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Abstract

Early rumor detection (ERD) on social media platform is very challenging when limited, incomplete and noisy information is available.

Most of the existing methods have largely worked on event-level detection that requires the collection of posts relevant to a specific

event and relied only on user-generated content. They are not suitable for detecting rumor sources in the very early stages, before an

event unfolds and becomes widespread. In this paper, we address the task of ERD at the message level. We present a novel hybrid

neural network architecture, which combines a task-specific character-based bidirectional language model and stacked Long Short-Term

Memory (LSTM) networks to represent textual contents and social-temporal contexts of input source tweets, for modelling propagation

patterns of rumors in the early stages of their development. We apply multi-layered attention models to jointly learn attentive context

embeddings over multiple context inputs. Our experiments employ a stringent leave-one-out cross-validation (LOO-CV) evaluation

set-up on seven publicly available real-life rumor event data sets. Our models achieve state-of-the-art(SoA) performance for detecting

unseen rumors on large augmented data which covers more than 12 events and 2,967 rumors. An ablation study is conducted to

understand the relative contribution of each component of our proposed model.

Keywords: Early Rumor Detection, Social Media, Recurrent Neural Network, Attention Mechanism, Context Modeling

1. Introduction

Research on social media rumors has become increasingly

popular to understand the emergence and development of

rumor events. An automatic and efficient approach for the

early identification of rumors is vitally necessary in order

to limit their spreading and minimize their effects.

A typical rumor resolution process can include four sub-

tasks: rumor detection, tracking, stance classification, and

verification (Zubiaga et al., 2018). Rumor detection which

aims to identify whether a claim is a rumor or non-rumor

is a fundamental task for rumor resolution. Once a ru-

mor is identified, it becomes possible to track its evolution

over time, identify its sources, perform stance detection,

and finally determine the its veracity (Zubiaga et al., 2018)

(Kochkina et al., 2018). Recent research on online rumors

has largely focused on the later stages of the process, that

is, stance classification and verification. Although these are

crucial for rumor resolution, they cannot be performed until

rumors are identified. Several studies skip this preliminary

task, either leaving the development of approaches for them

for future work or assuming that rumors and their associ-

ated posts are manual inputs. In this work, we highlight the

importance of developing automated ERD systems for the

success of the entire rumor resolution process.

We propose a hybrid and context-aware deep neural net-

work framework for tweet-level ERD, which is capable of

learning not only textual contents of rumors, but more im-

portantly social-temporal contexts of their diffusion. A

large body of SoA research on rumor detection (Lukasik et

al., 2015; Chen et al., 2018; Zhou et al., 2019) only lever-

ages language modeling at the word level for contents of

source tweets and contexts (typically replies). In contrast,

we pay more attention to modeling at social context level.

Social contextual information typically refers to conversa-

tional threads of source tweets such as replies and retweets

in the case of Twitter. Conversational threads provide time

series information that how rumor-mongering changes peo-

ple’s opinions and how social media allows self-correction.

Some research uncovers two competing rules including ma-

jority preference and minority avoidance that affect the

evolution of public opinion through information exchange

(Wang et al., 2017a). Therefore, conversational threads of-

fer valuable insights about rumor propagation at the single

tweet level before events become widespread and obtain

far-reaching impact.

Twitter metadata provides rich explicit and implicit cues

related to replies and retweets (e.g.,author information, de-

cay of interest, and chain of replies) which can provide

useful complementary signals for early diffusion and have

the potential advantage of platform, domain and language

portability. Different from most existing work which is ex-

clusively based on textual contents, we argue that a good

model for temporal sequence learning can benefit from

multiple inputs. Multi-modal temporal data can offer dif-

ferent representations of the same phenomenon. In the case

of content and metadata in conversational threads, they are

correlated and share high-level semantics (Kıcıman, 2010).

Motivated by this observation, our method aims to extend a

model based on rumor source content (SC) with social con-

text information. A SoA context-aware Neural Language

Model (NLM) fine-tuned specifically for the task of rumor

detection is employed to encode contents. Social contexts

are modeled as the joint representation of conversational

contents and metadata through a Recurrent Neural Network

(RNN) architecture. We leverage two types of complemen-

tary contextual information which are strongly correlated

with source tweet contents. Specifically, we utilize social

context content (CC) to provide insights about how pub-

lic opinion evolves in early stages and social context meta-

data (CM) to provide auxiliary information on how rumors

spread and how people react to rumors.

The main contributions of this work can be summarized as
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follows:

(1) We propose a hybrid deep learning architecture for ru-

mor detection at the individual tweet level, while the major-

ity of recent work focuses on event-level classification. It

advances SoA performance on tweet-level ERD.

(2) We exploit a context-aware model that learns a unified

and noise-resilient rumor representation from multiple cor-

related context inputs including SC, CC and CM beyond the

word-level modeling via a rumor task-specific neural lan-

guage model and multi-layered temporal attention mecha-

nisms.

(3) A large, augmented rumor data set recently released

(Han et al., 2019) is employed to train our proposed model.

Extensive experiments based on an ablation study and

LOO-CV are conducted to examine its effectiveness and

generalizability. Our model outperforms SoA models in

tweet-level rumor detection and achieves comparable per-

formance with SoA event-level rumor detection models.

2. Related Work

There are two different objectives in most recent techniques

proposed to date, including 1) event-level rumor detec-

tion: its purpose is to classify the target event into rumor

and non-rumor. It involves story or event detection and

tracking as well as grouping retweets or similar tweets in

clusters during pre-processing (Chen et al., 2018; Kwon et

al., 2017; Ma et al., 2016; Guo et al., 2018; Nguyen et al.,

2017; Jin et al., 2017b; Wang et al., 2018). 2) tweet-level

detection: in contrast to the event-level detection, it aims to

detect individual rumor-bearing source tweets before events

unfold (Zubiaga et al., 2016). This paper focuses on tweet-

level detection. This is more challenging work than the

event-level detection because individual tweets are short,

noisy, and of divergent topics due to intrinsic properties of

social media data. Thus, modeling tweet-level ERD with

limited context is still considered as open issue (Zubiaga et

al., 2018).

