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Abstract
The centrosome is an unusual organelle that lacks a surrounding
membrane, raising the question of what limits its size and shape. Moreover,
while electron microscopy (EM) has provided a detailed view of centriole
architecture, there has been limited understanding of how the second major
component of centrosomes, the pericentriolar material (PCM), is organized.
Here, we summarize exciting recent findings from super-resolution
fluorescence imaging, structural biology, and biochemical reconstitution
that together reveal the presence of ordered layers and complex gel-like
scaffolds in the PCM. Moreover, we discuss how this is leading to a better
understanding of the process of microtubule nucleation, how alterations in
PCM size are regulated in cycling and differentiated cells, and why
mutations in PCM components lead to specific human pathologies.
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Introduction
The centrosome is a single copy organelle present in the major-
ity of animal cells1. Through concentrating proteins required for 
microtubule nucleation, most notably γ-tubulin and its γ-tubulin 
ring complex (γ-TuRC) partners, it serves as the primary micro-
tubule organizing center (MTOC) of the cell2. Centrosomes have 
two major structural elements: a centriole pair, consisting of two 
approximately 200 by 400 nm barrels that are each composed 
of nine highly stable microtubule triplets, and a surrounding  
protein-rich matrix, the PCM, that is attached to the centrioles  
but extends outwards to a diameter of about 1 micron. Unlike  
most organelles, the centrosome lacks an encompassing mem-
brane, and although EM has shown the elegant ultrastructure of  
the centrioles, it has told us very little about how the PCM is  
organized or what defines its size and shape. Indeed, with the 
large coiled-coil and electron-dense nature of most PCM compo-
nents, our view of the PCM has remained frustratingly opaque.  
Yet we have long known that the PCM is the site from which  
microtubules are nucleated and that microtubule nucleation 
capacity can be precisely modulated according to specific cues3.  
Hence, recent technological breakthroughs in subdiffraction  
super-resolution imaging, together with structural biology and  
biochemical reconstitution approaches, now provide us with a 
much more detailed view of PCM architecture that is both exciting 
and transformative to our understanding4,5.

The PCM proximal layer is highly organized in the 
interphase centrosome
Prior to super-resolution imaging, the most accurate and useful 
conception of the PCM was as a salt-resistant “centro-matrix” of  
12–15 nm wide filaments in which circular γ-TuRCs of 25–30 nm 
diameter were embedded6–9. However, the development of differ-
ent modalities of “optical nanoscopy” that allowed imaging below 
the standard diffraction limit of fluorescent light10, including  
structured illumination microscopy (SIM), stimulated emission 
depletion (STED), stochastic optical-reconstruction microscopy 
(STORM), and photoactivated localization microscopy (PALM), 
led to a completely new understanding of how the PCM is  
organized4,5. Indeed, these super-resolution immunofluorescence 
microscopy approaches, mainly undertaken in Drosophila (fly) 
and human cells, have dramatically changed our perception of the  
PCM in interphase cells from being an amorphous mass lacking 
definition to a remarkably ordered assembly11–14.

The first discovery using these approaches was that major  
components of the PCM in an interphase centrosome, includ-
ing pericentrin (pericentrin-like protein [PLP] in flies), Cep152  
(Asterless in flies), Cep192 (SPD-2 in flies and worms), and 
Cdk5Rap2 (centrosomin in flies), form annular concentric rings 
around the centrioles. These rings differ in diameter, ranging in 
cross-section from approximately 200 nm, the diameter of the 
centriole itself, to about 500 nm. In other words, some are located 
close to the centriole surface, whereas others are positioned fur-
ther out. Together, these proteins form a well-organized PCM  
proximal layer that, from the centriole surface, extends approxi-
mately 150–200 nm in width. Importantly, using domain-specific 
antibodies, it was shown that for two of these proximal layer 
proteins, namely pericentrin and Cep152, their C-termini are  

closely associated with the centrioles, whereas their N-termini 
are further away11,12,14. Indeed, the physical distances measured  
between the N- and C-termini match the predicted lengths of  
these elongated proteins (about 150 nm), suggesting that they  
form rod-like filaments with one end (C-terminus) anchored to  
the centriole and the other end (N-terminus) extending out  
towards the cytoplasm. This model provides a rationale for how 
these proteins can define the diameter of the PCM through acting 
as molecular rulers that also limit the width of the PCM proximal  
layer in the interphase centrosome (Figure 1).

