
This is a repository copy of Analysing the robustness of evolutionary algorithms to noise :
refined runtime bounds and an example where noise is beneficial.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/156911/

Version: Published Version

Article:

Sudholt, D. orcid.org/0000-0001-6020-1646 (2021) Analysing the robustness of
evolutionary algorithms to noise : refined runtime bounds and an example where noise is
beneficial. Algorithmica, 83 (4). pp. 976-1011. ISSN 0178-4617

https://doi.org/10.1007/s00453-020-00671-0

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Vol.:(0123456789)

Algorithmica

https://doi.org/10.1007/s00453-020-00671-0

1 3

Analysing the Robustness of Evolutionary Algorithms
to Noise: Refined Runtime Bounds and an Example Where
Noise is Beneficial

Dirk Sudholt
1

Received: 3 December 2018 / Accepted: 7 January 2020

© The Author(s) 2020

Abstract

We analyse the performance of well-known evolutionary algorithms, the (1 + 1) EA

and the (1 + �) EA, in the prior noise model, where in each fitness evaluation

the search point is altered before the evaluation with probability p. We present

refined results for the expected optimisation time of these algorithms on the func-

tion LEADINGONES, where bits have to be optimised in sequence. Previous work

showed that the (1 + 1) EA on LEADINGONES runs in polynomial expected time if

p = O((log n)∕n2) and needs superpolynomial expected time if p = �((log n)∕n) ,

leaving a huge gap for which no results were known. We close this gap by showing

that the expected optimisation time is �(n2) ⋅ exp(�(min{pn
2, n})) for all p ≤ 1∕2 ,

allowing for the first time to locate the threshold between polynomial and superpoly-

nomial expected times at p = �((log n)∕n
2) . Hence the (1 + 1) EA on LEADINGONES

is surprisingly sensitive to noise. We also show that offspring populations of size

� ≥ 3.42 log n can effectively deal with much higher noise than known before.

Finally, we present an example of a rugged landscape where prior noise can help to

escape from local optima by blurring the landscape and allowing a hill climber to

see the underlying gradient. We prove that in this particular setting noise can have a

highly beneficial effect on performance.

Keywords Evolutionary algorithms · Noisy optimisation · Robustness · Runtime

analysis · Theory · Uncertainty

 * Dirk Sudholt

 d.sudholt@sheffield.ac.uk

1 University of Sheffield, Sheffield S1 4DP, UK

http://orcid.org/0000-0001-6020-1646
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00671-0&domain=pdf

 Algorithmica

1 3

1 Introduction

Many real-world problems suffer from sources of uncertainty, such as noise in the

fitness evaluation, changing constraints, or dynamic changes to the fitness func-

tion [30]. Evolutionary algorithms are well suited for dealing with these challenges

due to their use of a population, and because they can often recover quickly from

setbacks resulting from noise or dynamic changes. They have proven to work well in

many applications to combinatorial problems [6].

However, our theoretical understanding of how evolutionary algorithms deal with

noise is limited. It is often not clear how noise affects the performance of evolution-

ary algorithms, and how much noise an evolutionary algorithm can cope with. For

evolution strategies in continuous optimisation there exists a rich body of work (see,

e.g. [4, 29, 36] and the references therein), but there are only few rigorous theo-

retical analyses on the performance of noisy evolutionary optimisation in discrete

spaces.

The first runtime analysis for discrete evolutionary algorithms in a noisy setting

was given by Droste [18] in the context of a simple algorithm called (1 + 1) EA on

the well-known function ONEMAX (x) ∶=
∑n

i=1
x

i
 , which simply counts the number

of bits set to 1. He considered a setting now known as one-bit prior noise, where

with probability p a uniformly random bit is flipped before evaluation. Hence,

instead of returning the fitness of the evaluated search point, the fitness function

may return the fitness of a random Hamming neighbour. He proved that, when

p = O((log n)∕n) the (1 + 1) EA can still optimise ONEMAX efficiently. But when

p = �((log n)∕n) the expected optimisation time becomes superpolynomial.

Gießen and Kötzing [25] studied a more general class of algorithms, including

the (1 + 1) EA, the (1 + �) EA that generates � new solutions (offspring) in paral-

lel and picks the best one, and the (� + 1) EA that keeps a population of � search

points. They considered prior noise and posterior noise, where posterior noise

means that noise is added to the fitness value, and presented an elegant approach

that gives results in both noise models. They showed that the (1 + 1) EA on ONEMAX

runs in expected time O(n log n) if p = O(1∕n) , polynomial time if p = O((log n)∕n) ,

and superpolynomial time if p = �((log n)∕n) ∩ 1 − �((log n)∕n) . The same results

hold in the bit-wise noise model, where each bit is flipped independently before

evaluation with probability p/n. They also considered the function LEADINGONES

(x) ∶=
∑n

i=1

∏i

j=1
xj that counts the length of the longest prefix that only contains

bits set to 1. For LEADINGONES they show a time bound of O(n2) if p ≤ 1∕(6en
2) and

an exponential lower bound if p = 1∕2.

The authors also found that using parent populations in a (� + 1) EA can drasti-

cally improve robustness as survival selection removes one of the worst individuals,

and a population increases the chances that a low-fitness individual will be correctly

identified as having low fitness. Offspring populations also increase robustness as

they amplify the probability that a clone of the current search point will be evalu-

ated truthfully, thus lowering the chance of losing the best fitness. For LEADINGONES

they showed a time bound for the (1 + �) EA of O(�n + n
2) if p ≤ 0.028∕n and

72 log n ≤ � = o(n) . Note that their bound simplifies to O(n2) since � = o(n).

1 3

Algorithmica

Dang and Lehre [9] gave general results for prior and posterior noise in non-

elitist evolutionary algorithms, that is, evolutionary algorithms where the best fit-

ness in the population may decrease. The same authors [10] also considered noise

resulting from only partially evaluating search points.

In terms of posterior noise, Sudholt and Thyssen [56] considered the perfor-

mance of a simple ant colony optimiser (ACO) for computing shortest paths when

path lengths are obscured by positive posterior noise modelling traffic delays.

They showed that noise can make the ants risk-seeking, tricking them onto a

suboptimal path and leading to exponential optimisation times. Doerr et al. [14]

showed that this problem can be avoided if the parent is reevaluated in each itera-

tion. Feldmann and Kötzing [20] further analysed the performance of fitness-pro-

portional updates. Friedrich et al. [22] showed that the compact Genetic Algo-

rithm and ACO [21] are both efficient under extreme Gaussian posterior noise,

while a simple (� + 1) EA is not.

Prugel-Bennett et al. [46] considered a population-based algorithm using only

selection and crossover, and showed that the algorithm can optimise ONEMAX with a

large amount of noise. Qian et al. [51] showed that noise can be handled efficiently

by combining reevaluation and threshold selection. Akimoto et al. [1] as well as

Qian et al. [50] showed that resampling can essentially eliminate the effect of noise.

Qian et al. [48] studied the performance of the (1 + 1) EA on ONEMAX and

 LEADINGONES for a more general prior noise model with parameters (p, q): with

probability p the search point is altered by flipping each bit with probability q. They

studied two special cases: (p, 1/n) meaning that with probability p a standard bit

mutation is performed before evaluation and (1, q), which is bit-wise noise with

parameter q. For LEADINGONES they improve results from [25], showing that the

(1 + 1) EA runs in polynomial expected time if p = O((log n)∕n2) and that it runs in

superpolynomial time if p = �((log n)∕n) . This holds for one-bit noise with proba-

bility p, the (p, 1/n) model and bit-wise noise with probability p/n (see Table 1). For

bit-wise noise (1, q) with parameter q = �(1∕n) the expected time is exponential.

Very recently, Bian et al. [5] considered the general noise model (p, q) for ONE-

MAX and LEADINGONES and showed that for LEADINGONES the (1 + 1) EA needs poly-

nomial expected time if p = O((log n)∕n2) or pq = O((log n)∕n3) . It needs superpol-

ynomial time if p = �((log n)∕n) and pq = �((log n)∕n
2).

In this work we improve previous results for prior noise on the function

 LEADINGONES. Recall that LEADINGONES (x) ∶=
∑n

i=1

∏i

j=1
xj counts the number of

leading ones in the bit string. This function is of particular interest as it represents

a problem where decisions have to be made in sequence in order to reach the opti-

mum, building up the components of a global optimum step by step. In the case of

LEADINGONES, this is a prefix of ones that is being built up. Problems with similar

features are found in combinatorial optimisation, for instances as worst-case exam-

ples for finding shortest paths [3, Sect. 4]. Multiobjective variants like LOTZ are

popular example functions in the theory of evolutionary multiobjective optimisa-

tion [7, 16, 23, 24, 32, 38, 47].

Disruptive mutations can destroy a partial solution, leading to a large fitness loss,

such that the algorithm is thrown back and may need a long time to recover. As

such, LEADINGONES is a prime example of a problem that is very susceptible to noise.

A

lg
o

rith
m

ica

1
 3

Table 1 Overview of results on the expected optimisation time on LEADINGONES with prior noise

krowsihTkrowsuoiverPgnitteS

(1+1) EA,
one-bit noise p

O(n2) if p ≤ 1/(6en2) [25, Cor. 18]


















































































Θ(n2) · eΘ(min{pn2,n}) if p ≤ 1/2

2Ω(n) if p = 1/2 [25, Thm. 20]
polynomial if p = O((log n)/n2) [48, Thm. 14]
superpolynomial if p = ω((log n)/n) ∩ o(1) [48, Thm. 14]
exponential if p = Ω(1) [48, Thm. 14]

(1+1) EA,
bit-wise noise (p, 1/n)

polynomial if p = O((log n)/n2) [48, Thm. 8]
superpolynomial if p = ω((log n)/n) ∩ o(1) [48, Thm. 9]
exponential if p = Ω(1) [48, Thm. 10]

(1+1) EA,
bit-wise noise (1, p/n)

polynomial if p = O((log n)/n2) [48, Thm. 11]
superpolynomial if p = ω((log n)/n) ∩ o(1) [48, Thm. 12]
exponential if p = Ω(1) [48, Thm. 13]

(1+1) EA,
bit-wise noise (p′, q/n)

polynomial if p := p′ min{q, 1} = O((log n)/n2) [5, Thm. 5]
superpolynomial if p := p′ min{q, 1} = ω((log n)/n) [5, Thm. 6]

(1+λ) EA, O(λn + n2) if p ≤ 0.028 On/ n2 · eO(pn/λ)
)

if p ≤ 1/2
one-bit noise p and 72 log n ≤ λ = o(n 3dna]42.roC,52[) .42 log n ≤ λ = O(n)

Results for the (1 + 1) EA also hold for asymmetric one-bit noise, for which no results on LEADINGONES are available, with the caveat that for p = �(1∕n) we only have an

upper bound of O(n2) ⋅ eO(pn2) . The bound O(�n + n
2) from [25] was simplified to O(n2) using their condition � = o(n)

1 3

Algorithmica

We provide upper and lower bounds on the expected optimisation time

of the (1 + 1) EA on LEADINGONES, showing that the expected time is in

�(n2) ⋅ exp(�(min{pn
2, n})) , which is tight up to constant factors in the exponent

of the term exp(�(min{pn
2, n})) that reflects the slowdown resulting from noise.

This shows that the time is �(n2) if p = O(1∕n2) , polynomial if p = O((log n)∕n2) ,

superpolynomial if p = �((log n)∕n
2) and exponential (e�(n)) if p = �(1∕n) . This

improves previous lower bounds that only showed superpolynomial times for

p = �((log n)∕n) , and exponential times for p = �(1) , which are both too large by

a factor of n.

The upper bound (Sect. 3) is based on a very simple argument: estimating the

probability that no noise will occur during a period of time long enough to allow

the algorithm to find an optimum without experiencing any noise. A similar argu-

ment was used independently in [11] to derive precise and general results for the

(1 + 1) EA on noisy and dynamic ONEMAX; their approach also works for shorter

periods of time without noise where the algorithm makes progress towards the

optimum. The lower bound (Sect. 4) follows arguments from Rowe and Sud-

holt [54] who analysed the performance of the non-elitist algorithm (1, �) EA on

LEADINGONES.