Event-level rumor detection (Yu et al., 2017) proposes

a CNN-based misinformation detection architecture which

allows CNNs to learn representations of contents of in-

put tweets related to an event. (Ma et al., 2016) pro-

poses various models based RNNs which learn tweet con-

tent representations based on tf-idf. (Ruchansky et al.,

2017) proposes a framework which jointly learns tempo-

ral representations and user features of input posts. (Ma

et al., 2018a) proposes a GRU-based, multi-task learning

architecture which unifies both stances and rumor detec-

tion. (Chen et al., 2018) is one of early work that uses

RNNs and attention mechanism to model deep represen-

tation of aggregated tweet content of rumor event. (Guo et

al., 2018) exploits content representations and hand-crafted

social contexts features with attention-based bidirectional

LSTM networks.

Message-level rumor detection (Zubiaga et al., 2017) pro-

poses a conditional random fields-based model that exploits

a combination of context content and metadata features to

learn sequential dynamics of rumor diffusion at the tweet

level. (Ma et al., 2018b) proposes recursive neural networks

models which take a tree structure of each input source

tweet as input. Tree structures represent relations between

source tweets and their contexts (i.e., replies and retweets).

(Liu and Wu, 2018) proposes a hybrid of CNNs and RNNs

which is capable of learning rumor propagation based on

features of users who have participated in rumor spreading.

(Jin et al., 2017a) proposes a multi-modal model compris-

ing CNN and LSTM with attention mechanism. It jointly

learns representations of rumour textual contents and social

contexts. The joint representations are fused with images

embedded in tweets encoded using CNNs. A recent trend is

to exploit multi-task learning frameworks for rumor detec-

tion and other rumor resolution sub-tasks (Kochkina et al.,

2018) (Veyseh et al., 2019; Li et al., 2019). The majority of

such work focuses on leveraging tweet content representa-

tion and the conversational structure of their context (e.g.,

replies). (Kochkina et al., 2018) decomposes conversation

threads into several branches according to Twitter mentions

(i.e., @username) which allows the application of majority

voting for per-thread prediction. (Veyseh et al., 2019) ex-

amines the effectiveness of recent NLMs in content embed-

ding. (Li et al., 2019) incorporates user-level information

as an additional signal of credibility. (Geng et al., 2019) in-

corporate the sentiment of replies into their GRU model and

applies self-attention to source tweet content. (Han et al.,

2019) modified the RNN-based multi-task learning model

originally proposed by (Kochkina et al., 2018). The au-

thors evaluate the proposed model using their augmented

data generated via weak supervision.

In this paper, we identify several limitations of existing

work on tweet-level rumor detection. The majority of SoA

methods are limited to contents of source posts and/or those

of their contexts and rely on hand-crafted features for both

content and propagation context. Our work avoids any so-

phisticated feature engineering on content and only adopts

a limited number of generic features commonly used to en-

code context metadata. In addition, prevalent word-level at-

tention mechanism is not applied in our model. This helps

us to focus on examining the effectiveness of our propaga-

tion context-based model and task-specific language model.

Furthermore, data scarcity is a known limitation in the

field of ERD. Most studies have evaluated their methods

on small or proprietary data sets with a conventional ap-

proach for splitting data into train and test sets. To our best

knowledge, it is the first work presenting an extensive ex-

perimental comparison with both LOO-CV and k-fold CV

procedures to provide an almost unbiased estimate of the

generalizability of a model to unseen events and in realistic

scenarios.

3. Methodology

3.1. Problem Statement

Rumors are commonly considered as statements presenting

facts that lack substantiation. Therefore, candidate rumor

tweets should be factual or informative. In our task, a po-

tential rumor is presented as a tweet which reports an up-

date associated with a newsworthy event, but is deemed un-

substantiated at the time of release. Individual social media

posts can be very short in nature, containing very limited

context with variable time series lengths. This is a typi-

cal characteristic on Twitter. A rumor claim in the very

early stages of event evolution is usually from a candidate
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source tweet xi at timestamp ti, which can be considered

as a source of a potential rumor event. In this paper, we

focus on conversational content and associated metadata

which are considered as two separate but correlated sequen-

tial sub-events.

A set of candidate source tweets is denoted by X =
{x1, ..., xn} which contains i candidate tweets, where each

candidate tweet xi = {[CCi, CMi], ti}, xi ∈ X con-

sists of two correlated observations (reactions) CCi and

CMi over time series ti. Let j be the length of conver-

sational threads (i.e., the number of replies) of each in-

put source tweet. CCi = {cci,0, cci,1, ..., cci,j} is a set

of temporal-ordered observations from context content.

CMi = {cmi,0, cmi,1, ..., cmi,j} is a set of temporal-

ordered observations from context metadata. Let y =
{0, 1} be binary labels. The task is to predict the most

probable tag for each candidate source tweet xi based on

source tweet content and all context sub-events CCi and

CMi, given a time range ti ⊆ [0, j]. yi = 1 if xi is a

rumor, and yi = 0 otherwise.

3.2. Overview of Model Architecture

The overall architecture of the proposed tweet-level Ru-

mor Propagation based Deep Neural Network (RP-DNN)

is shown in Figure 1. Basically, we learn a neural network

model that takes source tweets xi and corresponding con-

texts (CCi and CMi) as input and outputs predictions ŷi.

RPDNN consists of four major parts including 1) data en-

coding layers, 2) stacked RNN layers, 3) stacked attention

models, and 4) classification layer.

Tweet-level EDR using RP-DNN follows the four key

stages: a) Once candidate source tweets X and associ-

ated context inputs (CCi and CMi) are loaded and pre-

processed (see details in section 4.2.), the two types of raw

context inputs will be encoded in data encoding layers.

These are important layers that convert source tweets and

conversational context into inputs for subsequent RNN lay-

ers for contextual modeling. It consists of a content em-

bedding layer (section 3.5.) and a metadata encoding layer

(section 3.6.). The objective of the former is to convert

tweets into embeddings V i
cc. The latter is to use a Metadata

Feature Extractor (MFE) to extract features from the cor-

responding metadata of the tweets that characterizes public

engagement and diffusion patterns. The output of the MFE

is represented as feature vectors V i
cm which are normalized

by applying a global mean and variance computed from

training data. b) Subsequently, encoded context inputs will

be fed into a social-temporal context representation layer

consisting of stacked RNN layers and stacked attention

models (illustrated in section 3.3. and 3.4. respectively).

