
This is a repository copy of Reachability analysis of reversal-bounded automata on
series–parallel graphs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156778/

Version: Published Version

Article:

Dimitrova, R. and Majumdar, R. (2018) Reachability analysis of reversal-bounded
automata on series–parallel graphs. Acta Informatica, 55 (2). pp. 153-189. ISSN
0001-5903

https://doi.org/10.1007/s00236-016-0290-1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Acta Informatica (2018) 55:153–189

https://doi.org/10.1007/s00236-016-0290-1

ORIGINAL ARTICLE

Reachability analysis of reversal-bounded automata

on series–parallel graphs

Rayna Dimitrova1
· Rupak Majumdar1

Received: 16 February 2016 / Accepted: 28 November 2016 / Published online: 18 December 2016

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Extensions to finite-state automata on strings, such as multi-head automata

or multi-counter automata, have been successfully used to encode many infinite-state

non-regular verification problems. In this paper, we consider a generalization of automata-

theoretic infinite-state verification from strings to labelled series–parallel graphs. We define

a model of non-deterministic, 2-way, concurrent automata working on series–parallel graphs

and communicating through shared registers on the nodes of the graph. We consider the

following verification problem: given a family of series–parallel graphs described by a

context-free graph transformation system (GTS), and a concurrent automaton over series–

parallel graphs, is some graph generated by the GTS accepted by the automaton? The general

problem is undecidable already for (one-way) multi-head automata over strings. We show

that a bounded version, where the automata make a fixed number of reversals along the graph

and use a fixed number of shared registers is decidable, even though there is no bound on

the sizes of series–parallel graphs generated by the GTS. Our decidability result is based

on establishing that the number of context switches can be bounded and on an encoding of

the computation of bounded concurrent automata that allows us to reduce the reachability

problem to the emptiness problem for pushdown automata.

1 Introduction

Automata theory studies abstract models of computation and the computational and decision

problems associated with them. The long line of research in this area has led to beautiful

theoretical results, and has a tremendous impact on algorithmic formal verification, e.g.,

B Rayna Dimitrova

rayna@mpi-sws.org

Rupak Majumdar

rupak@mpi-sws.org

1 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-016-0290-1&domain=pdf

154 R. Dimitrova, R. Majumdar

forming the basis of the hugely successful automata-theoretic approach to (finite-state) model

checking [25].

The simplest computational models are finite-state machines, describing languages over

finite or infinite words or trees. They have been generalized in many ways to extend the

set of languages that may be needed to model more complex (non-regular) computational

processes. For example, they can be extended with data structures such as stacks or counters,

or with multiple heads or tapes and allowing 2-way traversals of the input [22,24], One of

the fundamental problems for a class of abstract machines is the emptiness problem, which

asks, given an automaton in that class to decide whether the language it accepts is empty.

Since for many interesting extensions of finite-state automata the emptiness problem is

undecidable, research in this direction has focused on finding suitable underapproximations

for which language emptiness is algorithmically decidable. For example, the reversal bound-

edness restriction bounds the number of reversals of the counters or of stacks, or the number of

traversals of the input [13,14,17,18] and the bounded language restriction considers behav-

iors describable by a bounded language [11,12]. Overall, the approach has led to beautiful

theoretical results and has also been quite successful in modeling many infinite-state com-

putational models and reasoning about them algorithmically.

Most previous work in automata-theoretic verification has focused on machine models

for string or tree languages. In this paper, we study automata, whose languages consist of

series–parallel graphs whose edges are labelled with a finite alphabet. Series–parallel graphs

generalize strings or multi-tape machines by allowing multiple parallel “tracks” to fork off

and rejoin at any point. In contrast to general graphs, they retain enough structure, e.g., having

a natural “forward” direction, which leads to useful algorithmic properties. Languages over

series–parallel graphs can be described using context-free graph transformation systems

(GTSs), which describe the dynamic evolution of graphs through local rewrite rules [3,5,6].

We define and study a class of concurrent finite-state automata traversing series–parallel

graphs and communicating through state-holding registers located at the nodes of the graph.

More precisely, in our model of computation, a fixed number of finite-state machines traverse

the nodes of a series–parallel graph. At each step, one of the machines makes a transition

that depends on the current state of the machine, the label it reads on one of the incoming

or outgoing arcs, and the value of the register stored at its node. The machine moves along

the selected edge, updating its state as well as the register. Machines are thus 2-way and

non-deterministic, and communicate through the shared registers. A series–parallel graph is

accepted if some subset of machines reaches some final states being at the same node of the

graph.

The primary motivation for this model is parametrized verification of dynamical con-

current systems in which components interact with each other by traversing the edges of

a common graph. A typical example is a distributed train control system operating over a

rail-road network. While most work in parametrized verification has focused on systems

with fixed communication topologies (e.g., broadcast or token rings) and varying number

of processes, our model introduces a different source of parametrisation, allowing to check

whether a property holds for every network from a family of networks generated by a series

parallel graph grammar. We study the verification of reachability properties for this model,

which are of the form: there is no graph generated by the grammar and no execution of the

system, in which at some point there are at least two machines in given states located at the

same node. Such properties naturally capture mutual exclusion requirements for parts of the

network graph, for example that there is at most one machine at a time in some subgraph

whose edges are labelled with a given symbol.

123

Reachability analysis of reversal-bounded automata on… 155

We study the emptiness problem: given a context-free GTS defining a language of series–

parallel graphs, and a concurrent finite-state automaton, check if there is a graph in the

language of the GTS accepted by the automaton. This problem is, not surprisingly, undecid-

able: for example, we can encode linear bounded automata over strings. We study a natural

restriction of the emptiness problem by restricting the number of reversals along the com-

putation and by putting a bound on the number of shared registers in the graph. With these

two restrictions, we show that the emptiness problem is decidable and can be reduced to the

emptiness problem for pushdown automata. Note that even with the restrictions, the problem

is infinite-state because there is no a priori bound on the size of the series–parallel graphs

generated by the GTS.

The reduction is based on two technical observations. First, when the number of reversals

and the number of registers are fixed, there is a bound on the number of parallel tracks in

the graph that needs to be tracked. We also establish a bound on the number of different

times each machine moves along the run (although the length of the run may be unbounded).

Second, using the bounds above, we construct a large alphabet that tracks valid runs of the

machines on a valid graph generated by the GTS. We do this in several steps. We construct

a pushdown automaton that checks that a word is a valid representation of a subgraph of

a graph generated by the context-free GTS. We construct a set of nondeterministic finite

automata, one for each machine, that checks that the word encodes a correct run of that

machine along the graph. Finally, we construct another nondeterministic finite automaton

that checks that the run is accepted by the concurrent automaton. Some graph generated by

the GTS is accepted if the intersection of all these automata is non-empty.

Other related work The automata-theoretic approach is often called regular model check-

ing, when applied to parameterized verification [1]. An extensive study of the decidability

of several verification problems for classes of GTSs was carried out in [5]. The problems

considered there are reachability of a given graph, coverability (reachability of a graph that

contains a given graph as a subgraph) and existential coverability, which asks whether there

exists an initial graph such that the answer to the coverability problem is positive. The classes

of GTSs they investigate are defined by structural restrictions on the set of transformation

rules. Classes with decidable coverability problem are context-free graph grammars, well-

structured GTSs and the ones that keep the number of nodes constant. Hyperedge-replacement

graph grammars [9] and vertex-replacement graph grammars [10] are well-studied classes

of GTSs. It is known that for such graph grammars satisfiability of Monadic Second Order

(MSO) formulas is decidable [6]. A logic for expressing properties that involve interleaving

of temporal and graph modalities was developed in [4] as a combination of MSO and the

μ-calculus. They employ an approximation of GTS [3] that preserves fragments of the logic

to obtain a sound but incomplete verification method for these fragments. A method to refine

such approximations based on counterexamples was developed in [19]. [23] describes a tool

for model checking finite-state graph transition systems against first order temporal logic

properties. Automata-theoretic verification has been also applied to objects other than words

and trees. In [2], the verification of Message Sequence Charts against temporal prpoerties has

been studied. For Mazurkiewicz traces [7] model checking techniques have been developed

as well. In order to model concurrency, branching automata on series–parallel graphs have

been introduced in [20], focusing on studying the expressivity of these automata, but not their

algorithmic properties. The work [21] studies the emptiness problem for concurrent automata

with auxiliary storage and provides a generalization of the decidability results for a number

of classes of such automata for which the emptiness problem can be reduced to emptiness of

finite-state graph automata defined MSO definable graphs with bounded tree width. It might

123

156 R. Dimitrova, R. Majumdar

be possible to obtain or generalize the results we establish in this paper through arguments

similar to theirs.

The conference version of this paper appeared as [8].

2 Graph-grammar transition systems

Let A be a finite set. As usual, the set A∗ consists of all finite sequences of elements of A.

Let π = a0a1 · · · an−1an ∈ A∗. We define π−1 = anan−1 · · · a1a0. The length |π | = n + 1

of π is the number of elements of π and given 0 ≤ i ≤ j ≤ n we denote π[i] = ai and

π [i, j] = ai · · · a j .