In Sect. 5 we show an improved upper bound for the (1 + �) EA on

 LEADING ONES. Finally, in Sect. 6 we show that on the class of HURDLE prob-

lems [45], a class of rugged functions with many local optima on an underlying

slope, noise helps to overcome local optima, allowing a simple hill climber to

succeed that would otherwise fail with overwhelming probability.

This manuscript extends a preliminary version [55] that contained parts of the

results. In this extension, conditions on bit-wise noise were relaxed in the context

of the (1 + 1) EA to allow for larger noise values. An exponential upper bound for

the (1 + 1) EA was added to obtain asymptotically tight exponents for all reason-

able noise strengths. Several empirical analyses were added to complement the

theoretical results for LEADINGONES and HURDLE.

2 Preliminaries

Algorithm 1 shows the (1 + �) EA in the context of prior noise, which includes

the (1 + 1) EA as a special case of � = 1 . Here noise(x) denotes a noisy version of

a search point x, according to the given noise model. We assume that all applica-

tions of noise are independent. The (1 + �) EA creates � independent offspring,

evaluates their noisy fitness, and then picks a best offspring. This offspring is then

compared against the parent, whose noisy fitness is evaluated in each generation.

This means in particular that an offspring can replace a parent whose real fitness

is higher if the parent is misevaluated to a lower noisy fitness, the offspring is

misevaluated to a higher noisy fitness, or both.

 Algorithmica

1 3

Algorithm 1: (1+λ) EA with prior noise

Choose x uniformly at random.
while termination criterion not met do

for i = 1, . . . , λ do

Create yi by copying x and flipping each bit independently with probability 1/n.
Evaluate fi := f(noise(yi)).

Choose i uniformly at random from arg max{f1, . . . , fλ}.
if fi ≥ f(noise(x)) then x := yi;

The optimisation time is defined as the number of fitness evaluations until a

global optimum is found for the first time. We consider the following prior noise

models from previous work; asymmetric noise is inspired by an asymmetric

mutation operator [27].

One-bit noise(p) [18, 25]: with probability 1 − p , noise(x)∶=x and otherwise

noise(x)∶=x
� where in x′ , compared to x, one bit chosen uniformly at random was

flipped.

Bit-wise noise(p, q) [48]: with probability 1 − p , noise(x)∶=x and otherwise

noise(x)∶=x
� where in x′ , compared to x, each bit was flipped independently with

probability q.

Asymmetric one-bit noise(p) [51]: with probability 1 − p , noise(x)∶=x and oth-

erwise noise(x)∶=x
� where in x

′ , compared to x, if x ∉ {0n, 1n} , with probability

1/2 a uniformly random 0-bit is flipped, with probability 1/2 a uniformly random

1-bit is flipped, and if x ∈ {0n, 1n} a uniformly random bit is flipped.

The special case (1, q) denotes bit-wise noise as investigated in [25]. We

often write (p, q/n) for bit-wise noise instead of (p, q) as then q plays a simi-

lar role as p in one-bit prior noise p, which allows for a more unified presenta-

tion of results: we obtain identical noise thresholds across both models (thresh-

olds for q in the (1, q) model are by a factor of n smaller than those for p [48]).

Note that we do generally allow q > 1 , while in our preliminary work [55]

q was restricted to q ≤ 1 . The conditions from [5] for (p, q/n) bit-wise noise

simplify to p min{q, 1} = O((log n)∕n2) for polynomial expected times and

p min{q, 1} = �((log n)∕n) for superpolynomial times, respectively.

Note that Pr (noise(x) ≠ x) = p for one-bit noise and asymmetric one-bit noise,

and for the bit-wise noise model (p, q/n), Pr (noise(x) ≠ x) = p(1 − (1 − q∕n)n) as

noise occurs with probability p and at least one bit is flipped with probability

1 − (1 − q∕n)n . We simplify the last expression using the following inequalities

for all 0 ≤ p ≤ 1 and � ∈ ℕ.

The second and third inequality are shown in [2, Lemma 6], and the first one follows

from considering the two cases p� ≤ 1∕2 and p� > 1∕2 . Thus Pr (noise(x) ≠ x) is

tightly bounded as follows:

(1)
1

2
min{p�, 1} ≤

p�

1 + p�
≤ 1 − (1 − p)� ≤ min{p�, 1}

1 3

Algorithmica

We often limit our considerations to p ≤ 1∕2 for one-bit noise as otherwise more

than half of the time, the optimum will not be recognised as an optimum. This can

lead to counterintuitive effects. For instance, [49, Theorem 3.3] for bit-wise noise

with p = 1 shows that increasing the sample size for the (1 + 1) EA with resampling

can turn a polynomial expected time on LEADINGONES into an exponential time;

this is essentially because states close to the optimum become more appealing than

the optimum itself. For bit-wise noise (p, q/n) we assume q∕n ≤ 1∕2 as otherwise

noise(x) is more likely return search points that are closer to the bit-wise comple-

ment x of x than to x itself. With q∕n ≤ 1∕2 the worst possible noise is q∕n = 1∕2

where noise(x) is chosen uniformly at random from the whole search space, irre-

spective of x.

3 A Simple and General Upper Bound for Dealing with Uncertainty

We first present a very simple result that applies in a general setting of optimisa-

tion under uncertainty (noise/dynamic changes/etc.). It is based on the observa-

tion that with a certain probability, a run will complete while not being affected by

uncertainty. It is formulated for iterative algorithms that represent Markov chains

and maintain a single search point, called trajectory-based algorithms. It is easy to

extend the definition to population-based algorithms or non-Markovian algorithms

as well.1 The (1 + 1) EA and the (1 + �) EA are both trajectory-based algorithms as

they both evolve a single search point. The definition also includes randomised local

search (RLS), the Metropolis algorithm, the (1, �) EA [26] or the Strong Selection

Weak Mutation (SSWM) algorithm [44].

Definition 1 For any trajectory-based algorithm A optimising a fitness function f,

let TA,f (x) be the random first hitting time of a global optimum when starting in x.

We assume hereinafter that each initial search point x leads to a finite expectation.

We define the worst-case expected optimisation time EA,f as

Further, define the median optimisation time MA,f

and the worst-case median optimisation time

(2)
p

2
min{q, 1} ≤ p(1 − (1 − q∕n)n) ≤ p min{q, 1}.

EA,f ∶= max
x

E(TA,f (x)).

MA,f (x) ∶= min{t ∣ Pr (TA,f (x) ≤ t) ≥ 1∕2}

1 The following results can be adapted to populations or non-Markovian algorithms when taking the

worst case over all possible internal states in the upcoming definitions of worst-case expected optimisa-

tion times and worst-case median optimisation times.

 Algorithmica

1 3

We omit subscripts if the context is clear. Applying Markov’s inequality for all x,

the median worst-case optimisation time is not much larger than the expected worst-

case optimisation time as shown in the following simple lemma.2

Lemma 1 For every A and every f, MA,f ≤ 2EA,f .

Proof Let x be a search point with maximal MA,f (x) value. Then MA,f (x) ≤ 2EA,f (x)

by Markov’s inequality. Noting 2EA,f (x) ≤ 2EA,f completes the proof. □

The following theorem gives an upper bound on the worst-case expected opti-

misation time under uncertainty, assuming we do know (an upper bound on) the

median worst-case optimisation time in a setting without uncertainty. It uses the

notion of a “failure event”, which is an event that may occur independently from

other iterations and independently from the current state of the algorithm and which

may move the algorithm to an arbitrary state. The name “failure event” is used since

in typical applications of this framework, the mentioned event may disrupt the pro-

gress of the algorithm.

Theorem 2 Consider a trajectory-based algorithm A in a setting where in each

iteration a failure event occurs independently from other iterations and the state

of A with probability at most 0 ≤ p < 1 . Consider any function f on which an itera-

tive algorithm A has worst-case median optimisation time at most M if p = 0 . Then

the worst-case expected optimisation time of A with failure probability p is at most

Proof By definition of the median worst-case optimisation time, if the algorithm

experiences M steps without a failure, it will find an optimum with probability at

least 1/2 regardless of the initial search point. The probability that in a phase of M

steps there will be no failure is at least (1 − p)M . Hence the expected waiting time for

a phase of M steps without failures where the algorithm finds an optimum is at most

2M(1 − p)−M for every initial search point.

The inequality follows from
1

1−p
= 1 +

p

1−p
≤ e

p∕(1−p) . □

In the setting of prior noise, Theorem 2 implies the following. A failure event

may occur if any of the offspring, or the parent, experiences noise. The following

theorem is formulated for any � search points being evaluated in one iteration.

Theorem 3 Consider a trajectory-based algorithm A that evaluates up to � search

points in each iteration. For every function f on which A has worst-case median

MA,f ∶= max
x

MA,f (x).

2M(1 − p)−M
≤ 2M ⋅ epM∕(1−p)

.

2 Much stronger results can be shown, but Lemma 1 is sufficient for our purposes.

1 3

Algorithmica

optimisation time M without prior noise, its worst-case expected optimisation time

is at most

for all prior noise models where, for all x, Pr (noise(x) ≠ x) ≤ p , including:

1. one-bit prior noise with probability p < 1,

2. bit-wise prior noise (p�
, q∕n) with q∕n ≤ 1∕2 and p ∶= p

� min{q, 1} , and

3. asymmetric one-bit prior noise with probability p < 1.

Proof In all mentioned noise models, the probability of noise occurring in

one search point is at most p; this is immediate for one-bit noise and it is

p
�(1 − (1 − q∕n)n) ≤ p

� min{q, 1} for bit-wise noise by (2). Since noise is applied

to all search points independently, noise occurs in one iteration with probability at

most p∗ ∶= 1 − (1 − p)� . Invoking Theorem 2 with parameter p∗ and the occurrence

of noise as failure event yields the first claimed bound. The inequality follows as in

the Proof of Theorem 2. □

We remark that Theorem 2 (and straightforward extensions to populations) also

applies in many other settings, for example in

– restart strategies that restart the algorithm in each iteration with probability p,

– non-elitist algorithms like the (1, �) EA, where the failure event could be defined

as the best fitness decreasing,

– stochastic ageing [8, 41], an approach from artificial immune systems, where

individuals are suddenly killed off with a fixed probability and the failure event

is that the minimum fitness in the population decreases during an appropriately

defined time period, see Lemma 2 in [41],

– dynamic optimisation where p is the probability of the fitness function changing,

if M is taken as (an upper bound for) the worst-case median optimisation time for

all possible fitness functions that can be attained in the considered dynamic set-

ting.

For LEADINGONES, Theorem 3 implies the following.

Theorem 4 The expected optimisation time of the (1 + 1) EA with prior noise prob-

ability p ≤ 1∕2 for each of the settings from Theorem 3 on LEADINGONES is

This is polynomial if p = O((log n)∕n2) and O(n2) if p = O(1∕n2).

Proof The upper bound follows directly from Theorem 3 with � = 2 (as the

(1 + 1) EA evaluates parent and offspring in each generation), 2p∕(1 − p) = O(p) ,

2M(1 − p)−�M
≤ 2M ⋅ e�pM∕(1−p)

O
(

n2
⋅ eO(pn2)

)

.

 Algorithmica

1 3

and the fact that the worst-case expected optimisation time of the (1 + 1) EA on

LEADINGONES is O(n2) [19], hence by Lemma 1 the worst-case median optimisation

time is M = O(n2) . □

Despite the simplicity of the above proofs, Theorem 4 matches, unifies and gen-

eralises the best known results [5, 48] which only classify the expected optimisation

time on LEADINGONES as being either polynomial, superpolynomial, or exponential

(see Table 1). It also gives results for asymmetric one-bit noise, for which no results

on LEADINGONES are available.

3.1 An Exponential Upper Bound for Large Noise

For very large noise levels p, Theorem 4 gives an upper bound of essentially eO(pn2) ,

which can be as bad as eO(n2) for p = �(1) . This is clearly too pessimistic as the

expected time to create the optimum by mutation is at most nn
= e

n ln n for every fit-

ness function and every initial search point.

We therefore provide a new, tailored upper bound for large noise levels, showing

that the expected optimisation time is at most eO(n) . To this end, we will prove that

the (1 + 1) EA converges to a stationary distribution � in which the optimum 1n has

stationary mass �(1n) ≥ 2
−n . We then bound the mixing time, that is, the time until

the algorithm has approached the stationary distribution such that the optimum is

found with a probability close to �(1n) . Throughout this section we assume that the

reader is familiar with the foundations of Markov chain theory and mixing times as

described in relevant text books like [35].