While this explains earlier structure–function studies on peri-
centrin showing that its C-terminal pericentrin-AKAP450 cen-
trosome targeting (PACT) domain is required for centrosome  
binding, it remains to be determined at the molecular level how 
this, or the C-terminus of Cep152, interacts with centrioles15.  
Current evidence for how the proximal layer attaches to  
centrioles suggests that it is likely to involve proteins that also  
play key roles in centriole duplication, such as CPAP (SAS-4 in 
flies and worms) and Plk416. Two populations of Cep192 have 
also been described: one closely attached to centriole walls that  
contributes to both centriole duplication and attachment of the 
PCM proximal layer, and a second further out in the PCM proxi-
mal layer that contributes to proximal layer organization13,17. 
In vertebrate cells, PCM integrity is important for centriole  
duplication18; however, this dependency may not be universal, as 
many species duplicate centrioles in interphase with very little 
PCM. Moreover, our current knowledge of how PCM proximal 
layer proteins functionally interact with core centriole duplica-
tion factors is sketchy at best1,19,20. That said, genetic studies in  
worms recently identified a new factor, SAS-7, that potentially 
bridges between centrioles and SPD-2 acting upstream of both  
centriole duplication and PCM assembly21.

The second discovery from the super-resolution microscopy  
studies was that, while some PCM proximal layer proteins form 
elongated filaments that extend from the surface of the centrioles, 
others are distributed amongst these filaments as, what have been 
termed, “branched matrix” components11. These include Cdk5Rap2 
and the second population of Cep192, and they depend on the  
filament proteins pericentrin and Cep152 for assembly into 
the PCM. However, the fact that pericentrin and Cep152 bind  
centrosomes independently suggests that there are at least two  
pathways for building the PCM; there is also evidence that 
branched matrix proteins show selectivity for particular filament  
proteins14. Importantly, the branched matrix proteins directly  
anchor the γ-TuRCs, which are themselves highly organized  
macromolecular machines optimized for overcoming the nuclea-
tion barrier for tubulin polymerization2. Furthermore, adaptor 
proteins are recruited, including NEDD1 and MZT1, that enable 
attachment of the γ-TuRC to the N-terminal centrosomin motif 1 
(CM1) domain of Cdk5Rap2 while also stimulating microtubule-
nucleating activity of the γ-TuRC22,23.

Through structural biology-led studies on the fly homologue  
centrosomin, data from the Raff lab have identified how Cdk5Rap2 
can self-assemble into a branched matrix. Tetramers of centro-
somin are formed via interaction of two separate dimerization  
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Figure 1. Expansion and disassembly of the PCM upon mitotic progression and differentiation. This schematic figure provides a 
simplified overview of PCM organization. During interphase (center panel), the two centrioles (orange cylinders) are connected by an  
inter-centriolar linker with the bulk of the PCM associated with the older (mother) centriole. The size and shape of the PCM is defined by 
the two filament proteins, pericentrin and Cep152, that extend radially from the centriole surface to generate a proximal layer (gray circle).  
This contains other proteins, such as Cdk5Rap2 and Cep192, which together create a branched matrix that provides binding sites for  
γ-TuRCs and their adaptor proteins. A second population of Cep192 is closely associated with proteins involved in centriole duplication at 
the centriole surface. In mitosis (right panel), PCM expansion results from the phosphorylation of multiple proteins, including pericentrin, 
Cdk5Rap2, and Cep192, by Plk1. This creates an outer expansive layer with gel-like properties (blue hatched circle) that is less well 
ordered but contains scaffolds that increase the microtubule nucleation capacity necessary for spindle assembly. Indeed, increased levels 
of these PCM proteins, together with additional centrosomally localized tubulin-binding proteins, such as chTOG and TPX2, may well  
allow microtubule nucleation to occur independently of γ-TuRCs (see inset). In contrast, in certain differentiated cells (left panel), disassembly 
of the proximal layer occurs with PCM proteins recruited to other non-centrosomal MTOCs. Note that the interphase centrosome is shown  
with two unduplicated centrioles typical of a G1 cell, whereas the mitotic centrosome contains a duplicated centriole pair that has also lost  
the inter-centriolar linker (mitotic cells have four centrioles, two in each spindle pole). CTD, C-terminal domain; NTD, N-terminal domain.