With M(A) = {S | S : A → N}we denote the set of multisets over A. For S1, S2 ∈ M(A)

we define S1 � S2 iff for every a ∈ A we have S1(a) ≤ S2(a). We use square brackets to

denote multisets, for example, [a1, a2, a2] denotes S ∈ M(A), where S(a1) = 1, S(a2) = 2

and S(a) = 0 for all a ∈ A\{a1, a2}.

2.1 Series–parallel graph grammars

Fix an alphabet �. We consider graphs labelled with letters from �. A graph is a tuple

G = (N , E, nb, ne) where N is a finite set of nodes, E ∈ M(N × N × �) is a multiset of

edges and nb, ne ∈ N are two distinguished nodes called source and sink, respectively. For

an edge e = (n, n′, σ) ∈ E , we write src(e) for n and trg(e) for n′, and α(e) for the label σ

of e. We write H� for the set of all �-labelled graphs.

Let G = (N , E, nb, ne) and G ′ = (N ′, E ′, n′b, n′e) be graphs on disjoint sets of nodes.

For an edge ê = (̂n1, n̂2, σ̂) ∈ E , the edge replacement graph G [̂e �→ G ′] is the (unique

up to isomorphism) graph defined by removing one copy of the edge ê from G, and adding

the nodes and edges of G ′ by fusing n̂1 with n′b, and n̂2 with n′e. Formally, G [̂e �→ G ′] =

(N ′′, E ′′, nb, ne), where N ′′ = N ∪̇ (N ′\{n′b, n′e}), E ′′ = (E\{̂e}) ∪ Ê ′, where there is an

edge (n1, n2, σ) in the multiset Ê ′ with some multiplicity k > 0 iff one of the following

conditions holds:

– there is an edge (n′b, n′e, σ) in E ′ with multiplicity k, n1 = src(̂e) and n2 = trg(̂e);

– there is an edge (n1, n2, σ) in E ′ with multiplicity k, n1
= n′b and n2
= n′e;

– there is an edge (n′b, n2, σ) in E ′ with multiplicity k, and n1 = src(̂e);

– there is an edge (n1, n′e, σ) in E ′ with multiplicity k, and n2 = trg(̂e).

Definition 1 (Series–parallel graph grammar) A series parallel graph grammar (SPGG) is

a tuple G = (V, �, R, G0), where V is a finite set of variables, � is a finite alphabet (�∩V =

∅), R ⊆ V ×H�∪V is a finite set of rules, G0 = ({nb, ne}, {(nb, ne, v0)}, nb, ne) ∈ HV is

the initial graph, with start node nb, sink node ne, where nb
= ne and start symbol v0 ∈ V .

Furthermore, each rule (v, G ′) ∈ R, where G ′ = (N ′, E ′, n′b, n′e), satisfies exactly one of

the following conditions:

(1) N ′ = {n′b, n′e}, E ′ = {(n′b, n′e, σ)} and σ ∈ �, denoted (v, σ) ∈ R;

(2) N ′ = {n′b, n′e, n′} has three nodes, E ′ = {(n′b, n′, v1), (n
′, n′e, v2)} and v1, v2 ∈ V ,

denoted by (v, v1 · v2) ∈ R (series composition);

(3) N ′ = {n′b, n′e} has two nodes, E ′ = {(n′b, n′e, v1), (n
′
b, n′e, v2)} and v1, v2 ∈ V , denoted

by (v, v1 ‖ v2) ∈ R (parallel composition).

An SPGG derives a graph in H� as follows. It starts with the graph G0. In each step, it

picks an arbitrary edge e of the current graph G that is labelled with a variable v ∈ V , and

123

Reachability analysis of reversal-bounded automata on… 157

Fig. 1 A series parallel graph

generated by the SPGG in

Example 1
c

a

b

a a

a

b

b

b

b

b
nb n1

ne

applies a rule (v, G ′) ∈ R to get a new graph G ′′ = G[e �→ G ′]. In this case, we write

G �⇒ G ′′. A graph G ∈ H� is derived if there is a sequence G0 �⇒ G1 · · · �⇒ Gn = G

of steps that results in G. Note that every graph thus derived is a series–parallel graph labelled

with �, so an SPGG represents a set of series–parallel graphs labelled with �. We write L(G)

for the set of graphs in H� derived by G. We assume that for every initial variable v0 ∈ V it

holds that the set of graph derived by G is non-empty.

Example 1 As an example of an SPGG consider G = (V, �, R, G0) with variables

V = {v0, v1, va, vb, vc}, set of terminal symbols � = {a, b, c}, initial graph G0 =

({nb, ne}, {(nb, ne, v0)}, nb, ne) and rules R = {(v0, vc · v1), (v1, va ‖ vb), (va, a), (vb, b),

(vc, c), (va, va ·va), (vb, vb ·vb), (vb, vb ‖ vb), }. Figure 1 shows a (series–parallel) graph G

derived from the SPGG G. The directions of the edges denote the direction from the source

nb to sink ne associated with a series parallel graph. ⊓⊔

A series–parallel graph has a natural “direction” associated with it from the source to

the sink, consistent with the direction n1 → n2 of an edge (n1, n2, σ). In particular, it

has no directed cycles. For convenience, we introduce the “symmetric closure” of series–

parallel graphs. For each edge (n1, n2, σ) labelled with σ , we augment the label with a

direction 1 to obtain (σ, 1) (1 capturing the “forward” direction), and add an opposite edge

(n2, n1, (σ,−1)) labelled with (σ,−1) denoting the edge taken in the “backward” direc-

tion. Formally, given a series–parallel graph G = (N , E, nb, ne), we define its symmetric

closure G ′ = (N , E ′, nb, ne) ∈ H�×{1,−1}, where E ′ = {(n, n′, (σ, 1)) | (n, n′, σ) ∈

E} ∪ {(n, n′, (σ,−1)) | (n′, n, σ) ∈ E}. We write Lu(G) for the set of symmetric closures

of all graphs derived by G.

Remark While for simplicity of the presentation we consider graphs with a single pair of

source and sink nodes, our results can in principle be extended to graphs with multiple such

nodes. However, the automata construction outlined in Sect. 4.3 relies on the structure of the

rules of an SPGG and does not directly generalize to general context-free GTSs defining sets

of directed acyclic graphs.

2.2 Graph-grammar transition systems

We now define communicating finite automata on the symmetric closure of series–parallel

graphs. Recall that these are series–parallel graphs whose edges are labelled with an alphabet

and a direction. Intuitively, a concurrent finite automaton consists of m machines that tra-

verse the edges of a series–parallel graph, some of whose nodes are annotated with Boolean

registers. Each automaton traverses the edges of the graph: when the automaton is at a node

n of the graph and in state q , it reads the register on the node, chooses an edge with source

node n labelled with (σ, d) ∈ �× {1,−1} based on its current state, the label, and the value

123

158 R. Dimitrova, R. Majumdar

q0

qa qb

((a, .), 0, 1)
((b, .), 0, 0)
((b, .), 1, 1)

((c, .), 1, 0) ((c, .), 0, 0)
((c, .), 1, 1)

((c, .), 0, 0)
((c, .), 1, 1)

((a, .), 0, 0)
((a, .), 1, 1)

((b, .), 0, 0)
((b, .), 1, 1)

Fig. 2 A finite-state machine with alphabet � = {a, b, c}

read from the register, traverses the edge and moves to the target node of that edge and to a

new state q ′, and writes a value to the register at the source node.

Let � be a finite alphabet. A finite-state machine M = (Q, q0, �, δ) over the alphabet

�, consists of a finite set of states Q, an initial state q0 ∈ Q, the input alphabet �, and a

transition relation δ ⊆ Q × (� × {1,−1})× B× Q × B.

The intuitive meaning of a transition (q, (σ, d), b, q ′, b′) ∈ δ is that when the machine M

is in state q and reads input letter σ ∈ �, direction d ∈ {1,−1}, and register value b, then it

changes its state to q ′ and moves along an edge labelled (σ, d) in the graph and writes b′ to

the register.

Remark For simplicity of the presentation we assume that registers can only hold Boolean

values, but our results extend to any fixed finite set of possible values.

Example 2 Figure 2 shows an example of a finite-state machine M = (Q, q0, �, δ) with

states Q = {q0, qa, qb}, input alphabet � = {a, b, c} and transition relation δ depicted in

Fig. 2, where a label (((σ, d), p, p′) on an edge from state q to state q ′ stands for the transition

(q, (σ, d), p, q ′, p′). ⊓⊔

A concurrent finite automaton (M, m) is a set of m disjoint copies M1, . . . , Mm of a

given finite-state machine M. (The constructions and results in this paper trivially extend

to the case when the machines M1, . . . , Mm are not identical, which we assume here for

simplicity of the presentation.)

We now define an infinite-state transition system T (M, m, G) that captures the behaviour

of a concurrent finite-state automaton (M, m) on the family of series–parallel graphs derived

by a given SPGG G.