The following lemma shows that transitions to higher fitness values are at least as

likely as transitions to lower values.

Lemma 5 Let Pr (x → y) denote the probability that the (1 + 1) EA with

prior noise transitions from x to y in one generation. Then for all x, y with

LEADINGONES(x) < LEADINGONES(y) we have Pr (x → y) ≥ Pr (y → x) in each of

the following settings:

1. one-bit prior noise with probability p ≤ 1∕2,

2. bit-wise prior noise (p, q/n) with q∕n ≤ 1∕2.

3. asymmetric one-bit prior noise with probability p ≤ 1∕2,

Proof A transition from x to y is made if and only if mutation of x results in y and

y is accepted. Since the probability of mutation of x creating y is equal to that of

mutation of y creating x, we just need to show that the probability of accepting y as

offspring of x is no smaller than the probability of accepting x as offspring of y.

Let i denote the smallest index of any bit flipped in the parent’s noise, and i ∶= ∞

if there is no such bit. Define j in the same way for the offspring’s noise. Abbreviate

� ∶= LEADINGONES(x).

Now, if i ≤ � and i ≤ j then the offspring will be accepted regardless of whether

the parent is x or y. If j ≤ � and j < i the offspring will be rejected in both scenarios.

1 3

Algorithmica

Hence, if min(i, j) ≤ � selection is determined by noise on the first � bits and we

only need to show the claimed inequality for conditional probabilities assuming

min(i, j) ≥ � + 1.

If the parent is x then a transition from x to y will be made if i > � + 1 and

j ≥ � + 1 since then the noisy fitness of the parent is � and the noisy fitness of the

offspring is at least �.

If the parent is y then a transition from y to x will be made if i = � + 1 and

j ≥ � + 1 as then the noisy fitness of the parent is � and the noisy fitness of the off-

spring is at least �.

The above two scenarios cover all cases where min(i, j) ≥ � + 1 . Thus the claim

follows if we can show that

Since noise is determined independently for parent and offspring, this is equivalent

to

In the symmetric and asymmetric one-bit noise settings, the left-hand side is at least

1 − p ≥ 1∕2 and the right-hand side is at most p ≤ 1∕2 . For the bit-wise noise setting,

the left-hand side is at least p(1 − q∕n)𝓁+1 ≥ pq∕n ⋅ (1 − q∕n)𝓁 = Pr (i = 𝓁 + 1) . □

The exponential upper bound is stated as follows.

Theorem 6 The expected optimisation time of the (1 + 1) EA with prior noise prob-

ability p ≤ 1∕2 for each of the specific settings from Theorem 3, except for asymmet-

ric one-bit noise, on LEADINGONES is at most 2O(n).

Proof If p = 0 then the expected optimisation time of the (1 + 1) EA on LEADINGONES

is O(n2) ≤ 2
O(n) , hence we assume p > 0 in the following.

We first show that the (1 + 1) EA on LEADINGONES is an ergodic Markov chain,

which implies the existence of a stationary distribution � . Ergodicity simply fol-

lows from the fact that every search point x can be turned into any other search

point y in one generation if mutation of x creates y (probability at least n−n) and

LEADINGONES(noise(x)) = 0 , which happens with probability at least p∕n > 0

for one-bit noise and probability at least p
�
q∕n > 0 for bit-wise noise with

p = p
� min{q, 1} > 0.

To prove the claimed inequality 1∕�(1n) ≤ 2
n we will use the following property

of stationary distributions (cf. Proposition 1.19 in [35]):

Since by Lemma 5 Pr (x → 1
n) ≥ Pr (1n

→ x) for every search point x, �(1n) ≥ �(x)

for all 2n possible x and thus �(1n) ≥ 2
−n.

Pr (i > � + 1 ∧ j ≥ � + 1) ≥ Pr (i = � + 1 ∧ j ≥ � + 1).

Pr (i > 𝓁 + 1) ⋅ Pr (j ≥ 𝓁 + 1) ≥ Pr (i = 𝓁 + 1) ⋅ Pr (j ≥ 𝓁 + 1)

⇔ Pr (i > 𝓁 + 1) ≥ Pr (i = 𝓁 + 1).

�(x) ⋅ Pr (x → y) = �(y) ⋅ Pr (y → x), for all x, y ∈ {0, 1}n

 Algorithmica

1 3

It remains to bound the mixing time, that is, the time until the algorithm has got-

ten close to the stationary distribution (as will be made precise soon). Let pt be the

distribution of the current search point at time t. The difference to the stationary dis-

tribution � is described by the total variation distance that describes the maximum

difference between probabilities for any event A:

In particular, we have Pr (xt = 1
n) ≥ �(1n) − ||pt − �|| ≥ 2

−n − ||pt − �||.

We now show that ||pt − �|| ≤ 2
−n−1 for a suitable t = poly (n) ⋅ 2O(n) . This will

be achieved by using a coupling (Xt
, Y

t) . In a nutshell, a coupling is a pair process

where, viewed individually, Xt and Y t are both faithful copies of the original process,

the (1 + 1) EA on LEADINGONES. But they may not be independent: they can follow

a joint distribution and the coupling ensures that, once they have reached the same

state, their states will always be equal. More formally, if Xt
= Y

t then Xt+1
= Y

t+1 .

The first point in time where their states become equal, when starting in states

X
0
= x and Y0

= y is called the coupling time Txy.

It is known that the tail of the coupling time, or more precisely the tail of the

worst-case coupling time for any initial states x, y, yields a bound on the total varia-

tion distance. Using [35, Theorem 5.2] we get

We will show the right-hand side becomes less than 2−n−1 within 2O(n) generations.3

We use the following coupling between two copies Xt , Y t of the (1 + 1) EA, where

we identify Xt and Y t with the (1 + 1) EA ’s current search points in the respective

chains. During mutation, for bits where Xt and Y t agree we make the same decisions

in both Markov chains. Otherwise, with probability 1/n we flip the bit in Xt but not

in Y t , with probability 1/n we flip the bit in Y t but not in Xt , and with the remain-

ing probability 1 − 2∕n the bit is not flipped at all. We further assume that the same

noise is applied in both chains. It is easy to verify that both chains, viewed in isola-

tion, represent faithful copies of the (1 + 1) EA on LEADINGONES, and that after both

chains have reached the same state, their states will always be equal as they experi-

ence the same mutations and the same noise.

Let Eqt denote the size of the largest prefix that is identical in X
t and Y t , i.e.,

Eqt = max{i ∣ Xt
1
…Xt

i
= Y t

1
…Y t

i
} . Note that if both chains decide to reject their

offspring, Eqt+1
= Eqt and if both chains decide to accept then Eqt+1

≥ Eqt due to

the way mutations are coupled. Once Eqt has reached a value of n, both chains will

always have the same state.

Let i ∶= Eqt < n then X
t

i+1
≠ Y

t

i+1
 by definition of Eqt . Assume without loss of

generality that Xt

i+1
= 0 . We first show that Pr (Eqt+1 > Eqt ∣ Eqt, Eqt < n) ≥ 1∕(3en) .

A sufficient event is that mutation makes bit i + 1 equal in Xt and Y t and the outcome

||pt − 𝜋|| ∶= max

A⊂𝛺
|pt(A) − 𝜋(A)|.

||pt − 𝜋|| ≤ Pr (max
x,y

Tx,y > t).

3 The author conjectures that this mixing time is, in fact, polynomial, but was unable to prove this. This

is left as an open problem for future work.

1 3

Algorithmica

is accepted in both chains. Mutation flips X
t

i+1
 while not flipping X

t

1
,… , X

t

i
 and

Y
t

1
,… , Y

t

i+1
 with probability 1∕n ⋅ (1 − 1∕n)i ≥ 1∕(en) as per definition of the cou-

pling mutation flips X
t

i+1
 and does not flip Y t

i+1
 with probability 1/n and every bit

j ≤ i is not flipped in Xt and Y t with probability 1 − 1∕n since Xt
j
= Y t

j
 . The outcome

of such a mutation then needs to be accepted in X despite noise. Let �
i+1

 denote the

probability of noise flipping any of the first i + 1 bits. The offspring will be accepted

in X if noise leaves the first i + 1 bits intact in both parent and offspring, or if noise

does flip at least one bit amongst the first i + 1 bits in both parent and offspring, but

still the offspring’s noisy fitness is at least as good as that of its parent. Noting the

symmetry in the latter case, the probability of accepting said mutation is at least

(1 − �
i+1

)2 + �
2

i+1
∕2 ≥ 1∕3 for every possible value �

i+1
 . Together, this shows

Pr (Eqt+1 > Eqt ∣ Eqt, Eqt < n) ≥ 1∕(3en).

Note that the first i bits are identical in the noisy parent evaluation of both X
t

and Y t , and they are also identical in the noisy evaluation of both offspring x
′
, y

′

in X
t and Y t , respectively. If either of these noisy evaluations is less than i, the

decision whether to accept or reject is only based on the first i bits and X
t and Y t

make the same decision. The only problematic case is when noise(Xt) , noise(Y t) ,

noise(x�) , and noise(y�) all have at least i leading ones as then one Markov chain

might accept their offspring while the other might reject theirs. If LEADINGONES(x�)

and LEADINGONES(y�) are both at least i, Eqt+1
≥ Eqt and no harm is done.

However, we might have LEADINGONES(x�) < i or LEADINGONES(y�) < i in case

mutation destroys the prefix of i leading ones (probability at most i/n), but noise

flips the same bits, covering up all detrimental mutations. The probability of the lat-

ter event is at most p/n for one-bit noise (or 0 in case mutation flipped more than one

bit). We call step t a relevant step if Eqt+1
≠ Eqt . In a relevant step, the conditional

probability of increasing Eqt is �(1) and the probability of increasing Eqt in at most

n subsequent relevant steps, until Eqt = n is reached, is at least (�(1))n = 2
−�(n).

In the case of bit-wise noise, the probability of decreasing Eqt is at most

q∕n ⋅ (1 − q∕n)i−1 as (since q∕n ≤ 1∕2) the best case is that mutation has only

flipped one bit, which needs to be covered up by noise. The conditional probability

of Eqt increasing in a relevant step is thus at least

The probability of increasing Eqt in at most n subsequent relevant steps until a value

of n is reached is thus at least

The reciprocal of this expression is upper bounded by

1∕(3en)

q∕n ⋅ (1 − q∕n)i−1 + 1∕(3en)
=

1

1 + 3eq(1 − q∕n)i−1
.

n
∏

i=1

1

1 + 3eq(1 − q∕n)i−1
=

n−1
∏

i=0

1

1 + 3eq(1 − q∕n)i
.

 Algorithmica

1 3

For both one-bit and bit-wise noise, a relevant step occurs with probability at

least 1/(3en) (unless the chains have already coupled). Hence the expected wait-

ing time for n relevant steps is at most 3en
2 . Thus, from any initial configura-

tion of X
t and Y t , the expected time for a sequence of up to n relevant steps all

increasing Eqt until the maximum value n is reached and the chains are cou-

pled is bounded by E (maxxy Txy) ≤ 3en2
⋅ eO(n) ∶= t∗ . By Markov’s inequality,

Pr (maxxy Txy ≥ 2t∗) ≤ 1∕2 and the probability that the process has not coupled

within n + 1 subsequent phases of length 2t
∗ each is at most 2−n−1.

This shows that the time until the total variation distance to � has decreased to a

value of at most 2−n−1 is O(n3) ⋅ 2
O(n) = 2

O(n) . Then the probability of sampling the

optimum in the next generation is at least �(1n) − 2
−n−1 ≥ 2

−n−1 . If the optimum is

not found then, we repeat the above arguments. This establishes an upper bound of

O(n3) ⋅ 2
O(n)

⋅ 2
n+1 = 2

O(n) . □

4 A Matching Lower Bound for the (1 + 1) EA on LeadingOnes

The arguments from Sect. 3 and Theorem 2 pessimistically assume that, once

noise occurs, the algorithm needs to restart from scratch. For LEADINGONES,

and problems with a similar structure, this is not far from the truth. An unlucky

mutation can destroy a long prefix of leading ones and the fitness of the current

search point can decrease significantly. We will see that then the algorithm comes

close to having to start from scratch. Such an effect was already observed and

made rigorous in the analysis of island models with migration [31], separable

functions [17], and for the (1, �) EA on LEADINGONES [54]; parts of this section

closely follow the Proof of Theorem 12 in [54] (but had to be adapted to noisy

settings).