We stack multiple LSTMs together to form a stacked LSTM

that takes input representations (i.e., V i
cc and V i

cm; outputs

of the data encoding layers) arranged in chronological or-

der. Let the number of layers be L. L-layer LSTMs (L = 2
in our case) are utilized to process the two types of con-

textual data separately. c) The recurrent structure models

features of sequential data and then uses soft hierarchical

attention models (the 1st attention layer) to produce an op-

timal representation. The contextual embeddings from the

two recurrent layers (hidden states) output (Hi
cm and Hi

cc)

are then temporally combined to form a joint representation

(Hi
c). The third attention model (the 2nd attention layer)

is performed on the joint hidden sequential embedding Hi
c

and eventually produces a compact representation of con-

text sequences V i
c , followed by (masked) layer normalisa-

tion (Ba et al., 2016). d) Finally, we combine two embed-

dings of SC and context via concatenation to form the fi-

nal rumor source representation in the classification layer.

This is the final output layer which provides the result of

rumor detection. Cross-entropy loss are computed to opti-

mize the whole network. A 3-layer fully-connected neural

network with Leaky ReLu activations and softmax function

takes the final representation to yield the output.

3.3. Stacked RNN layer

A natural choice is to use Recurrent Neural Network (RNN)

to model rumor context. An RNN processes a sequential

input in a way that resembles how humans do it. It per-

forms an operation, ht = fW (xt, ht−1), on every candi-

date tweet context (xt) of a sequence, where ht is the hid-

den state a time step t and W is the weights of the network.

The hidden state at each time step depends on the previ-

ous hidden state. Therefore, the order of time series-based

reaction context input is important. Intuitively, this pro-

cess enables RNNs to model the evolution of public opin-

ion about each source claim and diffusion patterns of pub-

lic engagement (e.g., retweets, likes) through correspond-

ing metadata. Meanwhile, it enables to handle inputs of

variable lengths.

Regarding utilizing complementary context clues and mod-

eling context with different types of features (considered as

two different sub-events), conventional approaches (Xing

and Paul, 2017; Zhou et al., 2017; Jin et al., 2017a; Gu et

al., 2018) simply concatenate embeddings of different data

inputs or process them through a linear combination of dif-

ferent feature embeddings to form a single representation.

This practice completely ignores the correlations and dif-

ferences between different context inputs. We argue that

a model should have the ability of learning weights sepa-

rately from different context inputs in order to find salient

parts of each context type. In addition, a model should have

the ability to learn important clues across multiple context

observations (as illustrated in section 3.4.).

To this end, we propose two (simultaneous) context embed-

dings to explore two correlated context inputs, and use two

layers of forward LSTMs in order to learn more abstract

features respectively. Concretely, to model the temporal

evolution of public opinions, context content embeddings

(V i
cc) are given as input to two layers of forward LSTMs.

The context output state Hi
cc at time t is abbreviated as

−−→
hi
cc,t =

−−−−−→
LSTMl(

−−−−→
hi
cc,t−1

, vicc,t), ∀t ∈ [0, j].
Regarding diffusion patterns of public engagement, we em-

ploy shallow features extracted from explicit information

in social reactions to induce a hierarchical RNN model.

In contrast to previous work (Ma et al., 2015; Zubiaga et

al., 2017), our RNN-based method avoids painstakingly

complicated feature engineering, and instead allows RNN

to learn deep, hidden behavioural, and social dynamics of

underlying complex hierarchical social-temporal structure.

The context output state Hi
cm at time t is abbreviated as
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Figure 1: Overview of model architecture

−−−→
hi
cm,t =

−−−−−→
LSTMl(

−−−−−→
hi
cm,t−1

, vicm,t), ∀t ∈ [0, j].

3.4. Stacked Soft Attentions

In order to amplify the contribution of important context el-

ements and filter noise or unnecessary information in final

representation, we introduce multiple-layer stack attention

mechanism in our network. This is inspired by the perfor-

mance of stacked attentions in recent advances (Dyer et al.,

2015; Yang et al., 2016a). By applying attention over mul-

tiple steps, the model can focus on more salient features

and this has been proved in many visual recognition chal-

lenges (Yang et al., 2016a). We explore ways to leverage

attention mechanisms for context embeddings at different

levels to eliminate invalid information and get more accu-

rate contextual interaction information, thereby improving

classification performance.

Specifically, we propose to calculate attention weights by

providing information about all time steps for context em-

bedding layers. It takes a context sequence of a predefined

length j as input and learns a mapping from this sequence

to an output sequence using attention mechanisms. We em-

ploy the idea of hierarchical attention networks (Yang et al.,

2016b) and adapt the context-aware model in our networks.

We here represent attention as a probabilistic distribution

over temporally ordered conversational context inputs, and

implement its estimation via our end-to-end rumor classifi-

cation framework. The standard softmax function (Martins

and Astudillo, 2016) is used to approximate a normalized

probability distribution of importance on entire context. Let

Hc be the recurrent hidden states of tweet context (see sec-

tion 3.3.). Formally,

αt
c = softmax(tanh(Whh

t
c + bh)), ∀t ∈ [0, j]. (1)

ht
c new = αt

ch
t
c (2)

Wh and bh are the attention layer’s weights, which are ini-

tialized using He initialization and optimized during train-

ing. Zero padding is used to handle variable lengths. Fol-

lowing the same practice adopted in the stacked RNN layer,

we mask out padded values with negative infinity float fol-

lowing the practice of (Vaswani et al., 2017). hc new is the

re-weighted context embeddings.

Rather than only computing attention weights once, atten-

tion mechanism is applied to two layers in our architecture:

1) stacked RNN layers and 2) joint representation layer.

Specifically, the first attention layer contains two sub-layers

of attentions on the top of CC context encoder (see section

3.5.) output Ht
cc and CM context encoder (see section 3.6.)

output Ht
cm respectively (as defined in eq. 3 and 4). Two

independent attention models are trained and then modify

the hidden states of two separate recurrent layers. The out-

put of two attention models are denoted as Ht
cc new and

Ht
cm new. The weighted hidden state vectors for all time-

steps from two context encoders are then concatenated and

provided as joint representation input for the second atten-

tion layer.