Definition 2 (Graph-grammar transition system) Let M = (Q, q0, �, δ) be a finite-

state machine. A concurrent finite-state automaton (M, m), together with an SPGG G =

(V, �, R, G0) defines a transition system T (M, m, G) = (Γ, Γ0,→).

The set of configurations Γ consists of all tuples 〈G, μ, β〉 such that

– G ∈ Lu(G) is a graph derived by G;

– μ : N → 2{1,...,m}×Q maps each node in G to the states of the machines at that node;

we require that for each i ∈ {1, . . . , m} there exists exactly one n ∈ N and exactly one

q ∈ Q with (i, q) ∈ μ(n);

– β : N → B maps each node to the value of the Boolean register at that node.

123

Reachability analysis of reversal-bounded automata on… 159

The graph G is a graph generated by the SPGG G. Intuitively, the function μ defines

the current states of each of the m machines, as well as their positions in the graph G. The

function β maps each register to its current value.

The set Γ0 of initial configurations is such that γ = 〈G, μ, β〉 ∈ Γ0 iff γ ∈ Γ , μ(nb) =

{(i, q0) | i ∈ {1, . . . , m}}, μ(n) = ∅ for every n ∈ N\{nb}, and β(n) = 0 for every n ∈ N .

That is, initially all machines are positioned at the source node of the graph and are in their

initial state, and all registers are 0.

The successor relation →⊆ Γ × Γ is defined as the union →=
⋃m

i=1 →i of the local

transition relations→i for i ∈ {1, . . . , m}. We have (〈G, μ, β〉, 〈G ′, μ′, β ′〉) ∈→i , (denoted

〈G, μ, β〉 →i 〈G
′, μ′, β ′〉) iff the following conditions are satisfied:

– G ′ = G, where G = (N , E, nb, ne) ∈ Lu(G) is a graph generated by G.

– There exist an edge e = (n, n′, (σ, d)) ∈ E , states q, q ′ ∈ Q, and b′ ∈ B such that:

(i) (i, q) ∈ μ(n) (Note that n and n′ are different, since G is an SPGG);

(ii) (q, α(e), β(n), q ′, b′) ∈ δ is a transition of M;

(iii) μ′(n) = μ(n)\{(i, q)}, μ′(n′) = μ(n′) ∪ {(i, q ′)} and μ′(n′′) = μ(n′′) for all other

nodes n′′ ∈ N\{n, n′},

(iv) β ′(n) = b′ and β ′(n′′) = β(n′′) for all other nodes n′′ ∈ N\{n}.

We say that the edge e is compatible with the transition γ → γ ′.

The idea is, that at each step a transition γ → γ ′ of the transition system occurs, at which

exactly one machine makes a transition according to δ and also moves along a compatible

edge of the graph, updating the functions μ and β accordingly.

A runρ of the transition system T (M, m, G) = (Γ, Γ0,→) is a sequence of configurations

ρ = γ0 · · · γ f ∈ Γ ∗ where γ0 ∈ Γ0 and γi−1 → γi for each i = 1, . . . , f .

A path in a graph G = (N , E, nb, ne) is a sequence of nodes n0 · · · nl such that for each

0 ≤ i < l it holds that (ni , ni+1, (σ, d)) ∈ E for some σ and d .

Let ρ = γ0 · · · γ f be a run and G be the corresponding underlying graph. A path n0, . . . , nl

in G is compatible with ρ if and only if there exists a machine j ∈ {1, . . . , m} such that

γ̂0 → γ̂1, . . . , γ̂l−1 → γ̂l is the subsequence of transitions in the run ρ that consists exactly

of the transitions made by machine j and it holds that for each i = 0, . . . , l − 1 there exists

an edge (ni , ni+1, (σ, d)) in the graph G that is compatible with the transition γi → γ̂i+1.

Intuitively, n0 · · · nl is the sequence of nodes in the graph G that is traversed by machine j

in the run ρ.

2.3 Reachability in graph-grammar transition systems

We consider the reachability problem for graph-grammar transition systems, that is, given a

graph-grammar transition system T (M, m, G) = (Γ, Γ0,→) and a set of configurations F ,

determine whether there is a run of T (M, m, G) which contains a configuration in F . More

specifically, we are interested in sets F defined as follows.

Let Sfinal ∈ M(Q) be a multiset of states in Q. Then, Sfinal defines a set of final config-

urations F ⊆ Γ , where for a configuration γ = 〈G, μ, β〉 ∈ Γ with G = (N , E, nb, ne)

we have that γ ∈ F iff there exists a node n ∈ N such that Sfinal � [q ∈ Q | (i, q) ∈

μ(n), where i ∈ {1, . . . , m}]. Intuitively, in the graph of a final configuration there exists a

node n such that the multiset Sfinal is contained in the multiset consisting of the states of the

machines located at the node n.

Example 3 Consider the graph-grammar transition system T (M, 2, G) where G is the SPGG

from Example 1 and M is the machine described in Example 2. The multiset [qa, qa] defines

123

160 R. Dimitrova, R. Majumdar

a set of final configurations in which there exists a node at which both machines are currently

located while both are in state qa . ⊓⊔

Let (M, m) be a concurrent automaton and G an SPGG. Given a multiset Sfinal that

defines a set F of final configurations, the reachability problem for (M, m), G and F ,

Reach(M, m, G, F), is to decide whether there exists a run ρ = γ0 · · · γ f of T (M, m, G)

such that γi ∈ F for some 0 ≤ i ≤ f , i.e., a run that reaches F .

Since our model allows machines to do arbitrarily many “reversals” (i.e., following forward

and backward edges) and do not fix a bound on the number of shared registers that are read

or written, it easily captures linear bounded automata. Thus, the reachability problem is in

general undecidable.

Proposition 1 The reachability problem is undecidable.

Proof The proof is by reduction of the emptiness problem for linear bounded automata to the

reachability problem for graph-grammar transition systems. A linear bounded automaton is

a tuple A = (QA, �A, ΓA, ρA, q0
A

,⊢,⊣, QF
A

), where QA is a finite set of states, �A is a

finite input alphabet, ΓA ⊇ �A is a finite tape alphabet, ρA ⊆ QA×ΓA×QA×ΓA×{1,−1}

is a transition relation, ⊢∈ � and ⊣∈ � are the left and right endmarkers, and QF
A
⊆ QA is

the set of accepting states.

Intuitively, the semantics of a transition (q, σ, q ′, σ ′, d) ∈ ρA is as follows: If the current

state of the automaton is q and the letter at the current position of the head is σ , then the

automaton can go to state q ′ while writing at the current cell of the tape the symbol σ ′ and

moving the head one position to the left, if d = −1 or one position to the right if d = 1.

Additionally, the transition relation of a linear bounded automaton must satisfy the following

two conditions:

(1) the head cannot be moved left of the left endmarker ⊢ or right of the right endmarker ⊣,

that is, if σ =⊢, then d = 1 and if σ =⊣, then d = −1;

(2) the endmarker symbols cannot be overwritten: if σ ∈ {⊢,⊣}, then σ ′ = σ .

A word w ∈ (�\{⊢,⊣})∗ is accepted by A if there exists a run of A on ⊢ w ⊣ that reaches

a state in QF
A

. The precise definition of linear bounded automata can be found in standard

textbooks on automata theory, e.g., [16]. It is well-known that the emptiness problem for

linear bounded automata in undecidable.

We now show how to encode the emptiness problem for linear bounded automata as

reachability in graph-grammar transition systems. Without loss of generality, we assume a

single finite state in the automaton. More precisely, we show how given a linear bounded

automaton A = (QA, �A, ΓA, ρA, q0
A

,⊢,⊣, QF
A

) we can construct an SPGG G and a

concurrent finite automaton (M, 1) and a set of final configurations F such that there exists

a word accepted by A iff there exists a run of T (M, 1, G) that reaches a configuration in

F . Intuitively, the SPGG G will generate graphs that correspond to words in (�\{⊢,⊣})∗,

and the single machine M will simulate the automaton A on the generated word. The proof

relies on two points: we assume that each node in the graph is equipped with a register, thus

being able to encode the tape of the linear bounded automaton, and that the machine M is

allowed to reverse its direction an unbounded number of times.

Let A = (QA, �A, ΓA, ρA, q0
A

,⊢,⊣, QF
A

) be a linear bounded automaton.

We define the SPGG G = (V, �, R, G0) such that V = {v0, v1, v, v⊢, v⊣}, � = �A,

R = {(v0, v⊢ · v1), (v1, v · v⊣), (v, v · v), (v⊢,⊢), (v⊣,⊣), } ∪ {(v, σ) | σ ∈ �\{⊢,⊣}} and

G0 = ({nb, ne}, {(nb, ne, v0)}, nb, ne). We suppose that each node in a graph derived by G

is equipped with a register large enough to store a value in {0}∪̇Γ .