The main result of this section is the following.

Theorem 7 The expected optimisation time of the (1 + 1) EA with prior noise

probability p ≤ 1∕2 for each of the settings from Theorem 3 on LEADINGONES is

�
(

n
2
⋅ e

�(pn
2)
)

 if p = O(1∕n) and e�(n) if p = �(1∕n) . This is superpolynomial for

p = �((log n)∕n
2).

n−1
∏

i=0

(

1 + 3eq(1 − q∕n)i
)

≤

n−1
∏

i=0

exp
(

3eq(1 − q∕n)i
)

= exp

(

n−1
∑

i=0

3eq(1 − q∕n)i

)

≤ exp

(

3eq

∞
∑

i=0

(1 − q∕n)i

)

= exp (3en).

1 3

Algorithmica

Along with Theorems 4 and 6 and the fact that polynomial factors only account

for a ±O(log n) term in the exponent, yielding e�(n) = �(n2) ⋅ e
�(n) , we get the fol-

lowing result.

Theorem 8 The expected optimisation time of the (1 + 1) EA on LEADINGONES is

for each of the following settings:

1. one-bit prior noise with probability p ≤ 1∕2 and

2. bit-wise prior noise (p�
, q∕n) with q∕n ≤ 1∕2 and p ∶= p

� min{q, 1}.

The result is tight up to constants in exponent of the term exp(�(min{pn
2, n}))

that reflects the impact of noise.

Theorem 7 improves on the best known results, summarised in Table 1.

Note that there is a gap of order 1/n between the noise parameter regime

p = �((log n)∕n) where times are known to be superpolynomial [5, 48] and the

noise parameter regime p = O((log n)∕n2) that led to polynomial upper bounds

in [5, 48] and in Theorem 4.

Theorem 7 closes this gap by showing that superpolynomial times already

occur for noise parameters p = �((log n)∕n
2) , which is by a factor of 1/n smaller

than previous results [5, 48]. This shows that the (1 + 1) EA on LEADINGONES is

highly sensitive to noise, especially since the corresponding threshold for ONE-

MAX is at p = �((log n)∕n) [18, 25]. Theorem 7 also unifies and generalises all

known results for LEADINGONES under prior noise by giving bounds that hold for

the whole range of noise parameters p, and for different prior noise models.

In order to prove Theorem 7, we first analyse the probability of the fitness

dropping significantly.

Lemma 9 Consider the setting of Theorem 7 with a current LEADINGONES value

of i ≥ 2 . Then the probability that the LEADINGONES value decreases to a value in

[i/4, i/2] in one generation is �(pi2∕n2) . This is �(p) if i = �(n).

Proof Mutation flips a bit at position {⌈i∕4⌉,… , ⌊i∕2⌋} and leaves the other bits

unflipped with probability �(i∕n) (note that the set of positions is non-empty since

i ≥ 2). Let i∕4 ≤ i
∗ ≤ i∕2 denote the position of the bit flipped during mutation. Let

i
x
 denote the smallest index of any bit flipped during the parent’s noise and i

x
∶= ∞

if no such bit exists. Define iy in the same way for the offspring. We claim that after a

mutation as described above, the probability that the offspring is accepted regardless

is �(pi∕n) . A sufficient condition for this to happen is that i
x
≤ i∕4 ≤ i

∗ and iy ≥ ix.

For one-bit noise, we have Pr (ix ≤ i∕4) ≥ pi∕(4n) . For asymmetric one-

bit noise we get Pr (ix ≤ i∕4) ≥ pi∕(8n) as with probability p/2, one of at most n

1-bits is flipped. For bit-wise noise (p�
, q∕n) with p ∶= p

� min{q, 1} we have

�(n2) ⋅ e
�(min{pn

2,n})

 Algorithmica

1 3

Pr (ix ≤ i∕4) ≥ p�(1 − (1 − q∕n)i∕4) ≥ p�∕2 ⋅ min{iq∕(4n), 1} by (1). Since 1 ≥ i∕(4n) ,

this is at least p�∕2 ⋅ min{iq∕(4n), i∕(4n)} = p�i∕(8n) ⋅ min{q, 1} = pi∕(8n).

For all noise models, we claim that Pr (iy ≥ ix ∣ ix ≤ i∗) ≥ 1∕2 .

If iy > i∗ then iy ≥ ix with probability 1; otherwise we argue that

Pr (iy ≥ ix ∣ ix ≤ i∗, iy ≤ i∗) ≥ Pr (ix ≥ iy ∣ ix ≤ i∗, iy ≤ i∗) as parent and offspring are

subject to the same independent noise under identical conditions.

If all these events happen, the offspring will appear to be no worse than the par-

ent. Hence the offspring will survive, and its LEADINGONES value is in [i/4, i/2].

Since all events are independent (or conditionally independent), multiplying these

probabilities implies the claim. □

As argued in [54] for the (1, �) EA, such a fallback is not too detrimental per se

as the (1 + 1) EA might recover from this easily. Assume the fitness has dropped

to i∗ ∈ [i∕4, i∕2] . If the bits between i∗ + 1 and i have not been flipped during the

mutation creating the accepted offspring, the previous leading ones can be easily

recovered, in the best case by simply flipping the first 0-bit in the current search

point. However, while waiting for such a mutation to happen, all bits between i∗ + 1

and i do not contribute to the fitness. So over time these bits are subjected to random

mutations, which are likely to destroy many of the former leading ones. In other

words, after a fallback previous leading ones are forgotten quickly.

The last fact was observed in [12, Proof of Theorem 10] and formalised in [31,

Lemma 3] stated below. The lemma states that the probability distribution of a bit

subjected to random mutations rapidly approaches a uniform distribution.

Lemma 10 (Adapted from Lässig and Sudholt [31]) Let x0, x
1,… , x

t be a sequence

of random bit values such that xj+1 results from xj by flipping the bit xj independently

with probability 1/n. Then for every t ∈ ℕ

We now say that the (1 + 1) EA falls back if, starting from a fitness at least

f ∗ ∶= 2n∕3 , the algorithm drops to a fitness of i
∗ for some n∕6 ≤ i

∗ ≤ n∕2 . We

speak of a lasting fallback if in the 2n∕(1 − p) generations directly following a fall-

back the following holds:

1. all acceptance decisions are made independently from bit values at positions

i
∗
+ 2,… , n,

2. bit i∗ + 1 is never flipped during mutation and

3. in at least n/2 generations the offspring is accepted.

A lasting fallback implies that the fitness remains at most i
∗ during at least n/2

accepted steps. In these accepted steps, the bits at positions i∗ + 2,… , n are mutated

independently from acceptance decisions and hence take on a near-random state.

We remark that in a noise-free setting, so long as bit i∗ + 1 is never flipped, the

acceptance decisions would trivially be independent from bit positions i∗ + 2,… , n .

Pr (xt = 1) ≤
1

2

(

1 +

(

1 −
2

n

)t
)

.

1 3

Algorithmica

In a setting with noise, however, these bits might play a role as bit i∗ + 1 might be

flipped by noise, and then the acceptance decision might depend on further bits.

Hence more careful arguments are needed.

We also say that the initial search point is a lasting fallback if its fitness is at most

n/2. If i∗ is the initial fitness, the bits at positions i∗ + 2,… , n take on a uniformly

random state.

The following lemma estimates probabilities for fallbacks and lasting fallbacks.

For asymmetric noise we assume that there is a linear number of zeros in the current

search point. We will show later that this assumption is met with an overwhelming

probability.

Lemma 11 Consider any of the specific settings from Theorem 3. For asymmetric

one-bit noise, assume that the number of zeros in the current search point is �(n) . If

p ≤ 1∕2 and the current fitness is at least f ∗ , the probability of one generation yield-

ing a fallback is �(p) . Additionally, the probability of a fallback becoming a lasting

fallback is �(1).

Proof The first statement follows directly from Lemma 9 as f ∗ = �(n) and the fit-

ness after a fallback is at least n/6 and at most n/2.

It remains to estimate the probability of a fallback becoming a lasting fallback.

Let i∗ be the fitness obtained during a fallback and let jt be the index of the first

bit flipped by the parent’s noise in generation t. We call a generation t good if

– bit i∗ is not flipped during mutation and

– jt ≠ i∗ + 1.

In a good generation, the LEADINGONES value cannot increase beyond i∗ . The sec-

ond condition implies that the parent’s noisy fitness is at most i∗ . The offspring is

accepted if and only if its noisy fitness is better than the parent’s noisy fitness. As

the latter is at most i∗ , the decision whether to accept the offspring only depends on

bits at positions 1,… , i
∗
+ 1 and is independent from bits at positions i∗ + 2,… , n.

If all generations since the fallback have been good then the LEADINGONES value

remains at most i∗ and decisions are independent from bits i∗ + 2,… , n as claimed.

We estimate the probability of all 2n∕(1 − p) generations being good. For any gen-

eration t, the probability of the first event is 1 − 1∕n . The probability of the second event

is at least 1 − p∕n ≥ 1 − 1∕n for one-bit noise. For bit-wise noise (p�
, q∕n) , it is at least

1 − p�q∕n ⋅ (1 − q∕n)i
∗

≥ 1 − p�q∕n ⋅ (1 − q∕n)n∕6 ≥ 1 − q∕n ⋅ e−q∕6 ≥ 1 − 6∕(en) as

the function q∕n ⋅ e
−q∕6 is maximised for q = 6∕n . For asymmetric one-bit noise, the

probability of the second event is at least 1 − O(1∕n) by assumption on the number

of zeros in the current search point.

Hence, in all settings, the probability of a generation t being good is at least

1 − O(1∕n) by a union bound and the probability that all 2n∕(1 − p) generations are

good is (1 − O(1∕n))2n∕(1−p) = �(1).

Assuming that these generations are all good, we finally esti-

mate the number of accepted generations under this condition. Using

Pr (A ∣ B) = Pr (A ∩ B)∕P(B) ≥ Pr (A ∩ B) , we lower-bound the probability of

 Algorithmica

1 3

a generation t being accepted and good. This happens if bits 1,… , i
∗
+ 1 are not

flipped during mutation (probability at least (1 − 1∕n)n), bit i
∗
+ 1 is set to 0 in

the noisy parent (probability at least 1 − O(1∕n) as estimated above) and the off-

spring does not suffer from noise (probability at least 1 − p). Together, the

probability of an accepted generation conditional on it being good is at least

(1 − 1∕n)n ⋅ (1 − O(1∕n)) ⋅ (1 − p) ≥ (1 − p)∕3 if n is large enough. The expected

number of accepted generations in 2n∕(1 − p) good generations is at least 2n/3 and

by Chernoff bounds, the probability of having at least n/2 accepted generations is

1 − 2
−�(n).

Together, all three criteria in the definition of lasting fallbacks hold with prob-

ability �(1) . □

The following lemma shows that the assumption for asymmetric one-bit noise

from Lemma 14 is met with overwhelming probability. If the LEADINGONES value

does not exceed a given threshold, the suffix of bits past this threshold evolves

almost uniformly at random.

Lemma 12 Consider the (1 + 1) EA on LEADINGONES with asymmetric one-bit

noise and parameter p. For every constant 0 < 𝛾 < 1 , as long as the LEADINGONES

value is strictly less than n − �n , the number of zeros on the �n last bit positions is at

least �n∕3 throughout the first 2�n generations, for a constant 𝜅 > 0 , with probability

1 − 2
−�(n).

Proof With probability 1 − 2
−�(n) , the (1 + 1) EA starts with at least 5∕12 ⋅ �n

zeros on the last �n positions (hereinafter called the suffix). We aim to apply the

negative drift theorem [42, 43] to the number of zeros in the suffix and the interval

[�n∕3, 5∕12 ⋅ �n] . Let Z0, Z1,… denote this value over time.

Let A
t
 be the event that at time t, the offspring is accepted and the noisy

 LEADINGONES values of both parent and offspring are less than n − �n . This implies

that mutations of the suffix are independent from the acceptance decision. In expecta-

tion, Z
t
∕n bits will flip from 0 to 1 and (�n − Z

t
)∕n bits will flip from 1 to 0. Thus,

Let B
t
 be the event that the offspring is accepted and the noisy LEADINGONES value

of parent or offspring is at least n − �n . In order for the noisy LEADINGONES value

of any search point to exceed the real LEADINGONES value, the first 0-bit has to flip.