motifs, a leucine zipper (LZ) in the phospho-regulated mul-
timerization (PReM) domain at the center of the protein and the  
centrosomin motif 2 (CM2) domain at the C-terminus24,25.  
However, tetramer formation requires phosphorylation within 
the PReM domain by the mitotic kinase Plk1 (or Polo in flies).  
Without this phosphorylation, centrosomin most likely exists as a 
closed intramolecular homodimer, and this may explain why very 
little PCM is assembled around interphase centrioles in flies.

Expansion of the mitotic PCM results from the 
assembly of disordered gel-like scaffolds
Super-resolution imaging suggests that, in contrast to interphase 
PCM, mitosis PCM is much less ordered. What has been clear 
for considerable time is that PCM expansion occurs through a  
process known as centrosome maturation that is absolutely  
dependent on Plk1 kinase activity, with Plk1 phosphorylating 
multiple PCM components, including pericentrin, Cdk5Rap2,  
Cep192, and, in worms, SPD-526–30. Worms lack pericentrin, 
Cep152, and Cdk5Rap2 but use the SPD-5 protein to perform 
analogous functions to Cdk5Rap2 and centrosomin in assem-
bling the expansive PCM in mitosis28. Plk1 phosphorylation pro-
motes the recruitment of significantly increased amounts of these  
proteins, thereby creating a new expansive outer layer to the PCM 
that substantially increases the overall centrosome diameter.

What had been less clear until recently is the molecular basis for 
how phosphorylation leads to PCM expansion. However, as indi-
cated above, structural biology studies have now revealed how the 
phosphorylation of centrosomin promotes the formation of inter-
molecular tetramers25. Plk1 phosphorylation triggers the assembly 
of the 2:2 complex between the CM2 and LZ domains and leads, 
at least in vitro, to the generation of micron-scale assemblies 
reminiscent of centrosomes. Meanwhile, biochemical reconstitu-
tion experiments with the Caenorhabditis elegans PCM protein, 
SPD-5, have led to the elegant theory that the PCM can exist with-
out a membrane by forming a phase-separated condensate in the  
cytoplasm31. Macromolecular crowding with agents such as 
polyethylene glycol drove purified SPD-5 to assemble into  
micron-scale assemblies that again were similar in size and shape 
to the PCM in vivo. Strikingly, these could form in suboptimal  
macromolecular crowding conditions if Plk1 was added, while 
SPD-2 also facilitated their assembly. Taken together, the cur-
rent model is that Plk1 phosphorylation promotes the formation  
of gel-like, phase-separated condensates that, although lacking 
in uniform organization, most likely contain oligomeric scaffolds  
that enhance the capacity for microtubule nucleation.

What limits the steady-state size of this expanded mitotic  
PCM is likely to be a combination of a limiting cytoplasmic  
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concentration of PCM components, together with the balance of 
localized Plk1 kinase activity and competing phosphatase activity. 
Aurora-A is another kinase that works in concert with Plk1 to pro-
mote centrosome maturation32. In this case, different PCM proteins 
have been identified as Aurora-A substrates that directly facilitate  
γ-TuRC recruitment or, in the case of TACC and chTOG,  
stabilize microtubules. Plk1 can also phosphorylate NEDD1 
either directly or indirectly via the activation of another mitotic 
kinase, NEK9, which increases the rate of γ-TuRC recruitment to 
the PCM30,33,34. Importantly, many PCM components, including 
Cdk5Rap2, Cep152, and pericentrin, as well as additional effec-
tors such as chTOG and TPX2, can directly bind α/β-tubulin het-
erodimers and promote microtubule nucleation independently of  
γ-tubulin by raising the local concentration required for spon-
taneous nucleation31,35,36. Indeed, chTOG and TPX2 partition  
into the SPD-5 condensates generated in vitro using purified pro-
teins, where they concentrate tubulin and promote microtubule 
nucleation in the absence of γ-tubulin31.