Ht
cc new = attention1(H

t
cc) (3)

Ht
cm new = attention1(H

t
cm) (4)

To determine the inference relationship between two cor-

related context embeddings and to verify our hypothesis,

we use the attention model as a composition layer to mix

the two types of sub-event inference information. Different

from the first attention layer, the second attention layer ag-

gregates all the hidden states using their relative importance

via weighted sum, which is trained in the hope to capture

shared semantics between content and metadata. Eventu-

ally, the proposed algorithm helps to incorporate additional

auxiliary information into a unified representation of reac-

tion and diffusion patterns to achieve outstanding perfor-

mance in our context-based EDR problem. Formally,

ht
c = attention2(h

t
cc new ⊕ ht

cm new) (5)

vc =
∑

t

ht
c (6)
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where ht
c is the joint hidden states of context and vc is the

final context vector, i.e., a sum of ht
c for all time steps.

3.5. Tweet content encoder

A large body of work (Zubiaga et al., 2018) has previously

proposed and demonstrated the effectiveness and advantage

of textual contents in rumor detection. The user-generated

content has been proved to be useful for providing effec-

tive signals for identifying emerging rumors. For instance,

credibility-related terms (e.g., ”reportedly”, ”I hear that”,

etc.) can effectively indicate the uncertainty of a candi-

date tweet (Zubiaga et al., 2017). For rumor tweets that

do not have sufficient signals, social context content can

provide information about how people react to them, which

has been exploited extensively to identify rumors and their

veracity. (Maddock et al., 2015; Zubiaga et al., 2018).

In our framework, tweet content embeddings are obtained

via ELMo (Peters et al., 2018), a SoA context-aware neural

language model (NLM). We allow a NLM to learn signals

for linguistic and semantic characteristics from rumor tweet

content such as ambiguity and uncertainty in order to avoid

using hand-crafted features. ELMo represents each indi-

vidual word while taking the context of an entire corpus

(e.g., a sentence and paragraph) into account. The weight

of each hidden state is task-specific and can be learned from

domain-specific corpora. In our architecture, tweet sen-

tence embeddings are learned from both domain-specific

and general corpora. We employ a SoA ELMo model fine-

tuned specifically for the task of rumor detection on social

media (Han et al., 2019). This domain-specific language

model is pre-trained on an 1 billion word benchmark cor-

pus with vocabulary of 793,471 tokens and then fine-tuned

on a large credibility-focus Twitter corpus with 6,157,180

tweets with 146,340,647 tokens and 2,235,075 vocabular-

ies. The fine-tuned model achieves low perplexity in in-

domain data sets and SoA performance in the rumor detec-

tion task. Following the practice in (Perone et al., 2018;

Han et al., 2019), averaging ELMo word vectors is em-

ployed to produce the final short-text embeddings, using

features from all three layers of the ELMo model.

3.6. Conversational Context Metadata

The proposed architecture leverages 27 hand-crafted and

generic features (described in Table 1) that can be cate-

gorized into tweet-level and user-level. Early work on ru-

mor detection employs supervised learning techniques, and

thus has extensively studied manually curated features re-

lated to contents, users, and networks to seek distinguishing

features of online rumors (Qazvinian et al., 2011b; Kwon

et al., 2017; Yang et al., 2012; Sun et al., 2013; Zhao et

al., 2015; Zhang et al., 2015; Wu et al., 2015; Ma et al.,

2015; Liu and Xu, 2016; Zubiaga et al., 2017; Hamid-

ian and Diab, 2016). These studies have shown that those

features have the potential for distinguishing rumors from

non-rumors. In recent advances of deep learning architec-

tures, few event-level detection techniques (Ruchansky et

al., 2017; Kwon et al., 2017; Liu and Wu, 2018; Guo et

al., 2018) have shown the merits of combining both hand-

crafted metadata features and deep-learned features.

• Tweet-level features We let unsupervised NLM automat-

Table 1: Description of hand-crafted features.

Tweet-level features

Number of retweets

Number of favorites

Whether tweet has a question mark

Whether tweet is a duplicate of its source

Whether tweet contains URLs

Number of URLs embedded in tweet

Whether tweet has native media*

Number of words in tweet except source author’s screen name

User-level features

Number of posts user has posted

Number of public lists user belongs to

Number of followers

Number of followings

Whether user has a background profile image

User reputation (i.e., followers/(followings+1))

User reputation (i.e., followers/(followings+followers+1))

Number of tweets user has liked so far (aka ”user favorites”)

Account age in days

Whether user is verified

User engagement (i.e., # posts / (account age+1))

Following rate (i.e., followings / (account age+1))

Favorite rate (i.e., user favorites / (account age+1))

Whether geolocation is enabled

Whether user has a description

Number of words in user description

Number of characters in user’s name including white space

Whether user is source tweet’s author

Response time decay (time difference between context and source tweet in

mins)

* multimedia shared with the Tweet user-interface not via an external link

ically learn syntactic and semantic representations of in-

put tweets. Therefore, our hand-crafted features related to

content mainly include features related to URLs and mul-

timedia embedded in tweets. Twitter users often use URLs

as additional references due to a length limit (Qazvinian

et al., 2011a). Including them in tweets tends to encour-

age more people to share rumors (Tanaka et al., 2014)

and increase the trustworthiness of tweets (Gupta and Ku-

maraguru, 2012; Castillo et al., 2011). In particular, (Frig-

geri et al., 2014) reports that unverified information with

links to websites for validating and debunking rumors of-

ten goes viral on social media.

• User-level features Rumor spreaders are individuals who

seek attention and reputation (Sunstein, 2010). Features re-

lated to user profiles and reactions contribute to the char-

acterization of rumors (Liu et al., 2015). Previous stud-

ies found that rumors tend to spread from low-impact users

to influencers, whereas non-rumors have the opposite ten-

dency (Ma et al., 2017; Kwon et al., 2017). Another study

reports that trustworthy sources such as mainstream media

and verified users participate in rumor spreading by sim-

ply sharing rumors and maintaining neutrality (Li et al.,

2016).

4. Experiments

In this section, we report the evaluation data set and meth-

ods for our proposed model and data processing methods.