While Z
t
≥ �n∕3 , this has probability at most p∕(2Zt) ≤ 3p∕(2�n) ≤ 3∕(2�n) . By

the union bound, the probability that this happens for the parent or the offspring is

at most 3∕(�n) , hence Pr (B
t
) ≤ 3∕(�n) . We pessimistically assume that under event

B
t
 , at most

√

n bits in the suffix flip from 0 to 1, hence decreasing Z
t
 by

√

n . This

assumption is justified as the probability of flipping any
√

n bits is exponentially

small. Thus

E (Z
t+1 − Z

t
∣ Z

t
, A

t
, Z

t
≤ 5∕12 ⋅ �n) =

�n − Z
t

n
−

Z
t

n
=

�n − 2Z
t

n
≥

�

6
.

E (Z
t+1 − Z

t
∣ Z

t
, B

t
) ≥ −

√

n.

1 3

Algorithmica

Note that A
t
∪ B

t
 denotes the event that a step is accepted. Moreo-

ver, Pr (A
t
∪ B

t
) ≥ 1∕(2e) since a sufficient event for acceptance is that

the first n − 1 bits are not flipped and the noisy offspring is no worse than

the noisy parent, which by symmetry has probability at least 1/2. Thus,

Pr (B
t
∣ A

t
∪ B

t
) ≤ Pr (B

t
)∕Pr (A

t
∪ B

t
) ≤ 6e∕(�n) . Together,

This establishes a constant drift when �n∕3 ≤ Z
t
≤ 5∕12 ⋅ �n . By standard argu-

ments, the second condition of the negative drift theorem is met since the transi-

tions of Z
t
 are bounded by the number of flipping bits, which has an exponential

decay [42, Proof of Theorem 5]. Then the negative drift theorem [42, 43] implies the

claim. □

After a lasting fallback has occurred, the (1 + 1) EA with overwhelming prob-

ability needs some time in order to recover. Specifically, at least cn
2 generations,

for a constant c > 0 , are needed to increase the best fitness since the latest lasting

fallback by at least n/6.

Lemma 13 Let t be the latest generation where a fallback became a lasting fallback

or t = 0 if no lasting fallback occurred. Let B
t
 be the best fitness found since genera-

tion t. With probability 1 − e
−�(n) , for a small constant c > 0 , B

t+cn2 < B
t
+ n∕6.

Proof We pessimistically overestimate the probability of a fitness improvement due

to the effects of noise in generations from t to t + cn
2 : we assume that noise never

leads to a decrease in the number of leading ones. Secondly, we call a step success-

ful if the first 0-bit is flipped during mutation or if it is flipped during the parent’s

or offspring’s noise. In this case we assume that this bit becomes part of the leading

ones for the next generation and the next parent’s fitness is determined by the posi-

tion of the first 0-bit amongst the following bits. The probability of a successful step

is still bounded from above by 3/n.

A lasting fallback implies that at any generation from t, all bits at positions

{B
t
+ 1,… , n} have been subjected to mutation at least t

mix
= n∕2 times and these

mutations were independent of the acceptance decision (by definition of a lasting

fallback). Every mutation flips each of these bits independently with probability 1/n,

leaving the bits in a random state. We apply the principle of deferred decisions [37,

p. 9] and determine the current bit value for these bits at the time these bits first have

a chance to become part of the leading ones in an offspring. By Lemma 10 we know

that then the probability such a bit is set to 1 is at most

E (Z
t+1 − Z

t
∣ Z

t
, A

t
∪ B

t
) ≥ Pr (A

t
∣ A

t
∪ B

t
) ⋅

�

6
− Pr (B

t
∣ A

t
∪ B

t
) ⋅

√

n

≥

�

1 −
6e

�n

�

⋅

�

6
−

6e

�n
⋅

√

n = �(1).

1

2

(

1 +
(

1 −
2

n

)n∕2
)

≤
1

2

(

1 +
1

e

)

=
e + 1

2e

.

 Algorithmica

1 3

Note that due to our pessimistic assumptions concerning successful steps, the bits

following the first 0-bit will always be irrelevant for the decision whether or not to

accept the offspring. Hence the above probability bound also holds after generation t.

A necessary condition for increasing the best fitness by at least n/6 in cn
2 genera-

tions, c a positive constant chosen later, is that either

1. among cn
2 mutations at least 6cn steps are successful or

2. during at most 6cn successful steps the total fitness gain is at least n/6.

The probability of a successful step is always at most 3/n as mentioned earlier. By

standard Chernoff bounds, the probability for the first event is at most e−�(n) . The

total fitness gain is given by the number of improvements—at most 6cn—plus a sum

of up to 6cn geometric random variables to account for additional bits gained (these

additional bits are often called “free riders”). By Theorem 5 in [3], we get that the

probability of a fitness gain of n/6 is e−�(n) , provided that c is small enough. □
Lemma 14 Let c > 0 be any constant. Within cn

2 generations where the current fit-

ness is larger than f ∗ = 2n∕3 , a lasting fallback occurs with probability at least

1 − e
−�(pn

2).

Proof The probability of a fallback occurring is �(p) , and then it becomes lasting

with probability �(1) . Note that the time until a fallback potentially becomes a last-

ing fallback (whether it does or not) is not counted towards the cn
2 generations from

the statement as during this time the fitness is smaller than f ∗.

So the probability that no lasting fallback occurs is at most

□

Now we prove Theorem 7.

Proof of Theorem 7 With probability 1 − 2
−�(n) the initial search point has fitness less

than n/2, so the (1 + 1) EA starts with a lasting fallback. As the fitness after ini-

tialisation and after every lasting fallback is at most n/2, by Lemma 13, reaching a

fitness of at least f ∗ = 2n∕3 from there takes time at least cn
2 with overwhelming

probability, for a suitably small constant c > 0 . Applying Lemma 13 every time the

fitness increases to at least f ∗ , the (1 + 1) EA does not find a search point with fit-

ness at least 3n/4 (let alone an optimum) within the next cn
2 generations where the

fitness is at least f ∗ , with overwhelming probability. This implies that, for asymmet-

ric one-bit noise, Lemma 12 is in force, with respect to a prefix of the last n/4 bits.

Then by Lemma 14 during these cn
2 generations another lasting fallback occurs,

with overwhelming probability.

We iterate this argument until a failure occurs. The largest failure probability is

e
−�(pn

2) if p = O(1∕n) , hence in expectation we can iterate this argument at least

e
�(pn

2) times, each iteration taking time at least cn
2 (from the time it takes to reach

fitness f ∗ after a lasting fallback). If p = �(1∕n) , the largest failure probability is

(1 −�(p))
cn

2

≤ e
−�(pn

2)
.

1 3

Algorithmica

e
−�(n) and in expectation we can iterate this argument for e�(n) generations. Together,

this proves the claim. □

5 Improved Results for Offspring Populations

The general Theorem 2 can also be used in the context of offspring populations in

the (1 + �) EA, in order to quantify the robustness of evolutionary algorithms with

offspring populations to noise. Offspring populations can reduce the probability of

the current fitness decreasing. The current fitness can decrease in two different ways:

1. the current search point may be misevaluated as having a poor fitness, and then

be replaced by an offspring that is worse than the parent in real fitness or

2. the current search point may be replaced by an offspring where mutation has led

to poor real fitness, but noise happens to misevaluate the offspring as having a

high fitness, thus replacing its parent. Here noise essentially needs to make the

same bit-flips as the preceding mutation to cover up the effect of mutation.

The first failure can be avoided if there is a clone of the current search point

where no prior noise has occurred. A large offspring population can amplify this

probability.

Lemma 15 Consider the (1 + �) EA in a prior noise model where

Pr (noise(y) ≠ y) ≤ p for all search points y. Then for all current search points x the

probability that all copies of x among parent and offspring are affected by noise is

at most

Proof For every offspring, the probability that a copy of x is created is (1 − 1∕n)n ,

and the probability that a copy of x is created and affected by noise is at most

p(1 − 1∕n)n . Hence, the probability that for all offspring either no copy of x is cre-

ated or a copy of x is created and affected by noise is at most

In addition, the probability that the parent x itself is affected by noise is at most p.

Hence the sought probability is at most

For the second bound we use (1 − 1∕n)n = (1 − 1∕n)(1 − 1∕n)n−1 ≥ (1 − 1∕n) ⋅ 1∕e,

p

(

1 −
(

1 −
1

n

)n

(1 − p)

)�

= p

(

e − (1 − p)

e

)�

⋅ exp(O(�∕n)).

(

1 −

(

1 −
1

n

)n

+ p

(

1 −
1

n

)n
)�

=

(

1 −

(

1 −
1

n

)n

(1 − p)

)�

.

p

(

1 −

(

1 −
1

n

)n

(1 − p)

)�

.

 Algorithmica

1 3

□

Our aim is to apply Theorem 2 where the failure event is the union of the event

described in Lemma 15 and other events described later. However, we still need a

bound on the worst-case median optimisation time, or (by Lemma 1) the worst-case

expected optimisation time, assuming that the algorithm always retains at least one

copy of the current search point.

Note that we cannot simply use a runtime result for the (1 + �) EA without noise

as noise can still affect the generated offspring; the only condition we can rely on

is that we cannot lose all copies of the current search point. If noise is disruptive,

the (1 + �) EA may behave like having a smaller effective offspring population, the

size of which is random. Note that we cannot pessimistically use a bound on the

(1 + 1) EA to upper bound the time of the (1 + �) EA in this setting as different

offspring population sizes can affect search dynamics in unforeseen ways. Jansen

et al. [28] presented a problem class where different offspring population sizes lead

to very different performance.

The following theorem gives improved upper bounds for one-bit noise and bit-

wise noise.4

Theorem 16 The expected number of function evaluations for the (1 + �) EA with

prior noise parameter p ≤ 1∕2 on LEADINGONES with log e

e−1∕2

(n) ≤ � = O(n) is

�
1 −

�
1 −

1

n

�n

(1 − p)

��

≤

�
1 −

1

e

�
1 −

1

n

�
(1 − p)

��

=

�
1 −

1

e
(1 − p)

��

⎛⎜⎜⎜⎝

1 −
1

e

�
1 −

1

n

�
(1 − p)

1 −
1

e
(1 − p)

⎞
⎟⎟⎟⎠

�

=

�
1 −

1

e
(1 − p)

��

�
1 +

1

en
(1 − p)

1 −
1

e
(1 − p)

��

=

�
e − (1 − p)

e

��
�

1 +

1

n
(1 − p)

e − (1 − p)

��

≤

�
e − (1 − p)

e

��

exp

�
�

n
⋅

1 − p

e − (1 − p)

�
.

O
(

n2
⋅ eO(pn∕�)

)

4 We exclude asymmetric bit-wise noise as the probability of flipping a 1-bit may be �(1∕n) in case

there are o(n) leading ones, and only o(n) 1-bits in total. Arguments similar to those in Lemma 12 could

address this, however for simplicity we do not consider asymmetric noise. We also restrict bit-wise noise

to q∕n ≤ 1∕n for reasons explained after the Proof of Theorem 16.

1 3

Algorithmica

in each of the following settings:

1. one-bit prior noise with probability p < 1 and

2. bit-wise prior noise (p�
, q∕n) with q∕n ≤ 1∕n and p ∶= p

� min{q, 1}.

This is polynomial if p = O((� log n)∕n) and O(n2) if p = O(�∕n).

The exponent is smaller compared to the upper bound for the (1 + 1) EA by a

factor of order �n , and thus the threshold for p for which polynomial times are guar-

anteed increases by the same factor. The threshold between polynomial and super-

polynomial times could be higher as we do not have a corresponding lower bound.

Theorem 16 improves and generalises the best known result for the

(1 + �) EA [25, Corollary 24] which requires p = O(1∕n) and � ≥ 72 log n and

gives a time bound of O(�n + n
2) . This is O(n2) as the authors also assume � = o(n) .

Our result covers the whole parameter range for p up to 1/2 and also identifies a

functional relationship between p and � that guarantees robustness to noise.

Proof of Theorem 16 We estimate the probability of the following failure events in

order to apply a union bound later on.