123

Reachability analysis of reversal-bounded automata on… 161

The machine M = (Q, q0, �, δ) simulates A on the generated graph. Since in T (M, 1, G)

all registers are initialized with 0, M first makes a pass through the graph copying in each

register the letter on the outgoing edge with direction 1. Then, it simulates A reading from and

writing to the registers that represent A’s tape. We define Q = QA ∪ {(q
0
A

, 1), (q0
A

,−1)},

q0 = (q0
A

, 1) and (q, (σ, d), b, q ′, b′) ∈ δ iff one of the following conditions is satisfied:

– q = (q0
A

, 1), σ
=⊣, d = 1, q ′ = q , and b′ = σ ;

– q = (q0
A

, 1), σ =⊣, d = 1, q ′ = (q0
A

,−1), and b′ = σ ;

– q = (q0
A

,−1), σ
=⊢, d = −1, q ′ = q , and b′ = b;

– q = (q0
A

,−1), σ =⊢, d = −1, q ′ = q0
A

, and b′ = b;

– q ∈ QA and (q, b, q ′, b′, d) ∈ ρA.

Let us define the set of final configurations F such that for γ = 〈G, μ, β〉 with G =

(N , E, nb, ne) we have that γ ∈ F iff there exists a node n ∈ N such that (1, q F
A

) ∈ μ(n),

where q F
A

is the single accepting state of A. The definitions of G, M and F imply that the

language of A is nonempty iff there exists a run ρ = γ0 · · · γ f of T (M, 1, G) such that

γi ∈ F for some 0 ≤ i ≤ f . ⊓⊔

Note that proof of the above undecidability result holds already for the case of single

machine and linear graphs.

2.4 Reversal- and register-bounded reachability problem

Since the general problem is undecidable, we focus on a bounded version. We introduce two

restrictions. First, we allow each machine to make only a bounded number of reversals (a

reversal occurs when the machine changes direction in the graph). Second, we fix an a priori

bound on the number of shared registers. That is, while the SPGG generates a potentially

unbounded set of graphs, with unboundedly many nodes, we assume that there is some fixed

bound k on the number of Boolean registers located at nodes of a generated graph (these k

registers may be situated at arbitrary nodes of the graph though).

In what follows we formalize the above definitions. Let us fix a machine M =

(Q, q0, �, δ), the concurrent automaton (M, m), and an SPGG G = (V, �, R, G0).

Reversal bound Let us fix a run ρ = γ0, . . . , γ f where γi = 〈G, μi , βi 〉. Consider the

projection of ρ to → j for each machine j ∈ {1, . . . , m}. The number of reversals made by

machine j along the run, intuitively, is the number of times it changes from traversing an

edge marked with direction 1 to traversing an edge marked with direction −1, or vice versa.

Formally, let e1e2 · · · en be a sequence of edges. A reversal occurs at position i if α(ei) =

(·, 1) and α(ei+1) = (·,−1) or if α(ei) = (·,−1) and α(ei+1) = (·, 1).

Now, let γi1 → j γi1+1, γi2 → j γi2+1, . . . be the transitions of machine j along the run

ρ, and let ei1 , ei2 , . . . be the compatible edges that were taken by machine j . The number of

reversals of machine j along ρ is the number of reversals in the sequence ei1 ei2 · · · .

For r ≥ 0, the set of r-reversal bounded runs of T (M, m, G) is the set of runs in which

each machine makes at most r reversals.

Register bound The register bound fixes a number k of Boolean registers. That is, each graph

G derived by G comes with a mapping κ : N → {0, 1}, such that |κ−1(1)| ≤ k, and we allow

the machines to read and write register values only when their current node is in κ−1(1).

To derive graphs with a mapping κ , we modify an SPGG to “mark” some nodes along

the derivation, and ensure that any derived graph has at most k marked nodes. (The formal

details are similar to constructing a CFG for a CFL with at most k marked positions from a

123

162 R. Dimitrova, R. Majumdar

CFG for the (unmarked) language.) For an SPGG G, we denote by Gk the SPGG that marks

at most k nodes of a derived graph. We write, by abuse of notation, (G, κ) ∈ Lu(Gk) for a

graph G which is the symmetric closure of a graph derived by Gk together with the mapping

κ .

In addition, we modify the successor relation of the graph-grammar transition systems

T (M, m, Gk) to require (ii)’ (q, α(e), β(n), q ′, b′) ∈ δ if κ(n) = 1 and (q, α(e), 0, q ′, 0) ∈ δ

otherwise.

Example 4 The SPGG G shown in Example 1 can be modified into an SPGG G2 that derives

graphs in which at most 2 nodes are marked to contain registers. Furthermore, we can consider

SPGGs that not only ensure an upper bound on the number of marked nodes, but impose

constraints on their location. For example, we can consider an SPGG G2
∗ that additionally

requires that by applying the rule (v0, vc · v1) the node between the edges labelled vc and v1

contains a register.

If we then consider the graph-grammar transition system T (M, 2, G2
∗), where M is the

finite-state machine described in Example 2, and let G be the graph depicted in Fig. 1, then

there does not exist a run with underlying graph G that reaches a configuration in the set of

final configurations defined by the multiset [qa, qa], since the register at node n1 acts as a

semaphore that does not allow two copies of the machine M to enter the part of the graph

containing edges labelled with the letter a. ⊓⊔

The reversal- and register-bounded reachability problem takes as input a concurrent

automaton (M, m), an SPGG G, and parameters r and k, and a set of final configurations F

defined by a multiset Sfinal, and asks if there exists an r -reversal bounded run of (M, m) on

some graph derived by Gk that reaches F .

Our main result is the following.

Theorem 1 The reversal- and register-bounded reachability problem is decidable.

In the following sections we prove decidability by reducing the reversal- and register-

bounded reachability problem to the emptiness problem for pushdown automata.

Remark Our decidability result holds for a somewhat more general model, in which each

machine can also read any of the fixed number of registers that are not at its current node,

but can only write to the register at its current node, or vice versa. We work in the simpler

setting to keep the notation manageable.

3 Properties of reversal-bounded runs

Fix a machine M = (Q, q0, �, δ), the concurrent automaton (M, m), an SPGG G =

(V, �, R, G0) and the parameters r and k. In this section we state two properties of r -

reversal bounded runs of T (M, m, Gk) that allow us to encode such runs as words over a

finite alphabet and to reduce the reversal- and register-bounded reachability problem to the

emptiness test for a context free language.

Given a run ρ = γ0 · · · γ f and a machine i ∈ {1, . . . , m}, an i -block is a segment

ρ[j1, j2] = γ j1 · · · γ j2 of the run ρ such that γ j →i γ j+1 for each j1 ≤ j < j2. That is,

all transitions in the part ρ[j1, j2] of the run are made by machine i . Proposition 2 below

establishes that for every r -reversal bounded run ρ we can reorder its transitions to obtain

an r -reversal bounded run ρ̂ such that the number of maximal blocks in ρ̂ is bounded from

123

Reachability analysis of reversal-bounded automata on… 163

above by a constant depending on the parameters m, r and k (and not on the length of the

run ρ).

The run ρ̂ is constructed by reordering transitions inρ while keeping in place the transitions

that access registers, i.e., we swap transitions that do not access registers. This is formalized

in the following lemma.

First, let us define the notion of independent transitions. We call a transition γ → γ ′ in a

run ρ a read/write transition if κ(n) = 1, where n and n′ are the nodes in G associated with

this transition, that is, the machine making the transition from node n to node n′ can read

from and write to the register at node n. We say that two consecutive transitions γ0 →m1 γ1

and γ1 →m2 γ2 in a run ρ are independent if m1
= m2 and none of the transitions is a read

or write transition.

Lemma 1 Let γ0 →m1 γ1 and γ1 →m2 γ2 be independent transitions in a run ρ, where

γ0 = 〈G, μ0, β0〉, γ1 = 〈G, μ1, β1〉, γ2 = 〈G, μ2, β2〉. Let n1, n′1 ∈ N and q1, q ′1 ∈ Q

correspond to γ0 →m1 γ1 and n2, n′2 ∈ N and q2, q ′2 ∈ Q correspond to γ1 →m2 γ2. Then,

there exist configurations γ̂1 = 〈G, μ̂1, β̂1〉 and γ̂2 = 〈G, μ̂2, β̂2〉 such that:

– γ0 →m2 γ̂1, γ̂1 →m1 γ̂2, and μ̂2 = μ2, and

– none of the transitions reads or writes a register value and β0 = β̂1 = β̂2 = β2.

Proof Suppose that e1 ∈ E , b1 ∈ B and b′1 ∈ B satisfy the conditions of Definition 2 for

transition γ0 → γ1 and that e2 ∈ E , b2 ∈ B and b′2 ∈ B satisfy the conditions of Definition 2

for transition γ1 → γ2. By assumption we have b1 = b′1 = b2 = b′2 = 0.

Let for each n ∈ N and j ∈ {1, . . . , k},

μ̂1(n) =

⎧
⎪⎨
⎪⎩

μ0(n)\{(m2, q2)} if n = n2,

μ0(n) ∪ {(m2, q ′2)} if n = n′2,

μ0(n) otherwise;

μ̂2(n) =

⎧
⎪⎨
⎪⎩

μ̂1(n)\{(m1, q1)} if n = n1,

μ̂1(n) ∪ {(m1, q ′1)} if n = n′1,

μ̂1(n) otherwise.

We define β̂1 = β̂2 = β0.