4.1. Data sets

Table 2 presents the statistics of all the pre-filtered event

data sets used in our experiment. They are obtained from

three public data sets. “Avg. tdiff” stands for the aver-

age time length of context (conversational threads) in each

event data set in minutes.

1. Aug-rnr (Han et al., 2019): This is an augmented ver-

sion of the PHEME (6392078). It contains rumor and non-
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Table 2: Statistics of 12 events data sets.

Event Replies

# of

rumors

# of

non-

rumors

Total Avg. Min Max Mdn Avg.

tdiff

charlie 382 1,356 42,081 24 6 341 19 8.6

ferguson 266 746 26,565 26 6 288 18 47.3

german 132 122 4,163 16 6 109 14 12.8

sydney 480 784 26,435 21 6 341 17 7.1

ottawa 361 539 16,034 18 6 208 13 440.6

boston 75 584 23,210 35 6 207 20 8.1

ebola 13 0 208 16 6 26 15 42.6

gurlitt 1 1 23 12 7 16 12 174.1

prince 43 0 452 11 6 21 10 4.7

putin 22 9 379 12 6 25 10 21.1

twitter15 782 323 47,324 43 6 458 28 2.2

twitter16 410 191 27,732 46 6 458 29 16.6

Total 2,967 4,655 214,606

rumor source tweets and their contexts associated with six

real-world breaking news events. Source tweets are labeled

with weak supervision. The augmented data set expands

original one by 200% of source tweets and 100% of so-

cial context data. The temporal filtered version 2.0 data1 is

adopted in our experiments to examine our models’ perfor-

mance in the context-based ERD task. We only use replies

(i.e., context data) posted within 7 days after corresponding

source tweets were posted. Retweets are excluded 2.

2. Twitter15/16 (Ma et al., 2017): These two data sets

consist of rumor and non-rumor source tweets and their

context. The context of each source tweet is provided in

the form of propagation trees. Source tweets are manually

annotated with one of the following four categories: non-

rumor, false rumor, true rumor and unverified rumor. As we

restrict the experiment set-up to binary classification, all but

“non-rumor” class are aggregated into “rumor” class. We

collect context data by following the practice introduced in

(Han et al., 2019).

3. PHEME (6392078; (Kochkina et al., 2018)): This

consists of manually labeled rumor and non-rumor source

tweets and their replies for 9 breaking news events. It is

used to generate test sets during evaluation.

4.2. Data Preprocessing

In this task, a candidate source tweet has to satisfy the fol-

lowing constraints: (1) informativeness: the length of its

content (i.e., the number of tokens) should be greater than a

minimum value. Tweets that lack enough textual informa-

tion are generally unremarkable and add noise to data (Ifrim

et al., 2014). (2) popularity: its context size (i.e., the num-

ber of replies to it) should be greater than a minimum value.

This pre-filtering allows us to examine the focus of this pa-

per regarding conversational context. Therefore, each input

xi (i.e., a candidate tweet) is set to satisfy both minimum

content length (= 4) and minimum context length(= 5).

All tweets are lowercased, tokenized and deaccented.

1https://zenodo.org/record/3269768
2Our preliminary results shows that retweets metadata is very

noisy. Simply adding retweets into context causes underfitting and

poor performance.

Table 3: Statistics of the balanced data sets for LOO-CV.

LOO Event Training Holdout Test

charlie 4,674 496 680

ferguson 4,818 584 466

german 5,144 526 212

sydney 4,474 500 836

ottawa 4,676 536 578

twitter15 3,924 446 646

twitter16 4,600 514 382

4.3. Model Implementations

Models were implemented3 using Python 3.6, Allennlp

(0.8.2) framework(Gardner et al., 2018), and Pytorch 1.2.0.

All models were trained on one Tesla P100 SXM2 GPU

node with maximum 16GiB RAM. More details of model

settings are given in appendix 8..

4.4. Settings and Baselines

Two following evaluation procedures are employed to eval-

uate our models. Four performance metrics are adopted in

our experiments including Accuracy (Acc.), precision (P),

recall (R), and F1-measure (F1). P, R and F1 are computed

with respect to positive class (i.e., rumor). Overall perfor-

mance is an average over all CV folds.

LOO-CV The mainstream rumor detection methods (Ma et

al., 2016; Liu and Wu, 2018; Chen et al., 2018; Ma et al.,

2018b; Zhou et al., 2019; Tarnpradab and Hua, 2019) adopt

conventional K-fold Cross Validation (CV) procedures with

various different split ratios to estimate their models’ per-

formance. This practice allows similar distributions be-

tween train and test sets, and usually leads to good per-

formance. However, the simple train/test split seems weak

when a model is required to generalize beyond the distribu-

tion sampled from the same rumor event data. To this end,

we adopt Leave one (event) out cross validation (LOO-CV)

as an approximate evaluation of our proposed models in re-

alistic scenarios.

Our LOO-CV data is presented in Table 3. 12 real-world

rumor event data sets in total are used to generate balanced

training, hold-out and test data. Two types of samples (i.e.,

rumor and non-rumor) are randomly shuffled in each data

set. Training and hold-out sets contain augmented data sets

from Aug-rnr, generated from 11 (out of 12) events with

a split ratio 9:1. 7 manually labeled event data sets from

PHEME (6392078) and Twitter15/16 are selected as test

sets, thus it is 7-fold LOO-CV.

K-fold CV We also evaluate our models via 5-fold cross

validation following the common practice in this field in

order to provide a comparative evaluation with more SoA

methods. Stratified k-fold CV is employed to ensure that

the percentage of samples for each class is preserved in

each returned stratified fold. The split ratio for three data

sets is 18:1:1, which results in 4,382 source tweets in the

training set and 246 in hold/test set per fold.

Baselines Our models (see Section 4.5.) are evaluated with

the following SoA models that are comparable and utilize

conversational threads.

3The source code is available at https://github.com/

jerrygaoLondon/RPDNN
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• (Zubiaga et al., 2017): LOO-CV results for tweet-level

classification on positive class (i.e., rumor) are given on 5

PHEME event sets.

• (Zhou et al., 2019): Overall results of event-level ERD

for two classes with a 3:1 train/test split ratio are provided

for the 5 PHEME event sets .