Failure event E
1
 : all copies of the current search point are affected by noise. By

Lemma 15, this probability is at most

Failure event E
2
 : the best offspring is evaluated as having the parent’s fitness, and the

offspring y chosen to replace the parent carries disruptive mutations that were undone

by noise, i.e. LEADINGONES(y) < LEADINGONES(noise(y)) = LEADINGONES(x) .

The probability for this to happen is at most

as noise has to flip at least one specific bit.

Failure event E
3
 : there is an offspring y that carries disruptive mutations, but is being

evaluated as being better than the parent, i.e. LEADINGONES(y) < LEADINGONES(x)

and LEADINGONES(noise(y)) > LEADINGONES(x) . For each offspring where muta-

tion flips one of the leading ones, two events may occur: if mutation flips the first

0-bit, noise in an offspring has to undo all mutations of the leading ones. This has

probability at most p∕n
2 . Otherwise, noise has to undo all mutations of the leading

ones and flip the first 0-bit at the same time. This is impossible under one-bit noise,

and has probability at most p∕n
2 under bit-wise noise. Along with a union bound

over these two events and � offspring,

p
1
∶= O

(

p

(

e − (1 − p)

e

)�
)

≤ O

(

p

(

e − 1∕2

e

)�
)

= O

(p

n

)

.

p
2
∶=

p

n

p
3
≤

2p�

n2
= O

(p

n

)

.

 Algorithmica

1 3

As long as no failure occurs, the current fitness of the (1 + �) EA cannot decrease.

We now show that, conditional on no failure occurring, the expected worst-case

number of generations of the (1 + �) EA is bounded by O(n + n
2∕�) = O(n2∕�).

The probability of one offspring increasing the current fitness is at least

(1 − p)∕(en) as it suffices to flip the first 0-bit and not to flip any of the other bits,

and to have the offspring being evaluated correctly. The probability that this happens

in at least one of the � offspring and the parent is evaluated correctly is at least

where the inequality follows from [2, Lemma 6]. The expected time to increase the

best fitness is thus O(n∕�) , and since the fitness only has to be increased at most

n times, an upper bound of O(n2∕�) generations follows, for every initial search

point. The same bound also holds for the worst-case median optimisation time by

Lemma 1.

Now the result follows from applying Theorem 2 with a time bound of O(n2∕�)

and a failure probability bound of p
1
+ p

2
+ p

3
= O(p∕n) , and multiplying the num-

ber of generations by � for the number of function evaluations. □

We remark that the condition q∕n ≤ 1∕n for bit-wise noise in Theorem 16 is nec-

essary to bound the probability of failure event E
3
 . If, say, p = 1∕2 , q∕n = 1∕2 , � = n

and LEADINGONES(x) = 1 , for every offspring y, with probability at least 1/(en) the

first leading one is flipped and then bit-wise noise flips the first two bits in y with

probability p(q∕n)2 = 1∕8 . This results in LEADINGONES(y) < LEADINGONES(x)

and LEADINGONES(noise(y)) > LEADINGONES(x) . Since there are � = n possible

offspring y, Pr (E
3
) ≥ 1 − (1 − 1∕(8en))� = �(1) . Then the Proof of Theorem 16

breaks down as a probability bound of Pr (E
3
) = O(p∕n) is required.

5.1 Experiments for LeadingOnes

We also performed experiments to see the threshold behaviour more clearly and to

get further insights into the search dynamics in the presence of noise. For instance,

our asymptotic results do not reveal implicit constants, including those in exponents,

and therefore the exact location of the thresholds is not clear. It is not clear whether

different noise models with the same noise parameter p show a similar performance

or not. Experiments show the average performance for reasonable problem sizes

and to a degree of precision that cannot be obtained from the asymptotic theoretical

results in this work (albeit for fixed values of n).

Figure 1 shows the average optimisation times over 1000 runs of the (1 + �) EA

on 100-bit LEADINGONES with � ∈ {1, 2, 4, 8, 16} for both one-bit prior noise with

probability p and bit-wise prior noise (1, q/n). For both noise models the parame-

ter was varied exponentially: p ∈ {2−20, 2−19,… , 2−1} and q ∈ {2−20, 2−19,… , 20} .

Runs were stopped after 10n
2
= 105 generations or when the optimum was found.

For the (1 + 1) EA with one-bit noise we can see that for small noise values like

(1 − p)

(

1 −

(

1 −
1 − p

en

)�
)

≥
(1 − p)2�∕(en)

1 + (1 − p)�∕(en)
= �

(

�

n

)

1 3

Algorithmica

p ∈ {2−20,… , 2−15} the averages seem unaffected by the noise parameter, as noise

occurs too rarely to have a noticeable effect. When increasing p, the average time

increases slightly before shooting up around p = 2
−8 and hitting the generation

limit at p = 2
−6 in nearly all runs. This clearly shows that and how the expected

optimisation time grows exponentially in pn
2 in this regime.

Figure 1 further shows how offspring populations can shift the threshold

between efficient and inefficient times towards higher values of p. Even very small

offspring population sizes � have a significant effect. For instance, the (1 + 8) EA

is still efficient for p = 1∕4 and only becomes inefficient for p = 1∕2 . The

(1 + 16) EA is efficient even for p = 1∕2 . Note that the curves for all (1 + �) EA s

have a very similar shape, independent of � ; they just appear to be shifted towards

different values of p. This matches our theoretical results as the exponential term

eO(pn∕�) contains the ratio p∕� , indicating that the noise strength can be compen-

sated by the offspring population size in a linear fashion.

Comparing plots for one-bit noise and bit-wise noise, the curves look almost

identical.

Another interesting performance measure not covered by our theoretical results

is to inspect the best fitness found during a run before either finding an optimum

or being stopped at 10n
2 generations. Figure 2 shows averages over these values.

For the (1 + 1) EA the best fitness steadily decreases when increasing the noise

parameter beyond the threshold for inefficient running times, reaching values of

30.414 for one-bit noise with p = 1∕2 and 25.781 for bit-wise noise with q = 1 .

For comparison, the average best fitness found during 10n
2
= 105 uniformly ran-

dom samples was 16.926. Again, we see that offspring populations help by shift-

ing the curves towards higher noise strengths.

−20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1
·105

log(p)

(1+1) EA

(1+2) EA

(1+4) EA

(1+8) EA

(1+16) EA

(a) one-bit noise

−20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1
·105

log(q)

(1+1) EA

(1+2) EA

(1+4) EA

(1+8) EA

(1+16) EA

(b) bit-wise noise

Fig. 1 Average number of generations over 1000 runs for the (1 + �) EA with � ∈ {1, 2, 4, 8, 16} on

LEADINGONES (n = 100) with one-bit prior noise with probability p ∈ {2−20, 2−19,… , 2−1} and bit-wise

prior noise (1, q/n) with q ∈ {2−20, 2−19,… , 20} . Runs were stopped after 10n
2 generations. Transparent

lines show means ± standard deviation

 Algorithmica

1 3

6 An Example Where Noise Helps

The results so far show that on LEADINGONES, noise is disruptive and larger noise

values lead to higher expected optimisation times.

The final contribution of this paper is to look at noise from a very different

angle. We will show that noise can be beneficial for escaping from local optima.

To this end, we consider a known class of functions that lead to a highly rugged

fitness landscape with an underlying gradient pointing towards the location of the

global optimum. Such landscapes are known as “big valley” structures, which is

an important characteristic of many hard problems from combinatorial optimisa-

tion [40, 53].

Prügel-Bennett defined such a class of problems known as HURDLE prob-

lems [45] as an example function where genetic algorithms with crossover out-

perform hill climbers. HURDLE functions are functions of unitation, that is, they

only depend on the number of 1-bits. The fitness is given as

where |x|
0
 denotes the number of 0-bits in x and w is a parameter called hurdle width

that defines the distance between subsequent peaks. A sketch of the function is

shown in Fig. 3.

Here all search points with i mod w = 0 zeros are local optima, and all search

points with j zeros, i − w < j < i , have worse fitness. Hence an evolutionary algo-

rithm needs to flip at least w bits in order to find a search point of better fitness.

Nguyen and Sudholt [39] proved that the (1 + 1) EA has expected time �(nw) if

2 ≤ w ≤ n∕2.

HURDLE(x) = −

⌈|x|
0

w

⌉
−

|x|
0
mod w

w

−20 −15 −10 −5 0

40

60

80

100

log(q)

(1+1) EA

(1+2) EA

(1+4) EA

(1+8) EA

(1+16) EA

(a) one-bit noise

−20 −15 −10 −5 0

20

40

60

80

100

log(q)

(1+1) EA

(1+2) EA

(1+4) EA

(1+8) EA

(1+16) EA

(b) bit-wise noise

Fig. 2 Average best fitness during 1000 runs for the (1 + �) EA with � ∈ {1, 2, 4, 8, 16} on LEADINGONES

(n = 100) with one-bit prior noise with probability p ∈ {2−20, 2−19,… , 2−1} and bit-wise prior noise

(1, q/n) with q ∈ {2−20, 2−19,… , 20} . Runs were stopped after 10n
2 generations. Transparent lines show

means ± standard deviation

1 3

Algorithmica

In the following, we consider the well-known algorithm Randomised Local

Search (RLS), which works like the (1 + 1) EA, but only flips exactly one bit

in each mutation (chosen uniformly at random). We choose RLS instead of the

(1 + 1) EA to keep the analyses simple and to make the point that even a very

badly performing algorithm can be turned into a highly efficient algorithm

through beneficial effects of noise. We will in particular show that RLS under

noise is drastically faster than the (1 + 1) EA without noise. Sect. 6.2 will further

discuss whether results for RLS under noise can be transferred to the (1 + 1) EA

under noise.

It is obvious that RLS has infinite expected time on any HURDLE function with

non-trivial hurdle width w ≥ 2 , and Nguyen and Sudholt [39] showed via Cher-

noff bounds that local searchers get stuck in a non-optimal local optimum with

probability 1 − 2
−�(n) if w ≤ (1 −�(1))n∕2.

However, prior noise can help to escape from such a local optimum: RLS

with one-bit prior noise can misevaluate either the parent or the offspring, which

allows the algorithm to accept a search point with i mod w = w − 1 ones. Then

it can climb to the next local optimum from there, until the global optimum is

found. This is made precise in the following theorem.

Theorem 17 The expected optimisation time of RLS with one-bit prior

noise p ≤ 1∕(6n) on HURDLE with hurdle width w ≥ 2 log n is O(n2∕(pw2) + n log n).

Note that in particular for p = 1∕(6n) and w = �(n∕
√

log n) this is O(n log n) .

Then RLS is as efficient as on the underlying function ONEMAX without any

hurdles.

Proof of Theorem 17 The algorithm can escape from a local optimum with i zeros,

i mod w = 0 , if the offspring has i − 1 zeros (probability i/n) and additionally

1. the offspring is misevaluated as having i zeros (probability p(n − i + 1)∕n) or

2. the parent is misevaluated as having i − 1 zeros (probability pi/n).

The probability of the union of these events is

Fig. 3 Sketch of a HURDLE func-

tion with hurdle width w = 4

and problem size n = 20

0 4 8 12 16 20

−5

−4

−3

−2

−1

0

|x|0

H
u
r
d
l
e
(x

)

 Algorithmica

1 3

as the event of both offspring and parent being misevaluated as described is counted

twice in the enumeration. Together, the probability of escaping from a local opti-

mum with i zeros is at least pi/n.

We now define a potential function g such that g(i) estimates or overestimates

the expected optimisation time from a state with i zeros, bar constant factors. Let

a
i
∶= 2

(i mod w)−w+1 , then

The term ai
n2

i2p(1−p)2
 is necessary since on a slope towards a local optimum there is a

chance to increase the number of zeros and to possibly return to a worse, previously

visited local optimum. The term is largest,
n2

i2p(1−p)2
 , for i = w − 1 mod w as from

there returning to a local optimum with i + 1 zeros is very likely. This needs to be

accounted for in our choice of potential function. The term decreases exponentially

for decreasing i mod w since this risk is reduced as the algorithm moves away from

a local optimum.