These definitions clearly fulfill the conditions required by the lemma. ⊓⊔

The above lemma allows us transform runs by iterative reordering of independent transi-

tions. We define two runs ρ = γ0, . . . , γ f and ρ̂ = γ̂0, . . . , γ̂ f̂ to be equivalent if f̂ = f ,

γ̂0 = γ0, γ̂ f̂ = γ f and ρ̂ can be obtained from ρ by reordering of independent transitions

(as in the proof of Lemma 1).

Proposition 2 For every r-reversal bounded run ρ = γ0, . . . , γ f of T (M, m, Gk) there exist

an r-reversal bounded run ρ̂ = γ̂0, . . . , γ̂ f of T (M, m, Gk) equivalent to ρ, and a sequence

of indices 0 = f0 < f1 < · · · < fu = f such that:

– for each i ≤ u − 1, there exists mi ∈ {1, . . . , m} such that ρ̂[fi , fi+1] is an mi -block,

– u ≤
(
r · m + k · m · (r + 1)+ 1

)
· (m + 1).

Proof Let I ′ be the set of indices of (source configurations of) reversal transitions. Since ρ

is an r -reversal bounded run we have |I ′| ≤ r · m.

123

164 R. Dimitrova, R. Majumdar

Sinceρ is a run in T (M, m, Gk), there exists a mappingκ that maps the nodes of underlying

graph for ρ to Boolean values indicating which nodes are equipped with registers. The number

of these nodes, that is, the number of nodes in κ−1(1), is at most k.

Let I ′′ = {i | 0 ≤ i < f, γi → γi+1 is a read/write transition}. Since each machine can

do at most k read/write transitions in a run segment where it performs no reversals, we have

that |I ′′| ≤ m · k · (r + 1).

Let I ′ ∪ I ′′ = {i1, . . . , il}. We split ρ into segments ρ0, . . . , ρl , where ρ0 = ρ[1, i1],

ρ j = ρ[i j + 1, i j+1] for each 1 ≤ j < l and ρl = ρ[il + 1, f]. Let i ∈ {0, . . . , l}. The

segment ρi does not contain reversal transitions or read/write transitions.

Applying Lemma 1 we reorder the transitions in ρi to obtain a sequence of run segments

ρ̂0, . . . , ρ̂l such that each ρ̂i contains at most m blocks, has no read/write transitions and no

reversals and the order of transitions of each machine in preserved. Furthermore, the first and

last configurations of ρi and ρ̂i are the same. Thus, we can combine the segments ρ̂0, . . . , ρ̂l

into a run ρ̂. We are guaranteed that the run ρ̂ is r -reversal bounded and has the required

properties. In particular, since |I ′∪ I ′′| ≤ r ·m+ k ·m · (r +1), for the number u of maximal

blocks in the run ρ̂ it holds that u ≤
(
r · m + k · m · (r + 1)+ 1

)
· (m + 1). ⊓⊔

The second property uses the bound r on the number of reversals of each machine in an

r -reversal bounded run ρ to relate ρ to the set of paths in the underlying graph traversed by

the machines in ρ.

A trace τ is an element of the set �∗. A trace τ = σ1 · · · σ f is compatible with a run

ρ = γ0, . . . , γ f if there exists a sequence of edges e1e2 · · · e f compatible with ρ such that

α(ei) = (σi , ·) for every 0 < i ≤ f . That is, the trace τ consists of the labels of the edges

traversed by the machines in the run ρ.

Given a graph G = (N , E, nb, ne) ∈ Lu(Gk) and a trace τ we define Paths(G, τ) to be the

(possibly empty) set of paths from nb to ne whose sequence of edge labels is τ = σ1 · · · σ f .

Formally, for a sequence of nodes π = n0n1 · · · n f ∈ N∗ we have π ∈ Paths(G, τ) iff

n0 = nb, n f = ne and (ni−1, ni , (σi , 1)) ∈ E .

Below we establish a property of an r -reversal bounded run ρ = γ0 · · · γ f of T (M, m, Gk)

and a trace τ that is compatible with ρ. Namely, for each machine i ∈ {1, . . . , m} the

corresponding (not necessarily contiguous) subsequence τi of τ can be split into at most

r + 1 segments, such that each of those segments can be embedded in a trace labelling a

simple path from nb to ne or from ne to nb.

This property is formalized in the following proposition, and easily follows from the

definitions of series–parallel graphs and graph-grammar transition systems.

Proposition 3 Let ρ be an r-reversal bounded run of T (M, m, Gk) and τ be a trace that is

compatible with ρ, and let i ∈ {1, . . . , m}. Let πi be the sequence of nodes visited in ρ by

machine i , in the order they occur in ρ, let τi be the corresponding subsequence of τ , and

ri ≤ r be the number of reversals of machine i in ρ.

Then, for each h ∈ {1, . . . , r + 1} there exist traces τh, τ ′h, τ ′′h , τ ′′′h ∈ �∗ and sequences

of nodes πh, π ′h, π ′′h , π ′′′h ∈ N∗ such that the following conditions are satisfied:

– πh ∈ Paths(G, τh), and τh = τ ′h · τ
′′
h · τ

′′′
h , and πh = π ′h · π

′′
h · π

′′′
h ;

– There exists a sequence of indices 0 = j0 < j1 < · · · < jri+1 = |πi | − 1 such that for

every h with 1 ≤ h ≤ ri + 1 it holds that:

– if h is odd, then τi [jh−1 + 1, jh] = τ ′′h and πi [jh−1, jh] = π ′′h ;

– if h is even, then τi [jh−1 + 1, jh] = τ ′′h
−1

and πi [jh−1, jh] = π ′′h
−1

.

Proposition 2 allows us to restrict our reasoning to r -reversal bounded runs with at most(
r ·m+ k ·m · (r +1)+1

)
· (m+1) blocks. Proposition 3 allows us to reduce from reasoning

123

Reachability analysis of reversal-bounded automata on… 165

about graphs derived by Gk to reasoning about m · (r + 1)-tuples of traces in such graphs.

Based on these results, we define the two parameters p =
(
r ·m+k ·m · (r+1)+1

)
· (m+1)

and t = r̃ · m, where r̃ = r + 1.

3.1 Discussion of the imposed bounds

In the definition of the bounded reachability problem we bounded simultaneously two of

the parameters: the number of reversals of each machine and the number of registers in the

generated graphs. As we saw in this section, the conjunction of these two restrictions implies

a bound of the number of context switches (the number of times a run switches from executing

one of the machines to another) in runs that have to be considered. Bounding the number of

context switches is a standard way to regain decidability of otherwise undecidable verification

problems for concurrent systems. It is thus not surprising that by imposing this restriction

we can decouple the executions of the individual machines by ensuring that their individual

executions match accordingly at the bounded number of points of context switching. This is

the idea behind Proposition 2 and the automata constructions in Sects. 4.4 and 4.5.

However, bounding the number of reversals of each machine plays a further important role

in our setting, in that it implies a bound on the number of single-direction paths in a graph

generated by G that are traversed by the machines in a run: given m machines each of which

can only reverse its direction at most r times, we have an upper bound of m · (r + 1) on the

number of such paths that are involved in a run. This property, formalized in Proposition 3,

is crucial for the reduction of the bounded verification problem to an emptiness question for

word automata. It allows us to construct from an SPGG a pushdown automaton operating on

words that describe tuples of paths in a graph generated by the SPGG.

Since the reduction to emptiness of word automata is at the core of our decidability proof,

it is not clear how to extend our decidability result to the case of unbounded number of

reversals (even when bounding the number of registers).

Our proof of undecidability of the general case requires an unbounded number of registers

and holds already for a single machine and linear graphs. For the case of a single machine,

linear graphs and bounded number of registers, one can use arguments similar to those in the

conversion of 2NFA to NFA to show decidability. For the general case, however, there are two

main difficulties: the unbounded number of paths and the interaction between the machines.

Unlike multihead automata, the exchange of information between machines in our setting is

related to their current position in the graph, and thus, the corresponding undecidability results

for the emptiness problem for multihead automata do not easily transfer to our case. (Were

the communicating machines allowed to read and write the registers remotely, multihead

automata could be encoded in our framework by using the registers to model shared state.)

The way communication is restricted in our computational model appears to require a new

kind of argument to establish decidability or undecibility when only the number of registers

is bounded.

The other intermediate case is when we have a bounded number of reversals (and

unbounded number of registers). The bound on the number of reversals is sufficient to show

Proposition 3 and reduce the verification problem to reasoning about tuples of traces in graphs

derived by the given grammar. However, this restriction alone does not imply a bound on the

number of context switches: indeed, it is possible that this number is unbounded, meaning

that there are runs of arbitrary length reaching a final configuration and in each of them the

number of context switches depends on the length of the run. However, this property does

imply that each node in a graph generated by an SPGG is visited at most m · (r+1) times and

since read and write access to registers is local, each register is read or written also at most

123

166 R. Dimitrova, R. Majumdar

m · (r + 1) times. Thus, it is possible that using this finite-visit property runs can be encoded

as words of visiting sequences, where a visiting sequence for a node in a graph captures

the consecutive visits of the machines to that node. However, it is not easy to see if such a

construction can be extended to the case when only one type of register accesses (read or

write) is required to be local. Our decidability result for bounded number of registers, on the

other hand, can be extended to the case when only one type of register access is required to

be local, since one type of restriction suffices to ensure bounded number of context switches.