Interestingly, the additional proteins present in the mitotic PCM 
do not simply stick to the outside of the PCM. In flies, centro-
somin is initially recruited to the inner regions of the PCM before  
moving outwards in a microtubule-dependent flaring mecha-
nism that involves flux from the inner to the outer regions of the  
centrosome37. This recruitment to the centriole surface is depend-
ent on the Cep192 homologue, SPD-2, while centrosomin is  
in turn required to maintain SPD-2 at the centrosome38. This could 
very well be crucial to limiting the centrosome size as Plk1 is 
tightly localized to the centriole surface13. So, as PCM proteins 
are recruited in mitosis, they will initially be phosphorylated by 
Plk1 when close to the centriole; however, this phosphorylation  
is gradually lost as these proteins flux outwards. Hence, assum-
ing the competing phosphatase is evenly distributed, there  
will be a diminishing gradient of Plk1-mediated substrate phos-
phorylation as one moves out through the PCM until eventu-
ally the threshold is passed for maintaining a phase-separated  
condensate25.

As well as undergoing maturation at mitotic onset, centrosomes 
execute a process known as disjunction when the duplicated  
pairs of centrioles lose a proteinaceous tether, or linker, that holds 
the two centrosomes together during interphase39. This raises the 
question of whether this centrosome linker is part of the PCM 
or rather an extension of the centrioles. To answer this question, 
we need to understand how the molecular elements of the linker, 
particularly the large coiled-coil proteins C-Nap1, rootletin, and 
LRRC45, physically interact with well-characterized PCM and 
centriole proteins40–42. The linker extends between the proximal 
ends of the parental centrioles, and C-Nap1 can associate with the 
proximal-end centriole cartwheel component, Cep135. However, 
whether this interaction is direct or dependent on other PCM or 
centriole proteins is unknown. Meanwhile, rootletin has been  
described by immuno-EM to form an oligomeric filament that 
forms the major structural element of the linker, connecting the  
centriole proximal ends via C-Nap143,44. Other, smaller proteins 
have been identified as components of the linker, including  
centlein, Cep68, and β-catenin, and it will be important to explore 
how the linker is organized using super-resolution microscopy45–47.

Unlike the outer expansive PCM layer that is assembled in mito-
sis, the linker structure is disassembled upon mitotic onset as a 
result of phosphorylation by the NEK2, and potentially NEK5,  
kinase48–50. The coating of linker proteins with negative charge 
as a result of multi-site phosphorylation is the current favored  
model for linker disassembly39. However, there are several lines 
of evidence that suggest that centrosome linker disassembly 
does not occur in isolation but is associated with reorganization  
of the PCM. Cdk5Rap2 and γ-tubulin levels are disturbed at the 
interphase centrosome by altered activity of NEK2 or NEK5;  
meanwhile, the linker protein Cep68 can interact with pericen-
trin and Cdk5Rap2, and loss of Cdk5Rap2 promotes premature  
centrosome disjunction47,48,51,52.

PCM disassembly in differentiated cells
At the end of mitosis, the inactivation of Plk1 and subsequent 
dephosphorylation of PCM components, together with the loss 
of PCM fragments through flaring, lead to a return to the smaller 
size of PCM as defined by the proximal layer. The mechanism  
through which this expanded PCM is disassembled remains very 
poorly understood besides the requirement for the inactivation of 
Plk1, the dephosphorylation of Plk1 substrates, and the conse-
quent reversal of scaffold assembly processes. Indeed, artificial  
tethering of Plk1 to centrioles through a PACT domain fusion 
prevents PCM disassembly and centrosome elimination in fly 
oocytes53. However, there are also times in metazoan develop-
ment when the proximal layer itself is disassembled under spe-
cific differentiation states and alternative MTOCs are formed in 
different cellular locations. A good example of this occurs during 
myogenesis. As myoblasts commit to differentiation, centrosome  
function is attenuated and microtubules instead become nucle-
ated from the nuclear envelope, co-incident with the recruitment  
of PCM components to this membrane54–57. Importantly, though, 
the mechanisms of PCM disassembly in these specialized  
circumstances are currently unknown.