Note that g(0) ≤ g(1) ≤ ⋯ ≤ g(n) , with g(n) being composed of the following

sums. The additive terms
n

i
 for all i > 0, i mod w > 0 sum up to at most

∑n

i=1

n

i
= O(n log n) . For each hurdle with a peak at i zeros, g(n) contains an additive

term
n

ip
 as well as terms

as
∑i−1

d=0
2
−d

i
2∕(i − d)2 = O(1) . Adding up the terms for each hurdle with

w, 2w, 3w,… , (n∕w)w zeros yields

p(n − i + 1)

n
+

pi

n
−

p2i(n − i + 1)

n2
= p

(

1 +
1

n
−

pi(n − i + 1)

n2

)

≥ p

(

1 +
1

n
− p

)

≥ p

g(i) ∶=

⎧
⎪
⎨
⎪
⎩

0 if i = 0,

g(i − 1) +
n

ip
if i > 0, i mod w = 0,

g(i − 1) +
n

i
+ ai

n2

i2p(1−p)2
otherwise.

w−1
∑

j=1

2
j−w+1 n2

(i − w + j)2p(1 − p)2
≤ O(1) ⋅

n2

i2p(1 − p)2

g(i) ≤ g(n) = O

(

n log n +

n∕w
∑

j=1

(

n

jwp
+

n2

(jw)2p(1 − p)2

))

= O

(

n log n +
n

wp

n∕w
∑

j=1

1

j
+

n2

w2p(1 − p)2

n∕w
∑

j=1

1

j2

)

= O

(

n log n +
n log(n∕w)

wp
+

n2

w2p

)

= O

(

n log n +
n2

w2p

)

1 3

Algorithmica

where the penultimate line follows from
∑n∕w

j=1
1∕j2 ≤

∑∞

j=1
1∕j2 = �

2∕6 = O(1) and

in the last line we used log(n∕w) = O(n∕w) to absorb the middle term. We show in

the following that the potential decreases in expectation by �(1).

For 0 < i mod w < w − 1 , the potential decreases by g(i) − g(i − 1) if mutation

creates a search point with i − 1 zeros and the mutant is evaluated correctly (prob-

ability at least i∕n ⋅ (1 − p)). It is increased by g(i + 1) − g(i) only if mutation creates

a search point with i + 1 zeros (probability (n − i)∕n ≤ 1) and either the parent or the

offspring is misevaluated (probability at most 2p), as otherwise the offspring will be

rejected. Thus for all i with i mod w ∉ {0, w − 1} , using a
i+1

= 2a
i
,

As p ≤ 1∕(6n) , the bracket is at least 1 − 1∕(6n) − 2∕3 ≥ 0 , hence the drift is at least

For i mod w = 0 , the potential is decreased by g(i) − g(i − 1) =
n

ip
 with probability

at least pi/n, and it is increased by g(i + 1) − g(i) only if either the parent or the off-

spring is misevaluated and the offspring increases the number of zeros. The proba-

bility of an increase is bounded by 2p. Thus

and using p ≤ 1∕(6n) , i ≥ w and w ≥ 2 log n this is at least

E(g(Xt) − g(Xt+1) ∣ Xt = i, i mod w ∉ {0, w − 1})

≥
i

n
(1 − p)(g(i) − g(i − 1)) − 2p(g(i + 1) − g(i))

=
i

n
(1 − p)

(

n

i
+

ain
2

i2p(1 − p)2

)

− 2p

(

n

i + 1
+

ai+1n2

(i + 1)2p(1 − p)2

)

≥ 1 − p + (1 − p)
ain

ip(1 − p)2
− 2p

(

n

i
+

2ain
2

i2p(1 − p)2

)

= 1 − p −
2pn

i
+

ain

ip(1 − p)2

(

1 − p −
4pn

i

)

.

E(g(Xt) − g(Xt+1) ∣ Xt = i, i mod w ∉ {0, w − 1})

≥ 1 − p −
2pn

i
≥ 1 −

1

6n
−

1

3
≥

1

2
.

E(g(Xt) − g(Xt+1) ∣ Xt = i, i mod w = 0)

≥
n

ip
⋅

ip

n
− 2p(g(i + 1) − g(i))

= 1 − 2p(g(i + 1) − g(i))

= 1 − 2p ⋅

(

n

i + 1
+ 2

−w+2
⋅

n2

(i + 1)2p(1 − p)2

)

≥ 1 − 2pn − 2
−w+3

⋅

n2

i2(1 − p)2

≥
2

3
−

8

w2(1 − p)2
≥

2

3
− o(1).

 Algorithmica

1 3

For i mod w = w − 1 the potential is decreased by g(i) − g(i − 1) if mutation

decreases the number of zeros and both parent and offspring are evaluated truthfully.

The potential is increased by g(i + 1) − g(i) only if mutation creates a search point

with i + 1 zeros (probability at most 1). Thus

For all states i > 0 , the expected decrease in g(Xt) is at least c for a suitable con-

stant c > 0 . Once g(Xt) = 0 is reached, an optimum is found. Standard addi-

tive drift analysis (see, e.g. [33, Theorem 1] for a self-contained statement and

proof) then implies that the expected time until g(Xt) = 0 is reached is at most

g(n)∕c = O(g(n)) = O(n log n + n2∕(w2p)) . □

The reason why prior noise is helpful is that, intuitively speaking, it can “smooth

out” the fitness landscape, blurring rugged peaks and allowing the algorithm to see

the underlying gradient. Hence noise can be useful for problems with a big valley

structure [40, 53]. This effect has been observed in continuous spaces before [52]

where it was termed “annealing of peaks”. In discrete spaces the only other exam-

ples the author is aware of showing a positive effect of noise are deceptive functions

and needle-in-a-haystack functions [51].

To put our result in perspective, we have shown that noise can mitigate a poor

choice of algorithm. In our case, an elitist algorithm became a non-elitist algorithm

because of noise. This is helpful for HURDLE as here non-elitism is advantageous,

while even a small amount of non-elitism is clearly detrimental for LEADINGONES.

Note that, as argued in [1, Sect. 4], noise can never improve an optimal algorithm

for a particular problem. If noise was able to improve the performance of an optimal

algorithm, we could simply simulate the effect of noise in the algorithm and obtain a

better performing algorithm.

6.1 Experiments

We also provide experiments for HURDLE to see how well the theory predicts the

average optimisation time, and to answer questions not covered by Theorem 17.

Figure 4 shows the expected optimisation time of RLS and the (1 + 1) EA, for

HURDLE with n = 100 bits and a hurdle width of w = ⌈2 log n⌉ = 14 . Runs were

stopped after n
3
= 10

6 generations or when the optimum was found. For one-bit

noise with noise strength p, the plots show that the algorithm is very efficient in the

region p ∈ {2−10,… , 2−4} ≈ {1∕(10n),… , 6.4∕n} as predicted by Theorem 17. The

E(g(Xt) − g(Xt+1) ∣ Xt = i, i mod w = w − 1)

≥
i(1 − p)2

n
⋅ (g(i) − g(i − 1)) − (g(i + 1) − g(i))

=
i(1 − p)2

n
⋅

(

n

i
+

n2

i2p(1 − p)2

)

−
n

(i + 1)p

= (1 − p)2 +
n

ip
−

n

(i + 1)p

≥ (1 − p)2 = 1 − O(1∕n).

1 3

Algorithmica

time further seems to increase with 1/p as p is decreased, which matches the term

n
2∕(pw

2) in the running time bound.

We can further see that as p becomes too large, i.e., for p ≥ 2
−3 , the average time

increases sharply. This matches known results for ONEMAX where p = �((log n)∕n)

leads to superpolynomial expected times [18].

Figure 4 further shows that the choice of the noise model is insignificant: the

results are nearly identical for one-bit prior noise p and bit-wise prior noise (1, q/n)

across all values of p = q.

6.2 On the Performance of the (1 + 1) EA

The (1 + 1) EA shows a similar behaviour to RLS, except that there is a smaller

window of efficient parameter ranges. The reader may think that Theorem 17 could

also be proven for the (1 + 1) EA with a more complicated proof that considers all

transition probabilities.

However, this is not the case. The problem for the (1 + 1) EA is that, compared

to RLS, it is much more prone to climbing back up into the previous local opti-

mum after making a fitness-decreasing jump towards the optimum. For instance, if

w = O(1) then there is always a constant probability of jumping to a local optimum

with w zeros from any search point with 1 ≤ i < w zeros. And the probability of

moving close to the optimum is only of order O(1/n), thus the conditional prob-

ability of moving closer to the global optimum in a generation where the (1 + 1) EA

either moves closer or jumps to a state with w zeros is still only O(1/n). The algo-

rithm may need to make several such steps in order to arrive at the optimum, and it

loses all progress made if a jump back to state w occurs. This problem becomes less

and less important as w increases.

−20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1
·106

log(q)

RLS

(1+1) EA

(a) one-bit noise

−20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1
·106

log(q)

RLS

(1+1) EA

(b) bit-wise noise

Fig. 4 Average optimisation times during 1000 runs for RLS and the (1 + 1) EA on HURDLE with n = 100

and hurdle width w = 14 with one-bit prior noise with probability p ∈ {2−20, 2−19,… , 2−1} and bit-wise

prior noise (1, q/n) with q ∈ {2−20, 2−19,… , 20} . Runs were stopped after 10
6 generations. Transparent

lines show means ± standard deviation

 Algorithmica

1 3

Note that the same fundamental challenge also exists for RLS as it can also move

back to the previous local optimum. However, it can only increase the number of

zeros by 1 in any step, and if the number of zeros is less than w − 1 mod w , such

a move will decrease the fitness and thus will only be accepted if noise makes the

offspring appear competitive to the parent. In Theorem 17 the noise probability p is

chosen low enough such that the latter is unlikely.

In the experiments from Fig. 4, the hurdle width w = 14 is quite large in relation

to the problem size n = 100 , so that the above issue does not affect performance

too much. Decreasing the hurdle width shows a different picture: Fig. 5 shows the

performance of both algorithms for a smaller hurdle width of w = 6 under one-bit

noise.

While RLS is still effective in the regime p ∈ {2−10,… , 2−5} (even though the

hurdle width is lower than required by Theorem 17), the (1 + 1) EA failed in all runs,

except for a single run at log(p) = −7 that succeeded after 519,377 generations.

This indicates why Theorem 17 had to be limited to RLS. As an aside, we have

obtained a rare case where the performance of the (1 + 1) EA is drastically worse

than that of RLS. So far, only very artificial examples were known [13] and some

of them, examples of monotone functions, needed a significantly higher mutation

rate [15, 34].

6.3 Offspring Populations are Harmful for Hurdle

Finally, we consider the role of offspring populations on HURDLE, defining the

(1 + �) RLS as a variant of the (1 + �) EA where mutation flips exactly one bit. For

consistency we refer to RLS as (1 + 1) RLS.

The proof of Theorem 17 relies on the fact that a fitness-decreasing step leaving

a local optimum towards the global optimum is accepted because of noise. While

this effect was helpful on LEADINGONES, it is detrimental for HURDLE. This is shown

empirically in Fig. 6.

Fig. 5 Average optimisa-

tion times during 1000 runs

for RLS and the (1 + 1) EA

on HURDLE with n = 100 and

hurdle width w = 6 with one-bit

prior noise with probability

p ∈ {2−20, 2−19,… , 2−1} . Runs

were stopped after 10
6 genera-

tions. Transparent lines show

means ± standard deviation.

The (1 + 1) EA failed in all

runs, except for a single run at

log(p) = −7 that succeeded after

519377 generations

−20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1
·106

log(p)

RLS

(1+1) EA

1 3

Algorithmica

An increased offspring population shifts the curves towards higher noise param-

eters, while maintaining the unimodal shape of the curve, with steep increases for

too large values. This shift is very similar to the one observed for the (1 + �) EA on

LEADINGONES.

For instance, for p ∈ {2−10,… , 2−4} where (1 + 1) RLS is efficient, the

(1 + 8) RLS fails to find the optimum before time runs out in almost all runs, and

the (1 + 16) RLS only found the optimum in a single run at p = 0.5 , with a time of

795,151 generations. We conclude that, in this context, offspring populations can be

harmful.

