. In that case, the uni (x, t) value

determination is the next aim.

As the edge UEs naturally have higher interference

(lower SINR) and occupy channels, they are the objects to

be unloaded in the predicted high-load cell (BS i). To do this,

we consider setting SINR marginMargin(i, j) to preserve the

UEs in BS i with better SINR when γ ni (x, t) > Margin(i, j),

and handoff the UEs with worse performance to the nearest

neighbour BS j if γ ni (x, t) < Margin(j, i). Moreover, the mar-

gins should be subjected to Margin(i, j) > Margin(j, i) for

avoiding ping-pong effect.

The above network model can simulate the network

performance but require to decide the strategy of load bal-

ancing according to the context-awareness. The next part

introduces this process.

3) DECISION MAKER

This function follows fuzzy rules which are also used in [10].

According to the 3-stage data-analytics, the decision maker

will decide the load balancing strategy (see Fig. 8 for the table

of fuzzy rules):
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• 1: Apply newmargin value to handover some active UEs

from the high-load cell to the idle cell nearest to the event

hotspot.

• 0: No variation will be applied to the current margin.

• −1: Cancel the current margin.

The simulation based on the above strategy results in the

averageUE data rate R̄i(x, t) with andwithout load balancing,

and visualises the advantages when proactively trigger the

optimisation (at t1). Moreover, the passive load balancing

starts at t2, t1 < t2 because the proactive algorithm predicts

the peak of traffic while the passive algorithm reacts to it.

Therefore, it is important to optimise the strategy to determine

an activation time t1 with maximum profit.

4) ACTIVATION TIME

The activation time of proactive optimisation influences

the profit improvement because the forecasting will have

more errors if the optimisation needs to be activated earlier.

However, if the network is not configured earlier for the

upcoming traffic changes, it will need some time to recover

and have a poor performance period like in [10]. To bal-

ance the trade-off between the prediction errors and the poor

performance period, a mechanism needs to be designed for

particular scenarios. We provide an example in the next part.

B. AN EXAMPLE OF PROACTIVE LOAD BALANCING

IN THE LONDON URBAN SCENARIO

In the simulation, there is a 500 m × 500 m square covered

by B cells generated through Poisson Point Process. The BSs

have a medium-density deployment λ = 40 cells/km2 in

an area with radius R = 250 m. We assume that one event

happens in a cell (which will have a high load in future)

located close to the centre of the area. The event will bring

a growing hotspot with the number of users increasing from

t1 (10% low load) to t2 (high load) as a Sigmoid function

in an area with a 100 m radius. Therefore, the number

of UEs in the event hotspot at t1 = 10 is 18 (10% ×

6000 UE/km2 × 0.01 km2 × π ), and at t2 = 70 it grows

to 377 (12000 UE/km2 × 0.01 km2 × π ). The event hotspot

is generated according to a normal distribution with a mean

value µ = 0.01 and a standard deviation σ = 0.2. There

is also a regular hotspot (e.g., commercial area) close to the

event hotspot. This hotspot has a 50 m radius and a medium

load of UE density, so it has 78 UEs generated from another

normal distribution (µ = 0.01, σ = 0.1). The detailed

simulation parameters of communication environment setting

(such as SINR, capacity, power, interference, and noise et al.)

are shown in Table 3.

We perform a Monte Carlo simulation through repeating

random sampling for 100 times. All users are assumed to

have equal demands, and the channel allocation can satisfy

them equally with allocating proper resource blocks. In that

case, when the BSs own equivalent resource, the associated

users with fewer competitors will experience owning more

resources and better networks. Moreover, both the context-

aware and traditional load balancing schemes use the same

controllers to ensure that the convergence ability is the same.

TABLE 3. Simulation Parameters.

The Fig. 9a,9b,9c proposed the cell layout (blue triangles

are BSs) with user distributions (red dots) at the beginning

time (t = 1) as well as the end time (t = 100). The cell

margins are visualised through using the Voronoi diagram.

They shrank in the event cells (nested blue triangles) and

moved as shown as dash lines. The corresponding network

performances are displayed (in the bottom line charts sepa-

rately) as average capacity (data rate) changing along with

time. For the first example, the network performance drops

to around 25 kb/s at t = 50, and it stays in the condition

with poor performance if there is no load balancing algorithm

(blue dash line). The yellow line indicates the condition with

load balancing, but it is reactive to the event (cold-start with

no prior knowledge about traffic increase). We denote it as a

passive (without context-awareness) load balancing because

they are not able to absorb the burst of traffic. It starts at

t = 60 and finally converges to around 40 kb/s but causes

a poor-performance period from t = 40 to t = 80. That

provides an evaluation of the negative effect of the cold-start

problem. In contrast, with forecasting upcoming events traf-

fic, the proactive load balancing (red triangle line) experience

almost no poor-performance as it starts at t = 30 (before

the traffic peak arrives). After the Monte Carlo simulation,

Fig. 9d displays the average capacity. The network indeed

experiences low capacity from t = 40 to t = 80, which is

combined with the time of reaction and the time of conver-

gence. Such a cold start problem is not avoidable unless it
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FIGURE 9. The layouts and results of capacity comparison between proactive (with context-awareness) and passive (without
context-awareness) optimisation. There are three random examples in the 100 loops.

is benefited by context-awareness. In the above simulation,

the activation time of the proactive optimisation is assumed

according to our experience. The next problem is to optimise

the strategy in this area by automatically determining the best

start (activation) time.