Considerable attention is now being turned to the questions 
of, first, how the PCM proximal layer is disassembled and, sec-
ond, which specific PCM proteins are recruited to the non-
centrosomal MTOCs to enable microtubule nucleation from 
these sites. Muscle cells, for example, recruit a number of PCM 
proteins, including pericentrin and Cdk5Rap2, to the nuclear  
envelope54,56. Hence, an important and intriguing question 
is whether a PCM-like proximal layer is assembled at non- 
centrosomal sites. Alternatively, these sites may assemble an  
oligomeric meshwork more reminiscent of the outer expansive 
PCM present in mitotic centrosomes. Like centrosome matu-
ration and disjunction, the disassembly of the PCM proximal 
layer and then re-assembly of non-centrosomal MTOCs almost  
certainly depend upon post-translational modification of  
proximal layer proteins, although it could also involve changes 
in gene expression and protein degradation. In support of this,  
cyclin-dependent kinases regulate the formation of an MTOC at 
the apical membrane in C. elegans intestinal cells, which in turn 
requires SPD-2 recruitment to the membrane58.

The formation of a non-centrosomal MTOC also requires a  
site-specific receptor for anchoring microtubule nucleation  
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complexes in an alternative location. Recent studies have identi-
fied a muscle-specific isoform of the mammalian nuclear envelope 
nesprin protein family, nesprin-1α, that is required for the recruit-
ment of pericentrin and Cdk5Rap2 as well as microtubule motor  
proteins to the nuclear envelope in muscle59,60. Similarly, micro-
tubule nucleation from the Golgi apparatus occurs in various dif-
ferentiated cell types61. In this instance, AKAP450, which shares 
homology with pericentrin through the conserved C-terminal 
PACT domain, is necessary for microtubule nucleation at the  
Golgi and its recruitment is dependent upon the Golgi-specific 
protein GM13062. It remains to be determined, though, how these 
membrane proteins provide a platform for the assembly of these 
non-centrosomal MTOCs.

When considering the organization of non-centrosomal MTOCs, it 
is worth noting that land plants lack centrioles yet organize func-
tional microtubule arrays63–65. In interphase, plants possess corti-
cal microtubule arrays that are distributed between the plasma 
membrane and large internal vacuole but without a focal point of 
organization. These microtubules appear to be primarily nucleated 
from γ-tubulin-associated complexes present at the plasma mem-
brane or on other microtubules but then self-assemble into func-
tional arrays through conserved microtubule-associated proteins, 
including chTOG. However, in early mitosis, a more organized and 
concentrated arrangement of microtubules is somehow formed, 
the preprophase band; this cortical ring of microtubules assembles 
at the cell equator at the site of future cell division, although the 
underlying assembly processes are not understood. As in animal 
cells, nuclear envelope breakdown allows these microtubules to 
interact with chromatin-nucleated microtubules to form the spin-
dle. Interestingly, as in muscle cells, microtubule nucleation occurs 
from the nuclear, as well as plasma, membrane in interphase66.  
However, while γ-tubulin complexes are again implicated, cur-
rent evidence suggests that these are bound to nesprin family pro-
teins rather than orthologues of classical PCM proteins. So, in this  
sense, some mechanisms of non-centrosomal MTOC organiza-
tion may well be conserved; however, plant cells lack homologues 
of pericentrin and Cdk5Rap2, suggesting that other processes are  
not conserved.

Pathological consequences of PCM disruption
Increased centrosome numbers are a typical hallmark of cancer 
cells and can promote genomic instability through cell division 
errors and metastatic events through disturbance of cell polar-
ity and migration. Meanwhile, inherited mutations in genes that 
encode core centriolar components can interfere with primary 
cilia function, causing multi-organ syndromes known as ciliopa-
thies. In both cases, there are reasonably clear explanations for why 
centrosome defects contribute to disease pathology67,68. Provoca-
tively, though, some proteins encoded by ciliopathy genes also  
localize to the nucleus and have roles in the DNA damage response, 
suggesting an alternative pathological mechanism69. What is less 
clear is why loss-of-function mutations in PCM components  
underlie two forms of growth defects: one that affects the whole 
body, primordial dwarfism, and one that is restricted to the brain, 
microcephaly70.