7 Conclusions

We have presented a simple method for proving upper bounds under several prior

noise models, based on estimating the probability that during the median worst-

case optimisation time no noise occurs. Despite its simplicity, it matches and

generalises the best known results [5, 48] and provides a unified approach for

one-bit noise, bit-wise noise, and asymmetric bit-wise noise. Along with our nega-

tive result for LEADINGONES, the expected optimisation time of the (1 + 1) EA on

 LEADINGONES is �(n2) ⋅ exp(�(min{pn
2, n})) for one-bit noise p ≤ 1∕2 , asymmetric

one-bit noise with p = O(1∕n) , and bit-wise noise (p�
, q∕n) where q∕n ≤ 1∕2 and

p = p
� min{q, 1} . This confirms that the threshold between polynomial and super-

polynomial expected times is p = �((log n)∕n
2) and p = �(1∕n) leads to exponen-

tial expected times.

Offspring populations can cope with noise up to p ≤ 1∕2 if the population size is

at least � ≥ log e

e−1∕2

(n) ≈ 3.42 log n . We obtained an upper bound of O
(

n2
⋅ eO(pn∕�)

)

 ,

guaranteeing polynomial expected times for p = O((� log n)∕n) . An open problem is

whether the upper bound is tight in the same sense as for the (1 + 1) EA.

−20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1
·106

log(p)

ti
m

e

(1+1) RLS

(1+2) RLS

(1+4) RLS

(1+8) RLS

(1+16) RLS

Fig. 6 Average optimisation times during 1000 runs for (1 + �) RLS on HURDLE with n = 100 and hur-

dle width w = 14 with one-bit prior noise with probability p ∈ {2−20, 2−19,… , 2−1} . Runs were stopped

after 10
6 generations. Transparent lines show means ± standard deviation

 Algorithmica

1 3

Finally, we showed that on the HURDLE problem class, a highly rugged prob-

lem with a clear “big valley” structure, prior noise is helpful as it allows RLS

to escape from local optima and to follow the underlying gradient. Experiments

complemented our theoretical results and also showed that RLS under noise out-

performs the (1 + 1) EA both with and without noise. Experiments further showed

that on HURDLE, in stark contrast to LEADINGONES, offspring populations in RLS

can be harmful as here they reduce the beneficial effects of noise.

Open problems for future work include showing a lower bound for the expected

optimisation time of the (1 + �) EA on LEADINGONES, and obtaining tighter results

on the performance of evolutionary algorithms with parent populations, i.e., the

(� + 1) EA, on LEADINGONES and other problems.

Acknowledgements The author thanks the anonymous GECCO reviewers and the present reviewers for

their many thorough and constructive comments that helped to improve this manuscript and the prelimi-

nary version [55]. Many thanks to Chao Bian and Chao Qian for pointing out mistakes in the proofs of

Lemmas 11 and 13 in [55] and to Benjamin Doerr for insightful discussion.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen

ses/by/4.0/.

References

 1. Akimoto, Y., Astete-Morales, S., Teytaud, O.: Analysis of runtime of optimization algorithms for

noisy functions over discrete codomains. Theor. Comput. Sci. 605, 42–50 (2015)

 2. Badkobeh, G., Lehre, P.K., Sudholt, D.: Black-box complexity of parallel search with distributed

populations. In: Proceedings of Foundations of Genetic Algorithms (FOGA’15), pp. 3–15. ACM

Press, New York (2015)

 3. Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single

source shortest paths using single-objective fitness functions. In: Proceedings of FOGA’09, pp.

59–66. ACM Press, New York (2009)

 4. Beyer, H.-G.: Evolutionary algorithms in noisy environments: theoretical issues and guidelines

for practice. Comput. Methods Appl. Mech. Eng. 186(2), 239–267 (2000)

 5. Bian, C., Qian, C., Tang, K.: Towards a running time analysis of the (1 + 1)-EA for OneMax

and LeadingOnes under general bit-wise noise. In: Auger, A., Fonseca, C.M., Lourenço, N.,

Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem Solving from Nature—PPSN XV,

pp. 165–177. Springer, Cham (2018)

 6. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for sto-

chastic combinatorial optimization. Nat. Comput. 8(2), 239–287 (2009)

 7. Covantes Osuna, E., Gao, W., Neumann, F., Sudholt, D.: Speeding up evolutionary multi-objec-

tive optimisation through diversity-based parent selection. In: Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO’17), pp. 553–560. ACM, New York (2017)

 8. Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm with stochastic aging and kullback

entropy for the chromatic number problem. J. Comb. Optim. 14, 9–33 (2007)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Algorithmica

 9. Dang, D.-C., Lehre, P.K.: Efficient optimisation of noisy fitness functions with population-based

evolutionary algorithms. In: Proceedings of Foundations of Genetic Algorithms (FOGA’15), pp.

62–68. ACM, New York (2015)

 10. Dang, D.-C., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical optimisa-

tion to partial information. Algorithmica 75(3), 428–461 (2016)

 11. Dang-Nhu, R., Dardinier, T., Doerr, B., Izacard, G., Nogneng, D.: A new analysis method for

evolutionary optimization of dynamic and noisy objective functions. In: Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO’18), pp. 1467–1474. ACM, New

York (2018)

 12. Doerr, B., Gnewuch, M., Hebbinghaus, N., Neumann, F.: A rigorous view on neutrality. In: Proceed-

ings of the 2007 IEEE Congress on Evolutionary Computation (CEC’07), pp. 2591–2597 (2007)

 13. Doerr, B., Jansen, T., Klein, C.: Comparing global and local mutations on bit strings. In: Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO’08), pp. 929–936. ACM,

New York (2008)

 14. Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest path problems. In: Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO’12), pp. 17–24 (2012)

 15. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimiz-

ing monotonic functions. Evol. Comput. 21(1), 1–21 (2013)

 16. Doerr, B., Kodric, B., Voigt, M.: Lower bounds for the runtime of a global multi-objective evo-

lutionary algorithm. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation

(CEC’13), pp. 432–439 (2013)

 17. Doerr, B., Sudholt, D., Witt, C.: When do evolutionary algorithms optimize separable functions in

parallel? In: Proceedings of Foundations of Genetic Algorithms (FOGA’13), pp. 51–64. ACM, New

York (2013)

 18. Droste, S.: Analysis of the (1 + 1) EA for a noisy OneMax. In: Proceedings of the Genetic and Evo-

lutionary Computation Conference (GECCO 2004), pp. 1088–1099. Springer, Berlin (2004)

 19. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor.

Comput. Sci. 276(1–2), 51–81 (2002)

 20. Feldmann, M., Kötzing, T.: Optimizing expected path lengths with ant colony optimization using

fitness proportional update. In: Proceedings of Foundations of Genetic Algorithms (FOGA’13), pp.

65–74. ACM, New York (2013)

 21. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant colony optimization to

noise. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’15), pp.

17–24. ACM, New York (2015)

 22. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algorithm is efficient

under extreme Gaussian noise. IEEE Trans. Evol. Comput. 21(3), 477–490 (2017)

 23. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proceedings of

the 2003 Congress on Evolutionary Computation (CEC’03), vol. 3, pp. 1918–1925 (2003)

 24. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimisation.

Evol. Comput. 18(3), 335–356 (2010)

 25. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments. Algorithmica 75(3),

462–489 (2016)

 26. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy and when

not. In: Proceedings of the IEEE Symposium on Foundations of Computational Intelligence, FOCI

2007, pp. 25–32. IEEE, New York (2007)

 27. Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator. Evol. Comput. 18(1), 1–26

(2010)

 28. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolution-

ary algorithms. Evol. Comput. 13, 413–440 (2005)

 29. Jebalia, M., Auger, A., Hansen, N.: Log-linear convergence and divergence of the scale-invariant

(1 + 1)-ES in noisy environments. Algorithmica 59(3), 425–460 (2011)

 30. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a survey. IEEE Trans.

Evol. Comput. 9(3), 303–317 (2005)

 31. Lässig, J., Sudholt, D.: Design and analysis of migration in parallel evolutionary algorithms. Soft.

Comput. 17(7), 1121–1144 (2013)

 32. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary algo-

rithms on pseudo-boolean functions. IEEE Trans. Evol. Comput. 8(2), 170–182 (2004)

 33. Lehre, P.K., Witt, C.: General drift analysis with tail bounds (2013). CoRR. arXiv :1307.2559

http://arxiv.org/abs/1307.2559

 Algorithmica

1 3

 34. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput.

27(4), 643–666 (2018)

 35. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical

Society, New York (2008)

 36. Meyer-Nieberg, S., Beyer, H.-G.: Why noise may be good: additive noise on the sharp ridge. In:

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’08), pp. 511–518.

ACM, New York (2008)

 37. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University Press, Cambridge

(2005)

 38. Nguyen, A.Q., Sutton, A.M., Neumann, F.: Population size matters: rigorous runtime results for

maximizing the hypervolume indicator. Theor. Comput. Sci. 561, 24–36 (2015)

 39. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms beat evolutionary algorithms on the class of

hurdle problems. In: Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO’18), pp. 1071–1078. ACM, New York (2018)

 40. Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Proceedings

of Evolutionary Computation in Combinatorial Optimization (EvoCOP 2016), pp. 58–73. Springer,

New York (2016)

 41. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing mechanisms. In: Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO 2014), pp. 113–120. ACM

Press, New York (2014)

 42. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computa-

tion. Algorithmica 59(3), 369–386 (2011)

 43. Oliveto, P.S., Witt, C.: Erratum: simplified drift analysis for proving lower bounds in evolutionary

computation. ArXiv e-prints (2012)

 44. Paixão, T., Pérez Heredia, J., Sudholt, D., Trubenová, B.: Towards a runtime comparison of natural

and artificial evolution. Algorithmica 78(2), 681–713 (2017)

 45. Prügel-Bennett, A.: When a genetic algorithm outperforms hill-climbing. Theor. Comput. Sci.

320(1), 135–153 (2004)

 46. Prugel-Bennett, A., Rowe, J., Shapiro, J.: Run-time analysis of population-based evolutionary algo-

rithm in noisy environments. In: Proceedings of Foundations of Genetic Algorithms (FOGA’15),

pp. 69–75. ACM, New York (2015)

 47. Qian, C., Yu, Y., Zhou, Z.-H.: An analysis on recombination in multi-objective evolutionary optimi-

zation. Artif. Intell. 204, 99–119 (2013)

 48. Qian, C., Bian, C., Jiang, W., Tang, K.: Running time analysis of the (1 + 1)-EA for OneMax and

LeadingOnes under bit-wise noise. Algorithmica 81, 749–795 (2018)

 49. Qian, C., Bian, C., Yu, Y., Tang, K., Yao, X.: Analysis of noisy evolutionary optimization when

sampling fails. In: Proceedings of the 20th ACM Conference on Genetic and Evolutionary Compu-

tation (GECCO’18), pp. 1507–1514 (2018)

 50. Qian, C., Yu, Y., Tang, K., Jin, Y., Yao, X., Zhou, Z.-H.: On the effectiveness of sampling for evolu-

tionary optimization in noisy environments. Evol. Comput. 26(2), 237–267 (2018)

 51. Qian, C., Yu, Y., Zhou, Z.-H.: Analyzing evolutionary optimization in noisy environments. Evol.

Comput. 26(1), 1–41 (2018)

 52. Rana, S., Whitley, L.D., Cogswell, R.: Searching in the presence of noise. In: Proceedings of PPSN

IV, pp. 198–207. Springer, Berlin (1996)

 53. Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1999)

 54. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, �) evolutionary algo-

rithm. Theor. Comput. Sci. 545, 20–38 (2014)

 55. Sudholt, D.: On the robustness of evolutionary algorithms to noise: refined results and an exam-

ple where noise helps. In: Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2018), pp. 1523–1530. ACM, New York (2018)

 56. Sudholt, D., Thyssen, C.: A simple ant colony optimizer for stochastic shortest path problems. Algo-

rithmica 64(4), 643–672 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Analysing the Robustness of Evolutionary Algorithms to Noise: Refined Runtime Bounds and an Example Where Noise is Beneficial
	Abstract
	1 Introduction
	2 Preliminaries
	3 A Simple and General Upper Bound for Dealing with Uncertainty
	3.1 An Exponential Upper Bound for Large Noise

	4 A Matching Lower Bound for the EA on LeadingOnes
	5 Improved Results for Offspring Populations
	5.1 Experiments for LeadingOnes

	6 An Example Where Noise Helps
	6.1 Experiments
	6.2 On the Performance of the EA
	6.3 Offspring Populations are Harmful for Hurdle

	7 Conclusions
	Acknowledgements
	References