The activation time of load balancing determines the width

of the poor-performance period which looks like a ‘pit’ dug

by the burst traffic (see the yellow crosses lower than red

triangles in Fig. 9d). Moreover, the depth of ‘pit’ is the

difference of capacity between with and without optimisa-

tion. We manually trigger the load balancing at each discrete

time from t = 0 to t = 80 and display the change of

‘pit’ width and depth in Fig. 10. As shown by the blue

dot line, the bottom of the ‘pit’ drops fast after it appears

(13.2 kb/s at t = 29) until approximately 7.36 kb/s at t =

60. Next, the width of poor-performance (black cross line)

shows that with different activation times, the degradation

‘pit’ firstly does not occur (from t = 0 to t = 28), then

increases non-linearly (from t = 29 to t = 38), finally

increases linearly (from t = 39 to t = 80). The best time

to trigger the proactive load balancing is at the end of the

‘first period’ (t = 28) because it has no poor-performance

‘pit’ while reserving the maximum time for the prediction

calculation. Therefore, it is valuable to find this time point.

FIGURE 10. This result indicates how wide and deep the poor
performance ‘pit’ is when we choose different trigger times.

However, currently, we have to simulate all the discrete time

points to visualise the phenomenon. It is inefficient and

impossible in real-world conditions. In that case, we pro-

pose a feasible design to take advantage of the ‘constant-

nonlinear-linear’ characteristic for reducing the complexity

of simulation as much as possible.
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FIGURE 11. The process of modelling the poor performance width for
approaching the best trigger time for proactive load balancing.

The design flowchart of approximating the best trigger

time is shown in Fig. 11. It follows the following steps:

• Choose primary points: this step chooses two time points

at the very beginning tb1 and tb2, then simulates two time

points at the end te1 and te2.

• Linear polynomial fitting: The corresponding width

value for tb1 and tb2 is zero, and the te1 and te2 will gen-

erate a linear model through linear polynomial fitting.

• Set inner edge points: the points tb2 and te1 are currently

the closest points to the best triggering time, they are

denoted as inner edge points.

• Generate equal division: the period between the two

inner edge points is equally divided into nd segments

that there are nd − 1 new time points.

• Classify constant, linear, and nonlinear: the system sim-

ulates the ‘pit’ width of these three time points, then clas-

sifies them to constant (0) or linear model. Otherwise,

the time points belong to the non-linear part. We need to

count the nonlinear time points nnonlinear .

• Check number of nonlinear points: we manually set a

threshold θnonlinear to check if there are enough nonlinear

points for quadratic polynomial fitting (nnonlinear ≥

θnonlinear ).

• If no (nnonlinear < θnonlinear ): The system needs more

iterations by setting new inner edge point, classify-

ing, and checking nonlinear again. This process will

approach the best triggering time.

• If yes (nnonlinear ≥ θnonlinear ): the system will gen-

erate piecewise function (constant, nonlinear function,

linear function). The nonlinear part is modelled by the

quadratic polynomial fitting.

• Finally, the best time for activating proactive optimisa-

tion is at the edge between the constant function and

nonlinear function.

FIGURE 12. The results of applying the design to model the
poor-performance width and approach the best time for activating
proactive load balancing. The time point t = 27 is the edge between the
constant function and the nonlinear function, so it is the expected
triggering time.

The above design is tested through setting tb1 = 10, tb2 =

20, te1 = 70, te2 = 80, nd = 4, and θnonlinear = 3.We present

the result in Fig. 12. The line indicates the generated piece-

wise function, and the thirteen crosses represent the total

simulation attempts. This result concludes that the design

is feasible to find the best activation time of proactive load

balancing (t = 27 in the current case study) with reducing

the simulation times form 80 to 13.

VI. CONCLUSION

In general, this paper has three main contributions, the first

one is designing the context-aware module about event

(irregularity) detection associated with hotspots in urban

regions, the second contribution is coupling the context-

awareness and the proactive load balancing in urban regions,

and the third one is optimising the proactive schemes about

forecasting the best activation time. Our design for approach-

ing the best triggering time satisfies the requirements of

reducing time complexity.

Moreover, the proposed frameworks benefit not only the

proactive load balancing but also other optimisations, such

as proactive caching and interference management. These

optimisation algorithms also require a traffic pattern for

resource allocation. In the future, prediction granularity (the

distinguishable scale of detail in the context) and prediction

error should be addressed. In particular, different optimisa-

tions require various granularity (e.g., the small-cell level for

deployment, and inter-cell level for load balancing). Also,

the privacy-free data set takes a little part in the overall data,

so using only part of them can lose dimensions and generate

detection errors. Even though private data faces sensitive

privacy problems, it is still necessary to find a privacy-free

way to improve context accuracy by using this data.
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