4 Automata-theoretic algorithm

In this section we present an automata-theoretic algorithm for solving the reversal- and

register-bounded reachability problem. Before we give an overview of our algorithm and

describe the automata constructions it comprises, we recall some basic definitions from

automata theory.

4.1 Preliminaries

A 2-way nondeterministic finite automaton (2NFA) is a tuple A = (Q, Q0, �, δ, A), where

Q is a finite set of states, Q0 ⊆ Q is a set of initial states, � is a finite alphabet, δ ⊆

Q ×� × Q × {−1, 1} is the transition relation and A ⊆ Q is a set of accepting states.

A is deterministic iff δ is a function from Q×� to Q×{−1, 1}. A is a 1-way NFA (NFA)

iff d = 1 for each (q, σ, q ′, d) ∈ δ.

For q, q ′ ∈ Q, w′, w′′, w′′′, w′′′′ ∈ �∗, σ ∈ � and σ ′ ∈ � ∪ {ǫ}, let 〈q, w′, σ,w′′〉 ⇒A

〈q ′, w′′′, σ ′, w′′′′〉 iff (q, σ, q ′, d) ∈ δ and the following two conditions hold:

(1) if d = 1, then w′′′ = w′.σ , w′′ = σ ′.w′′′′, either σ ′ ∈ � or σ ′ = ǫ and w′′′′ = ǫ;

(2) if d = −1, then w′′′′ = σ.w′′, w′ = w′′′.σ ′, either σ ′ ∈ � or σ ′ = ǫ and w′′′ = ǫ.

If A is an NFA, we define δ(q, w) for w ∈ �∗ in the obvious way.

Let ⊢∈ � and ⊣∈ �, where ⊢
=⊣, be designated symbols and w ∈ (�\{⊢,⊣})∗. We

require that for every (q, σ, q, d) ∈ δ it holds that if σ =⊢, then d = 1 and if σ =⊣, then

d = −1.

If A is a 2NFA, then w ∈ L(A) iff for some q0 ∈ Q0 and q ∈ A one of the following

holds:

– 〈q0, ǫ,⊢, w ⊣〉 ⇒∗
A
〈q,⊢ w ⊣, ǫ, ǫ〉, or

– 〈q0, ǫ,⊢, w ⊣〉 ⇒∗
A
〈q, ǫ, ǫ,⊢ w ⊣〉.

If A is an NFA, then w ∈ L(A) iff δ(q0,⊢ w ⊣) ∩ A
= ∅ for some q0 ∈ Q0.

A push-down automaton (PDA) is a tuple P = (Q, q0, �,Δ,⊥, δ), where Q is a finite

set of states, q0 ∈ Q is the initial state, � is a finite input alphabet, Δ is a finite stack

alphabet, ⊥ ∈ Δ is the start stack symbol and δ ⊆ Q × (� ∪ {ǫ}) × Δ × Q × Δ∗ is the

transition relation. For q, q ′ ∈ Q, σ ∈ � ∪ {ǫ}, w ∈ �∗, a ∈ Δ, α, β ∈ Δ∗ we define

〈q, σ.w, a.α〉 ⇒P 〈q
′, w, β.α〉 iff (q, σ, a, q ′, β) ∈ δ.

For a PDA P , we have w ∈ L(P) iff 〈q0, w,⊥〉 ⇒∗
P
〈q, ǫ,⊥〉.

4.2 Overview of the algorithm

We now outline the construction of a PDA A, which we use in order to reduce the reversal-

and register-bounded reachability problem to checking emptiness of a PDA. We begin by

123

Reachability analysis of reversal-bounded automata on… 167

describing the input of the automata involved in the construction and then proceed to give an

overview of the construction followed by a formal definition of the input alphabets of these

automata.

The automaton A reads words that consist of traces in �∗. In order to reflect sufficient

information about the corresponding nodes and registers in the underlying graph, these traces

are annotated as follows. First, since graphs derived by Gk contain at most k registers, we

assume these registers to have unique identifiers from the set {1, . . . , k}. Thus, a triple

(σ, j1, j2) ∈ � × {0, . . . , k} × {0, . . . , k} consists of an edge label σ and the identifiers

of the registers at the source and target node of the edge, where 0 indicates no register at

the respective node. We add additional annotation to reflect which nodes are shared in the

corresponding paths, that is, positions where paths in the series–parallel graph branch off or

join.

The automaton A reads such annotated traces and checks the existence of a run

by emulating the behaviour of the machines on these traces by guessing an execu-

tion for each of them. An execution of M = (Q, q0, �, δ) is a sequence ξ =

q0, (σ1, b1, b′1), q1, . . . , (σ f , b f , b′f), q f , where q0, q1, . . . , q f ∈ Q, such that (ql−1, σl , bl ,

ql , dl , b′l) ∈ δ for some dl ∈ {1,−1}. In addition to verifying that each guess is indeed an

execution, A needs to also check that the values written to and read from the shared registers

by different machines are consistent.

Formally, an annotated trace and executions of the machines define a read–write sequence

η = (j1, b1, b′1), . . . , (j f , b f , b′f) ∈ ({0, . . . , k} × B × B)∗, where, intuitively, ji is the

location that is read and/or written. Such a read–write sequence η is valid w.r.t. an initial

register valuation β0 : {1, . . . , k} → B iff each read operation reads the value written by the

most recent write operation, or the initial value from β0 if it is not overwritten. Formally, η

is consistent with β0 iff for every index i ∈ {1, . . . , f } with ji > 0 it holds that if there is

i ′ < i such that ji ′ = ji , then bi = b′
i ′

for the largest such i ′, and otherwise bi = β0(ji).

Thus, the automaton A accepts tuples of traces in some graph derived by Gk , annotated

with information about registers and about nodes shared by the corresponding paths in the

graph. A also guesses an execution for each of the m machines. The PDA A is constructed

as the intersection of a PDA Pt (Sect. 4.3) and an NFA Ae. Pt checks that its input word

encodes a tuple of traces in some graph derived by Gk and that these are correctly annotated

with information about registers and the nodes that are shared among the paths corresponding

to these traces. The NFA Ae guesses and verifies the executions of the machines. It is obtained

as the intersection of m+ 2 NFAs: m NFAs Ai , one for each i ∈ {1, . . . , m}, an NFA Ac and

an NFA As. The NFA Ai verifies that the guess of an execution of machine i ∈ {1, . . . , m}

is correct. We describe the construction of Ai as a 2NFA (Sect. 4.4) which is then converted

to an NFA using standard techniques [16]. Automaton Ac checks the validity of the read–

write sequence corresponding to the annotated traces and the guessed executions (Sect. 4.5).

Automaton As (Sect. 4.6) checks that a configuration in F is reached. The reversal- and

register-bounded reachability problem thus reduces to checking emptiness of the language

of the constructed automaton A.

According to Sect. 3, it suffices to reason about t = m · (r + 1) traces in graphs derived

by Gk . To this end, we define the trace alphabet �t =
((

� ∪̇ {♭}
)
× {0, . . . , k}2 ×

{1, . . . , t}
)t

∪̇ {1, . . . , t}t . Words over �t are tuples of t traces, annotated with additional

information. Each letter in �t contains one row for each of the m machines and each of the

r̃ = r + 1 paths corresponding to it. There are two types of letters. Each row in a letter of

the first type consists of a letter in � (or the special symbol ♭) together with two register

123

168 R. Dimitrova, R. Majumdar

identifiers in {0, . . . , k} and a path index in {1, . . . , t}. The letters of the second type are

t-tuples of path indices in {1, . . . , t}, where equal indices indicate paths sharing a node. The

special symbol ♭ is used in order to align traces in a way that the letters in the set {1, . . . , t}t

reflect the information about nodes shared by the respective paths (by suitably padding the

traces of shorter paths to align them with longer parallel paths).

The execution alphabet �e =
(
{0, . . . , p}×B×B×Q×{1, . . . , t}

)t
is used to describe

tuples of executions, one for each of the m machines. Each letter contains t = r̃ · m rows:

r̃ = r + 1 rows for each of the m machines, one for each of its paths. Each row in the letter

consists of a block number in {0, . . . , p}, two register values (one for the read and one for

the write operations), a successor state and an index of a row in an associated trace word (the

trace word is a word in �∗t , i.e., a tuple of t traces).

Let �̃ = �t ×�e be the product of the trace and execution alphabets.