• (Han et al., 2019): LOO-CV results for tweet-level

ERD on the 5 PHEME event sets are provided based on

a train/test split ratio of 3:1.

• (Ma et al., 2018b): 5-fold CV results for tweet-level

ERD for four classes on the Twitter 15/16 are available with

a 3:1 train/test split ratio.

• (Liu and Wu, 2018): 3-fold CV results for event-level

ERD for two classes are reported on the Twitter 15/16 with

a 3:1 train/test split ratio.

4.5. Ablation study

A set of exploratory experiments is conducted to study the

relative contribution of each component in our message-

level ERD model.

• RPDNN: This is our full model setting that we will com-

pare with baseline methods.

• RPDNN-cxt: Only source contents are used.

• RPDNN-SC: Only social contexts are used.

• RPDNN-CC: This is the full model excluding context

contents.

• RPDNN-CM: This is the full model excluding context

metadata.

• RPDNN-Att: This is the full model excluding attention

mechanisms. The last hidden state of LSTM output is used

for classification with this setting.

• RPDNN-SC-CC: Only context metadata are used.

• RPDNN-SC-CM: Only context contents are used.

5. Results and Discussion

5.1. Classification Performance

As shown in Table 4 and 5, our proposed model yields

SoA performance with larger test data comparable to all

the baseline models under two different evaluation tech-

niques while our architecture provides a more abstract con-

text representation and does not specially model many as-

pects of factuality (e.g., stance, word-level context, senti-

ment, follower/following relationship, etc.). The full model

(RPDNN) achieved an average F1 score of 0.817 in 5-fold

CV and that of 0.727 in 7-fold LOO-CV. The result of more

stricter LOO-CV shows 7% improvement over the best

comparable SoA method. Details of LOO-CV results are

presented in appendix 8. In brief, we observe that perfor-

mance varies slightly for different LOO events. The vari-

ance of cross-event performance is 0.0033 in F1 and 0.0055

in Acc., which could be attributed to structural issues of

different LOO event context rather than actual model capa-

bilities.

Ablation study observation The ablation study of the in-

ternal baseline models of shows that 1) source content:

the content of candidate source tweets can be considered

as the most important and influential factor in ERD. This

observation is consistent with a large body of previous

work that exploits source contents alone to measure the

credibility of rumors. The source content only model (

Table 4: Comparison of overall CV results.

Methods P R F1 Acc.

RPDNN 0.768 0.876 0.817 0.803

RPDNN-cxt 0.785 0.844 0.811 0.804

RPDNN-SC 0.730 0.839 0.780 0.762

RPDNN-CC 0.762 0.846 0.801 0.788

RPDNN-CM 0.754 0.868 0.805 0.789

RPDNN-Att 0.766 0.847 0.803 0.792

RPDNN-SC-CM 0.779 0.733 0.754 0.762

RPDNN-SC-CC 0.624 0.597 0.609 0.617

(Zhou et al., 2019) 0.843* 0.735* 0.785* 0.858*

(Liu and Wu, 2018) – – 0.843 0.853

(Ma et al., 2018a) – – 0.753 0.730

*evaluation metrics are computed over all classes.

Table 5: Comparison of overall LOO-CV results.

Methods P R F1 Acc.

RPDNN 0.648 0.834 0.727 0.684

RPDNN-cxt 0.626 0.838 0.715 0.667

RPDNN-SC 0.621 0.796 0.694 0.648

RPDNN-CC 0.631 0.800 0.705 0.654

RPDNN-CM 0.625 0.862 0.723 0.669

RPDNN-Att 0.643 0.814 0.717 0.679

RPDNN-SC-CM 0.59 0.862 0.697 0.625

RPDNN-SC-CC 0.568 0.519 0.514 0.544

(Han et al., 2019) 0.716 0.614 0.656 0.685

(Zubiaga et al., 2017) 0.692 0.559 0.601 –

“RPDNN-cxt”) achieved performance comparable to the

full model (only 1% difference with two metrics). The

experiment results show that the adoption of the rumor

task-specific ELMo model proves to be effective for short-

text content embeddings with limited context by capturing

significant contextualized representations of rumor-bearing

tweets’ content. The ELMo embeddings make the most

contribution and improve the overall results, which is fur-

ther supported by “RPDNN-SC-CM” setting. 2) conver-

sational context: the context of source tweets can pro-

vide additional and effective information to detect rumors.

The context-only model “RPDNN-SC” achieved compara-

ble performance to the full model (0.780 F1 in CV and

0.694 F1 in LOO-CV respectively). It is worth noting that

our context content only model (“RPDNN-SC-CM”) also

achieved SoA performance based on two metrics (0.754

F1 in CV and 0.697 F1 in LOO-CV). The results indi-

cate that modeling the evolution of public opinion and

self-correction mechanism in tweet context is an important

and effective approach to ERD. In addition, the metadata

only model (“RPDNN-SC-CC”) achieved reasonable per-

formance (0.609F1 in CV and 0.514F1 in LOO-CV respec-

tively) and incorporating metadata helps to improve preci-

sion of full model by 2.3% with LOO-CV (as observed in

“RPDNN-CM”). This verifies our assumption that the con-

text metadata of rumor source tweets is useful in capturing

relevant characteristics of rumor diffusion in early stages.

Our observation from the comparative results suggests that

although context metadata is more noisy than context con-

tent, it can provide effective complementary evidence in the

early stages of rumor diffusion with respect to the identifi-
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cation of weak signals. Further experiments can be con-

ducted to investigate its usefulness in cross-platform (i.e.,

other social media platforms) and cross-language predic-

tion in terms of exploiting a pre-trained metadata model

with transfer learning techniques. By comparing “RPDNN-

CC” and “RPDNN-CM” to the full model, the final uni-

fied model improves F1 performance by around 1-2%,

which can be attributed to its modeling of higher-order fea-

ture interactions of two correlated contexts. 3) context-

aware attention mechanisms: the benefits of incorporat-

ing stacked attention mechanisms into a context model are

further justified in our experiments by comparison of per-

formance between the full model and attention excluded

model (”RPDNN-Att”). Our context-aware attention mech-

anism can slightly improve both recall and precision, and

overall performance with attention achieves a slight im-

provement in F-measure under the two evaluation settings

by 1.4% and 1% respectively. Empirical observation in our

data indicates that the stacked attention models can reweigh

contexts according to their relevance and significance layer

by layer. Due to the recurrent structure, the hidden vec-

tor close to the end is more informative than its beginning.