Inherited mutations in either of the two proximal layer filament 
proteins pericentrin or Cep152, as well as the CPAP centriole  

duplication factor, lead to Seckel syndrome and microcephalic 
osteodysplastic primordial dwarfism (MOPD) type II71–74. These 
primordial dwarfism syndromes exhibit profound growth retarda-
tion in every organ of the body and lead to miniature individu-
als. As overall size in mammals is dependent on cell number, 
primordial dwarfism reflects a reduction in cell number that must 
result from either decreased proliferation or increased cell death  
(or both)75. The simplest explanation would be that PCM defects 
prevent cell cycle progression by activating cell cycle checkpoints. 
Indeed, there is a wealth of evidence that centrosomes act as  
a meeting place to facilitate many different intracellular signal-
ing events, including checkpoint activation, that have no direct  
role in microtubule nucleation or organization76. Moreover, as for 
ciliopathies, some primordial dwarfism syndromes are associated 
with mutations in genes that regulate the DNA damage response, 
and the replication stress response in particular75. For example, 
PCM proteins are necessary to recruit ATR, a key checkpoint  
protein that monitors replication fork integrity, to the centrosome 
to facilitate DNA damage signaling and loss-of-function ATR  
mutations also lead to Seckel syndrome77. Hence, in the absence of 
an intact centrosome, cell cycle progression halts.

An alternative explanation is that defects prevent the PCM  
expansion necessary for proper spindle assembly and mitotic pro-
gression, thus leading to mitotic catastrophe and increasing cell 
death. However, a major conundrum in explaining primordial 
dwarfism is that these processes would have to affect all organs 
equally. It is possible that a uniform effect on stem cells during 
early development could cause a similar reduction in the progeni-
tor pools that control particular tissue sizes. Close-range homeo-
static mechanisms might also ensure an appropriate balance in the  
sizes of neighboring tissues, while more long-range effects could 
be exerted through endocrine organs that control tissue growth 
throughout the body. However, these are just ideas, and it is safe 
to say that we remain far from understanding the pathological  
basis for why PCM defects cause primordial dwarfism.

In contrast to primordial dwarfism, microcephaly is a specific  
reduction in brain size without affecting other organs78. Intrigu-
ingly, the majority of genes implicated in autosomal recessive  
primary microcephaly encode centrosomal proteins, including 
both centriolar and PCM components67,70. Notably, a different set 
of mutations in Cep152 cause microcephaly to those that cause  
Seckel syndrome79, while mutations in Cdk5Rap2 were amongst 
the first to be identified in microcephaly patients80. The current 
hypothesis for why centrosomal proteins are particularly prominent 
in this disease focuses very much on the disturbance of cell divi-
sions within the neural progenitor pool. These undergo not only 
symmetric divisions in early development to expand the pool but 
also asymmetric divisions to generate differentiated neurons whilst 
concomitantly replenishing the progenitor pool. As with primordial 
dwarfism, PCM defects that interfere with cell cycle progression 
by activating checkpoints or induce cell death as a result of mitotic 
defects would explain the reduced neural progenitor pool. Indeed, 
mutations in other centrosomal genes that cause primary micro-
cephaly, such as STIL, result in centriole amplification67, and the 
experimental induction of centriole amplification by overexpres-
sion of Plk4 leads to a microcephalic condition in mice primarily 
through mitotic errors and excessive apoptosis81. Equally, though, 
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errors in spindle positioning that prevent asymmetric divisions 
would cause failure to either generate differentiated cells or replen-
ish the progenitor pool. The organ-specific nature of this develop-
mental disease does strongly suggest that neural progenitors are 
exquisitely sensitive to perturbations in these processes, and one 
can speculate that this is due to the heavy reliance on asymmetric 
divisions to generate large brains.