In what follows, if τ̃ = σ̃1 · · · σ̃ f ∈ �∗t , then σ̃ j = (̃σ1, j , . . . , σ̃t, j) denotes the ele-

ments of the j th letter of the word τ̃ for j ∈ {1, . . . , f }, and we use τ̃i = σ̃i,1 · · · σ̃i, f

to denote the i th row of τ̃ for i ∈ {1, . . . , t}. Similarly, if τ̃ = σ̃1 · · · σ̃ f ∈ �̃∗,

the j th letter is σ̃ j = (̃σ1, j , . . . , σ̃t, j , η̃1,1, j , . . . , η̃1,̃r , j , . . . , η̃m,1, j , . . . , η̃m ,̃r , j), for j ∈

{1, . . . , f }, and the i th row is τ̃i = σ̃i,1 · · · σ̃i, f , for i ∈ {1, . . . , t}. For n ∈ {1, . . . , m},

h ∈ {1, . . . , r̃} and j ∈ {1, . . . , f }, the corresponding letter from �e is denoted with

η̃n,h, j = (pn,h, j , bn,h, j , b′n,h, j , q ′n,h, j , tn,h, j).

In the remainder of this section we present the automata constructions and formalize their

properties, which together imply the correctness of our algorithm.

4.3 PDA accepting traces in a graph

The PDA Pt is the product of a PDA P obtained from Gk , where G = (V, �, R, G0) is an

SPGG, and an NFA Ar that verifies the placement of register identifiers.

The construction of P resembles the classical construction of a PDA given a CFG. Here,

instead of words generated by a CFG the language L(P) of P consists of t-tuples of (anno-

tated) traces in some graph generated by the grammar. The stack alphabet of P contains

symbols corresponding to the variables and terminal symbols of the SPGG G, and the tran-

sitions of P can be categorized according to the top symbol on the stack. Transitions for

stack symbols corresponding to variables in G reflect the production rules of G. The most

interesting are the transitions for parallel composition, in which P guesses symbols, in the

graphs generated by which the corresponding traces occur, together with the number of traces

in the subgraph generated by each symbol. The number of times a new branch is introduced

is bounded by t , the number of parallel traces.

For the series composition rules, δp employs the additional symbol ♭ to allow for traces

that are aligned in a way that letters in {1, . . . , t}t reflect the information about nodes shared

by the respective paths.

We now describe the formal construction of the PDA

P = (Q p, q0
p, �t, �t ∪̇ Ṽ ∪̇ {⊥},⊥, δp).

– The set of states is Q p = {q
0
p, q}. The set of stack symbols is �t ∪̇ Ṽ ∪̇ {⊥}, where the

set Ṽ consists of symbols corresponding to the variables in G

Ṽ =
{〈

(v1, j ′1, j ′′1 , t1), (v2, j ′2, j ′′2 , t2), . . . , (vu, j ′u, j ′′u , tu)
〉
|

∑u
i=1 ti = t,∀i ∈ {1, . . . , u}. vi ∈ V ∪ {♭} ∧ j ′i , j ′′i ∈ {0, . . . , k}

}
.

123

Reachability analysis of reversal-bounded automata on… 169

– The transitions in δp can be grouped according to the top symbol on the stack: empty

stack, top symbol σ̃ ∈ �t, and top symbol ṽ ∈ Ṽ . Transitions for ṽ ∈ Ṽ correspond to

the production rules of the SPGG G. The transition relation δp is defined as follows:

– δp(q
0
p, ǫ,⊥) =

{(
q, 〈(v0, 0, 0, t)〉⊥

)}
, where v0 is the start symbol of G.

– δp(q, σ̃ , σ̃) =
{
(q, ǫ)

}
for σ̃ ∈ �t, δp(q, ǫ,⊥) =

{
(q,⊥)

}
.

– For ṽ =
〈
(v1, j1, j ′1, t1), (v2, j2, j ′2, t2), . . . , (vu, ju, j ′u, tu)

〉
∈ Ṽ , we define

δp(q, ǫ, ṽ) = δ′p(q, ǫ, ṽ) ∪ δ′′p(q, ǫ, ṽ) ∪ δ′′′p (q, ǫ, ṽ),

where δ′p , δ′′p and δ′′′p correspond to cases (1), (2) and (3) for G’s rules.

The SPGG Gk obtained from G marks the nodes of the derived graph, making sure

that at most k nodes in the graph are marked. Thus, we suppose that each rule (v, G ′)

of Gk comes with a mapping κ ′ that maps the nodes of G ′ to Boolean values indicating

which nodes should be marked. A node in the resulting graph is marked if it is marked

by at least one rule (that is, when fusing nodes the result is marked if at least one of

the respective nodes that are being fused is marked).

δ′p(q, ǫ, ṽ) =
{(

q, ((σ1, ĵ1, ĵ ′1, 1)t1 , (σ2, ĵ2, ĵ ′2, 2)t2 , . . . , (σu, ĵu, ĵ ′u, u)tu)
)
|

∀i ∈ {1, . . . , u}.
(
(vi , σi) ∈ R and has associated mapping κ ′∧

(ĵi > 0 ⇔ ji > 0 ∨ κ ′(n′b)) ∧ (ĵ ′i > 0 ⇔ j ′i > 0 ∨ κ ′(n′e))
)

∨
(
vi = σi = ♭ ∧ ĵi = ji ∧ ĵ ′i = j ′i

)}
,

δ′′p(q, ǫ, ṽ) =
{(

q, 〈(x1, ĵ1, ĵ ′1, t1), (x2, ĵ2, ĵ ′2, t2), . . . , (xu, ĵu, ĵ ′u, tu)〉·

〈(y1, ĵ ′1, ĵ ′′1 , t1), (y2, ĵ ′2, ĵ ′′2 , t2), . . . , (yu, ĵ ′u, ĵ ′′u , tu)〉
)
|

∀i ∈ {1, . . . , u}.
(
(vi , xi · yi) ∈ R has associated mapping κ ′∧

(ĵi > 0 ⇔ ji > 0 ∨ κ ′(n′b)) ∧ (ĵ ′i > 0 ⇔ κ ′(n′))∧

(ĵ ′′i > 0 ⇔ ji > 0 ∨ κ ′(n′e))
)

∨
(
xi = vi ∧ yi = ♭ ∧ ĵi = ji ∧ ĵ ′i = j ′i ∧ ĵ ′′i = 0

)

∨
(
xi = ♭ ∧ yi = vi ∧ ĵi = 0 ∧ ĵ ′i = ji ∧ ĵ ′′i = j ′i

)}
,

δ′′′p (q, ǫ, ṽ) =
{(

q, (1t1 , 2t2 , . . . , utu)·

〈(x1, ĵ1, ĵ ′1, t ′1), (x2, ĵ2, ĵ ′2, t2), . . . , (xu′ , ĵu′ , ĵ ′
u′

, t ′
u′

)〉·

(1t1 , 2t2 , . . . , utu)
)
| t ≥ u′ ≥ u ∧ ∃ f ∈ {1, . . . , u}{1,...,u′}.

∀i1, i2, i ′, i.
(
(i1 ≤ i2 ⇒ f (i1) ≤ f (i2)) ∧ f (i1) < f (i1 + 2)

)
∧(

f (i1) = f (i2) = i ⇒ t ′i1
+ t ′i2

= ti ∧ j ′′i1
= j ′′i2

∧ j ′′′i1
= j ′′′i2

∧

(vi , xi1 ‖ xi2) ∈ R has associated mapping κ ′∧

(ĵi1 > 0 ⇔ ji > 0 ∨ κ ′(n′b))∧

(ĵ ′i1
> 0 ⇔ j ′i > 0 ∨ κ ′(n′e))

)
∧(

f (i ′) = i ∧ i > f (i ′ − 1) ∧ i < f (i ′ + 1)⇒

(∃x ′.(vi , xi ′ ‖ x ′) ∈ R has associated mapping κ ′∧

(ĵi ′ > 0 ⇔ ji > 0 ∨ κ ′(n′b))∧

(ĵ ′
i ′

> 0 ⇔ j ′i > 0 ∨ κ ′(n′e)))∨

(xi ′ = vi ∧ ĵi ′ = ĵi ∧ ĵ ′
i ′
= j ′i)

)}
.

– δp is undefined in all other cases.

123

170 R. Dimitrova, R. Majumdar

P does not check that the register identifiers in the annotation are consistent among letters

corresponding to edges in the graph that share a node, i.e., that letters corresponding to these

edges have the same identifier for this node. This is done by the NFA Ar, which also verifies

that identifiers for different nodes are unique.

The NFA Ar = (Qr, q0
r , �t ∪̇ {⊢,⊣}, δr, Fr) has the following components.

– Qr = {1, . . . , t}t × {0, . . . , k}t × 2{0,...,k}, q0
r = (1, . . . , 1, 0, . . . , 0,∅).

Each state q̃ of Ar contains a path index lh ∈ {1, . . . , t} and a register identifier ih ∈

{0, . . . , k} for each row τ̃h of τ̃ , and a set of already seen register identifiers.