Thus, for small context, the performance of the attention-

based full model is similar to that of the standard LSTM

model (i.e., “RPDNN-Att”). Few representative context

samples from the test set with 3 layers of attention weights

can be found in Figure 10 in Appendix.

5.2. Training Loss and Performance

Based on the experiments, we set the number of epochs to

10 in order to avoid overfitting. Figure 9 presents training

loss and accuracy curve with 10 epochs over time during

the training of “RPDNN” models in 7-fold LOO-CV.

Figure 2: charliehebdo Figure 3: fergusonunrest

Figure 4: germanwings Figure 5: ottawashooting

Figure 6: sydneysiege Figure 7: twitter15

Figure 8: twitter16

Figure 9: Loss and accuracy curves for 7 folds in LOOCV.

The figures on 7 LOO models show steady decreases in

training loss within the first 5 epochs and the tendency of

overfitting after the 10th epoch. In comparison, we see a

constant increase of accuracy in both training and valida-

tion sets for all the LOO models. The results show that the

“sydneysiege” LOO set is the most difficult one to fit. Its

divergence in loss can be observed in the very early stage

since the 5th epoch and validation accuracy starts to drop

after the 10th epoch. The average training time of full mod-

els on LOO-CV data is around 28 hours with GPU.

6. Conclusion

In this paper, we addressed the task of message-level ERD

in early development stages of social media rumors where

limited information is available. A novel hybrid, context-

aware neural network architecture was proposed to learn

a unified representation of tweet contents and propagation

contexts, enabling the modeling of the evolution of public

opinion and the early stages of rumor diffusion. We per-

formed comparative evaluations with two CV techniques

and larger test sets from real-life events. The results showed

that the proposed model achieves SoA performance. Exper-

imental results showed the advantage of utilizing two types

of correlated temporal context inputs from conversational

contents and the metadata of tweets in learning an optimal

sequential model by improving its effectiveness and gen-

eralizability in unseen rumor events. An ablation study

proved the positive effect of incorporating a task-specific

neural language model and a multi-layered attention model

in representation learning in terms of improving resistance

to overfitting and noise.

There are several directions for future research. One is to

consider the incorporation of social network structure. A

potential benefit of modeling retweet chains via follower-

following relationship can be studied. In our current work,

we find no way to obtain this context data for our public

retrospective data using public Twitter API. In addition, the

impact of many recent neural language models (typically

transformer-based models) and variants of context-aware

self-attention models (e.g., multi-head self-attention mech-

anism in recent work) with larger context size can be ex-

amined. Furthermore, generating larger training data with

weak supervision technique is promising and can be ex-

ploited to allow a deeper NN architecture. It is also inter-

esting to investigate the transferability of a unified model

across multiple social media platforms, particularly for the

language-independent metadata model. The efficiency and

scalability in online social networks are unknown and not

examined in this paper.
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Appendix: Model Settings

All the parameters of stacked LSTM and attention weights

are trained by employing the derivative of the cross-entropy

loss function through back-propagation. We use the Ada-

Grad algorithm for parameter optimisation. As described

in Section 3.1., source tweets are filtered out based on two

constraints: content length and context size. Context se-

quence size is set to 200 (i.e. j = 200). The length of each

ELMo content embedding is 1024, and that of each meta-

data feature vector is 27. The number of forward LSTM

layers in each stacked LSTM is set to 2, and that of hid-

den units is set to twice input size. The learning rate and

weight decay are set to 1e-4 and 1e-5, respectively. All

training instances with corresponding context inputs are it-

erated over in each epoch where batch size is 128. The

number of epochs is set to 10 to avoid overfitting. Leaky

ReLU is employed in 3 dense layers. Drop out rates 0.2,

0.3, and 0.3 are respectively applied after each of the three

layers. Preliminary results show that the RPDNN suffers

from “dying ReLU” problem (Maas et al., 2013), which

means weights in NNs always drive all inputs to ReLU neu-

rons to negative. This is problematic because ReLu neurons

will no longer useful in discriminating the input. Replacing

with LReLU fix the problem which gives nonzero gradient

for negative value.

Appendix: LOOCV results.

Details of LOO-CV results are presented in Table 6.

Appendix: Analysis of attention degrees

In Figure 10, we present weights of first layers of atten-

tion (in “CC” and “CM” columns) and second layer of at-

tention (in “CC+CM” column). The context-level attention

weights of example threads are highlighted in different col-

ors according to the rank of their weights in different layers.

Source tweet content

Reports claim Putin disappeared due to impending political coup http://t.co/8IpndT2bsI

Attention weights

Context content CC CM CC+CM

@MailOnline @CathyYoung63 1 0.2755 1 0.1203 10 0.0932

@MailOnline Ah yes to be closer to his billions of rubles
2

0.1386

3

0.1015

8

0.0966

@MailOnline Sure? 
3

0.0775
8

0.0946
3

0.1023

@MailOnline Nothing to do with his wife giving birth 
then? 4

0.0731

10

0.0926

7

0.0998

@MailOnline That's stupid
5

0.0726
9

0.0928
6

0.1004

@MailOnline  He should disappear 6 feet under.
5

0.0726
7

0.0963
8

0.0996

@MailOnline he has  prolly been having a  facelift
5

0.0726
5

0.0981
4

0.1012

Something big is happening right now in Moscow  
“@MailOnline: Putin disappeared due to impending 
political coup http://t.co/MKClBsKfvK”

5

0.0726

2

0.1055

2

0.1030

@MailOnline would be nice if it's true but I doubt it. Just 
one more of Putin's games.

5
0.0726

4
0.1010

1
0.1031

@MailOnline are we ready for war? 5 0.0726 6 0.0973 5 0.1007

Weight sum 1.0003 1 0.9999

Source tweet content

Authorities collecting passports at #MH17 crash site. Australian coat of arms clearly 
visible. http://t.co/ai16vY46FV http://t.co/JA0gjQt3P5

Attention weights

Context content CC CM CC+C

M

@newscomauHQ still unverified footage 2 0.2703 1 0.2015 6 0.1226

@newscomauHQ collecting... They were taking them and 
showing the cameras the faces of passengers and then 
throwing them back down. :(

1

0.3427

2

0.1493

8

0.1092

@newscomauHQ @Harriett_Bur it's not authorities... 3 0.1355 3 0.1154 7 0.1115

@newscomauHQ such heart breaking news! 4 0.0614 8 0.1043 5 0.1271

@newscomauHQ Is it just mean who finds these images 
disturbing. To what length would you have to go to have 
these passports in your hands?