Future perspectives
The combination of super-resolution microscopy, structural biol-
ogy, and biochemical reconstitution is beginning to provide the 
long-sought-after mechanistic details of how the PCM is organ-
ized and regulated. It has also revealed important similarities and 
differences between species. The PCM proximal layer present 
in interphase centrosomes is largely assembled around pericen-
trin/PLP and Cep152/Asterless in mammals and flies. However, 
neither of these proteins is found in worms. Mammals, flies, and 
worms all have a Cep192/SPD-2 protein that, at least in mammals, 
aids the connection between the centrioles and proximal layer.  
However, the amount of PCM present in interphase in flies and 
worms appears to be minimal, and it is not clear whether SPD-2 
has a role at this time. In the expanded mitotic PCM, mammals and 
flies use the related Cdk5Rap2 and centrosomin proteins to form 
extended scaffolds, while this function is performed in worms by 
SPD-5 that, at least by sequence, is unrelated. Cep192/SPD-2 have 
a more obviously conserved role across all species in the expanded 
mitotic PCM. Indeed, the principle of an ordered proximal layer at 
the PCM when present in interphase and a more disordered gel-like 
scaffold in the expanded PCM in mitosis does appear to be univer-
sally shared.

These findings are stimulating specific structure–function  
studies into, for example, how the proximal layer regulates  
centrosome size, how the filament proteins are anchored to cen-
triole walls, and how expansion and disassembly of the PCM  
are regulated by post-translational modifications. Relevant to this 
is whether the electron-dense centriolar satellites that surround 
centrosomes in some vertebrate cells represent supra-assemblies 
of PCM complexes that are being trafficked to centrosomes.  
Indeed, understanding the functional relationship between  
centriolar satellites and the PCM should explain whether there are 
proteins, such as PCM-1, that have their primary role in centri-
olar satellite integrity and why proteins implicated in ciliopathies  
seem to be over-represented in centriolar satellites82,83.

Unfortunately, apart from the importance of Plk1, we still know 
little about the molecular events that control PCM expansion, dis-
assembly, and relocation. A biochemical understanding of the roles 
of individual sites phosphorylated by Plk1, and Aurora-A for that 
matter, will be required as well as identification of the competing 
phosphatases. The recent demonstration of how Plk1 phosphor-
ylation of Drosophila Cdk5Rap2 may promote oligomerization  
through exposing a dimerization interface is an excellent  
exemplar25. However, other types of modification will almost  
certainly contribute to this, including, for example, the acetylation 
or ubiquitylation of PCM proteins. It is also not clear how peri-
centrin, which binds centrioles through its PACT domain to cre-
ate the proximal layer in interphase, is recruited to the outer layer  

during PCM expansion in mitosis84. Equally, the need to understand 
mechanisms that drive PCM disassembly is highlighted by the  
finding that formation of the nuclear MTOC in myotubes is  
disrupted in certain forms of muscular dystrophy and may  
contribute to disease pathophysiology85.

Perhaps unexpectedly, we have developed a reasonably coher-
ent model for PCM assembly and recruitment of γ-TuRCs based 
on just a handful of proteins. Yet more than 100 proteins have 
been described as PCM components; so what are the rest doing?  
On one hand, there is good evidence, as indicated earlier, that 
the centrosome can act as a meeting place for signaling proteins  
that are not directly involved in microtubule organization.  
However, ruling out a role for a particular PCM protein in  
microtubule organization is not easy. In this regard, the in vitro 
reconstitution of PCM assembly will be a particularly valuable 
approach and should identify the minimal set of components 
required for different PCM functions, including efficient  
microtubule nucleation and anchoring.

Finally, we need to understand how genetic mutations that 
affect PCM components give rise to growth-related pathologies.  
Our current knowledge can broadly explain the reduction in cell 
number, be it from checkpoint-mediated cell cycle arrest, increased 
cell death resulting from mitotic errors, or spindle orientation 
defects that perturb stem cell pools. However, the uniformity 
of organs affected in primordial dwarfism and, conversely, the  
tissue specificity in primary microcephaly are striking and  
difficult to explain, particularly considering that different  
mutations in the same protein (Cep152) can give rise to one or 
other pathology. Answering these questions will come at least 
in part from complementing what we have learnt from super- 
resolution, structural biology, and biochemical reconstitution  
studies with gene-editing approaches not just in cells but also in 
whole animals.
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