5

0.0476

5

0.1074

4

0.1303

@newscomauHQ How do you identify the lost souls. They 
are people with families, probably going on holiday or 
business not war!

6

0.0475

4

0.1097

3

0.1310

@newscomauHQ Strange that passports look in very good 
condition when rest of plane demolished.

6
0.0475

7
0.1060

2
0.1329

@newscomauHQ why are they in such good condition 
reminiscent of the ones found on 9/11

6
0.0475

6
0.1063

1
0.1353

Weight sum 1 0.9999 0.9999

Figure 10: Visualisation of attention weights for example

tweets.

The results obtained by the second attention layer (i.e.

CC+CM) show that replies expressing doubts and/or ques-

tions tend to have higher attention weights. Interestingly,

for some replies, the first and second attention layers pro-

duce contradictory results, but the latter tends to output

more logical results. For instance, the reply “@MailOnline

@CathyYoung63” in first example of source tweet is in the

first rank according to the first layer’s results. However, it

does not contain any useful information, and its author is
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Table 6: LOOCV results.

Event Models P R F1 Acc.

charliehebdo

RPDNN 0.743 0.882 0.807 0.788

RPDNN-cxt 0.654 0.956 0.777 0.725

RPDNN-SC 0.754 0.759 0.757 0.756

RPDNN-CC 0.712 0.924 0.804 0.698

RPDNN-CM 0.735 0.944 0.826 0.802

RPDNN-Att 0.751 0.868 0.805 0.79

RPDNN-SC-CM 0.697 0.868 0.773 0.746

RPDNN-SC-CC 0.559 0.597 0.578 0.563

(Han et al., 2019) 0.723 0.817 0.767 0.752

CRFs (Zubiaga et al., 2017) 0.545 0.762 0.636 –

ferguson

RPDNN 0.59 0.884 0.708 0.635

RPDNN-cxt 0.564 0.781 0.655 0.588

RPDNN-SC 0.641 0.888 0.745 0.695

RPDNN-CC 0.567 0.798 0.663 0.594

RPDNN-CM 0.565 0.957 0.710 0.609

RPDNN-Att 0.627 0.67 0.647 0.635

RPDNN-SC-CM 0.527 0.996 0.69 0.552

RPDNN-SC-CC 0.581 0.292 0.389 0.541

(Han et al., 2019) 0.707 0.535 0.609 0.657

CRFs (Zubiaga et al., 2017) 0.566 0.394 0.465 –

germanwings

RPDNN 0.594 0.745 0.661 0.618

RPDNN-cxt 0.577 0.887 0.699 0.618

RPDNN-SC 0.482 0.745 0.585 0.472

RPDNN-CC 0.555 0.623 0.587 0.561

RPDNN-CM 0.556 0.708 0.622 0.571

RPDNN-Att 0.602 0.755 0.67 0.627

RPDNN-SC-CM 0.511 0.849 0.638 0.519

RPDNN-SC-CC 0.653 0.65 0.651 0.652

(Han et al., 2019) 0.601 0.652 0.558 0.630

CRFs (Zubiaga et al., 2017) 0.743 0.668 0.704 –

ottawashooting

RPDNN 0.647 0.945 0.768 0.715

RPDNN-cxt 0.686 0.924 0.788 0.751

RPDNN-SC 0.605 0.917 0.729 0.659

RPDNN-CC 0.743 0.879 0.805 0.787

RPDNN-CM 0.650 0.945 0.77 0.718

RPDNN-Att 0.652 0.914 0.761 0.713

RPDNN-SC-CM 0.615 0.886 0.726 0.666

RPDNN-SC-CC 0.63 0.318 0.423 0.566

(Han et al., 2019) 0.85 0.71 0.77 0.80

CRFs (Zubiaga et al., 2017) 0.841 0.585 0.690 –

sydneysiege

RPDNN 0.784 0.809 0.796 0.793

RPDNN-cxt 0.687 0.861 0.764 0.734

RPDNN-SC 0.675 0.823 0.741 0.713

RPDNN-CC 0.673 0.871 0.759 0.724

RPDNN-CM 0.683 0.847 0.756 0.727

RPDNN-Att 0.684 0.902 0.778 0.743

RPDNN-SC-CM 0.634 0.90 0.744 0.69

RPDNN-SC-CC 0.68 0.366 0.476 0.597

(Han et al., 2019) 0.755 0.644 0.695 0.717

CRFs (Zubiaga et al., 2017) 0.764 0.385 0.512 –

Twitter 15

RPDNN 0.59 0.79 0.676 0.621

RPDNN-cxt 0.563 0.734 0.637 0.582

RPDNN-SC 0.571 0.613 0.591 0.576

RPDNN-CC 0.581 0.731 0.648 0.602

RPDNN-CM 0.580 0.839 0.686 0.616

RPDNN-Att 0.595 0.786 0.677 0.625

RPDNN-SC-CM 0.565 0.69 0.621 0.579

RPDNN-SC-CC 0.472 0.746 0.578 0.455

Twitter 16

RPDNN 0.588 0.785 0.673 0.618

RPDNN-cxt 0.654 0.723 0.687 0.67

RPDNN-SC 0.622 0.827 0.71 0.662

RPDNN-CC 0.585 0.775 0.667 0.613

RPDNN-CM 0.608 0.7958 0.689 0.641

RPDNN-Att 0.589 0.801 0.679 0.62

RPDNN-SC-CM 0.583 0.843 0.69 0.62

RPDNN-SC-CC 0.573 0.843 0.682 0.607

not a high-impact user. It is ranked last by the second layer.

This observation supports the motivation behind adopting

multiple attention layers (Yang et al., 2016a; Wang et al.,

2017b), that is, they can progressively refine feature maps

and focus on more salient features.
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