– The transition relation δr checks that the letters in τ̃ that correspond to edges incident

with the same node agree on the corresponding register identifier. The path indices lh in q̃

are used to identify branching or joining paths and the register identifiers ih to check the

required equalities.δr also verifies that the register identifiers corresponding to different

nodes are different. We let

((l1, . . . , lt , i1, . . . , it , J), (̃σ1, . . . , σ̃t), (l
′
1, . . . , l ′t , i ′1, . . . , i ′t , J ′)) ∈ δr iff

(1) if h, h′ ∈ {1, . . . , t}, σ̃h = (σ, l, j1, j2) ∈ � × {1, . . . , t} × {0, . . . , k}2 and σ̃h′ =

(σ ′, l ′, j ′1, j ′2) ∈ � × {1, . . . , t} × {0, . . . , k}2, then:

• f J
= ∅, then j1 = ih , j1 /∈ J\{0}, j2 /∈ J\{0},

• if l ′ = l, then j1 = j ′1 and j2 = j ′2,

• if l ′
= l, lh
= lh′ and ih
= ih′ , then j1
= j ′1 or j1 = j ′1 = 0;

(2) if σ̃h ∈ {1, . . . , t}, then for every h′ ∈ {1, . . . , t}, if σ̃h′ = σ̃h then ih′ = ih .

(3) J ′ = J ∪
{

j ∈ {0, . . . , k} | ∃h ∈ {1, . . . , t}.̃σh = (σ, d, l, j1, j2) ∧ j1 = j
}
;

(4) for each h ∈ {1, . . . , t}

• if σ̃h = (σ, l, j1, j2) ∈ � × {1, . . . , t} × {0, . . . , k}2, then l ′h = l, i ′h = j2,

• if σ̃h ∈ {♭} × {1, . . . , t} × {0, . . . , k}2 ∪ {1, . . . , t}, then l ′h = lh , i ′h = ih .

– If σ̃ ∈ {⊢,⊣}, then ((l1, . . . , lt , i1, . . . , it , J), σ̃ , (l ′1, . . . , l ′t , i ′1, . . . , i ′t , J ′)) ∈ δr iff

J ′ = J , and for all h ∈ {1, . . . , t} it holds that l ′h = lh and i ′h = ih .

– Fr =
{
(l1, . . . , lt , i1, . . . , it , J) ∈ Qr | ∀h, h′ ∈ {1, . . . , t}.ih = ih′

}
. In an accept-

ing state, the equalities for the sink node of the graph must be satisfied.

Finally, we construct the PDA Pt with L(Pt) = L(P) ∩ L(Ar). The construction of

P and Ar ensures that if τ̃ ∈ L(Pt), then there exists (G, κ) ∈ Lu(Gk) and for each

i ∈ {1, . . . , t} there exists a sequence of nodes π̃i in G such that for each row τ̃i of

τ̃ there exists a subsequence πi ∈ Paths(G, τi) of π̃i corresponding to the projection

τi =
(
τ̃i |�×{0,...,k}2×{1,...,t}

)
|� of τ̃i on �. Furthermore, these paths can be chosen such

that edges corresponding to rows with the same path index connect the same pair of nodes.

Additionally, the mapping κ for the nodes on these paths agrees with the corresponding reg-

ister identifiers in τ̃ . This is formalized in the following proposition, the proof of which is

given in the “Appendix”.

Proposition 4 If a word τ̃ = σ̃1 · · · σ̃ f ∈ �∗t is accepted by Pt, then there exists (G, κ) ∈

Lu(Gk) with G = (N , E, nb, ne) and for each i ∈ {1, . . . , t} there exists a sequence of nodes

π̃i = ñi,0, . . . , ñi, f in the graph G such that all of the following conditions are satisfied.

(1) For each i ∈ {1, . . . , t} it holds that:

– For each 1 < j ≤ f :

– If σ̃i, j = (σ, j1, j2, l) ∈ � × {0, . . . , k}2 × {1, . . . , t}, then there exists e ∈ E

with src(e) = ñi,(j−1), trg(e) = ñi, j and α(e) = σ ,

123

Reachability analysis of reversal-bounded automata on… 171

– If σ̃i, j ∈
(
{♭} × {0, . . . , k}2 × {1, . . . , t}

)
∪ {1, . . . , t}, then ñi,(j−1) = ñi, j .

– Let τi =
(
τ̃i |�×{0,...,k}2×{1,...,t}

)
|� be the projection of τ̃i .

Then, there exists a subsequence πi = n0, . . . , n fi
of π̃i with πi ∈ Paths(G, τi).

(2) For all i1, i2 ∈ {1, . . . , t} and j ∈ {1, . . . , f } it holds that:

– If σ̃i1, j , σ̃i2, j ∈ � × {0, . . . , k}2 × {1, . . . , t}, σ̃i1, j = (σ, j1, j2, l) and σ̃i2, j =

(σ ′, j ′1, j ′2, l ′), then l = l ′ implies ñi1,(j−1) = ñi2,(j−1), ñi1, j = ñi2, j and σ = σ ′.

– If σ̃ j ∈ {1, . . . , t}t , then σ̃i1, j = σ̃i2, j iff ñi1, j−1 = ñi2, j−1, ñi1, j = ñi2, j .

(3) For every i ∈ {1, . . . , t} and j ∈ {1, . . . , f }with σ̃i, j = (σ, j1, j2, l) ∈ �×{0, . . . , k}2×

{1, . . . , t} it holds that j1 > 0 iff κ(̃ni,(j−1)) and j2 > 0 iff κ(̃ni, j).

Conversely, if (G, κ) ∈ Lu(Gk) and for every n ∈ {1, . . . , m} and h ∈ {1, . . . , r̃} we

are given a path π̂n,h ∈ Paths(G, τ̂n,h) for some trace τ̂n,h ∈ �∗, then there exists a word

τ̃ ∈ L(Pt), which corresponds to these paths and traces. The word τ̃ is obtained by ordering,

extending and annotating the given traces. This direction is formalized in the proposition

below.

Proposition 5 Let (G, κ) ∈ Lu(Gk) and G = (N , E, nb, ne). Let for every n ∈ {1, . . . , m}

and h ∈ {1, . . . , r̃}, τ̂n,h ∈ �∗ be a trace and π̂n,h ∈ N∗ be a path such that π̂n,h ∈

Paths(G, τ̂n,h).

Then, there exists a bijection g : {1, . . . , m} × {1, . . . , r̃} → {1, . . . , t} such that if for

each i ∈ {1, . . . , t} we define τi = τ̂g−1(i) = σi,1 . . . σi, fi
and πi = π̂g−1(i) = ni,0, . . . , ni, fi

,

then there exists a word τ̃ = σ̃1 · · · σ̃ f ∈ L(Pt) that satisfies the following requirements.

(1) For each i ∈ {1, . . . , t}, it holds that τi =
(
τ̃i |�×{0,...,k}2×{1,...,t}

)
|� .

(2) For all i ′, i ′′ ∈ {1, . . . , t}, j ∈ {1, . . . , f }, j ′ ∈ {1, . . . , f̃i ′}, j ′′ ∈ {1, . . . , f̃i ′′} we have:

– If σ̃i ′, j = (σ ′, j ′1, j ′2, l ′), σ̃i ′′, j = (σ ′′, j ′′1 , j ′′2 , l ′′), n and n′ are the nodes in πi ′

corresponding to the position of the respective occurrence of σ ′ in τi ′ , and n′′ and

n′′′ are the nodes in πi ′′ corresponding to the position of the respective occurrence

of σ ′′ in τi ′′ , then l ′ = l ′′ implies n = n′′ and n′ = n′′′.

– If σ̃i ′, j ′ = (σ ′, j ′1, j ′2, l ′), σ̃i ′′, j ′′ = (σ ′′, j ′′1 , j ′′2 , l ′′) and l ′
= l ′′, then ni ′, j ′ = ni ′′, j ′′

iff there is σ̃ j̃ ′′′ = (̃σ1, j ′′′ , . . . , σ̃t, j ′′′) ∈ {1, . . . , t}t with σ̃i ′, j̃ ′′′ = σ̃i ′′, j̃ ′′′ , and

– j̃ ′′′ ≤ j̃ ′ and j̃ ′′′ ≤ j̃ ′′, where j̃ ′ is the index in τ̃ corresponding to the index j ′

in τi ′ and j̃ ′′ is the index in τ̃ corresponding to j ′′ in τi ′′ ,

– for each j̃ ′′′ ≤ j̃ ′′′′ ≤ j̃ ′ it holds that σ̃i ′, j̃ ′′′′ /∈ � × {0, . . . , k}2 × {1, . . . , t},

– for each j̃ ′′′ ≤ j̃ ′′′′ ≤ j̃ ′′ it holds that σ̃i ′′, j̃ ′′′′ /∈ � × {0, . . . , k}2 × {1, . . . , t}.

– If σ̃i ′, j ′ = (σ ′, j ′1, j ′2, l ′), σ̃i ′′, j ′′ = (σ ′′, j ′′1 , j ′′2 , l ′′) and l ′
= l ′′, then ni ′, j ′+1 =

ni ′′, j ′′+1 iff there is σ̃ j̃ ′′′ = (̃σ1, j ′′′ , . . . , σ̃t, j ′′′) ∈ {1, . . . , t}t such that σ̃i ′, j̃ ′′′ = σ̃i ′′, j̃ ′′′

and:

– j̃ ′′′ ≥ j̃ ′ and j̃ ′′′ ≥ j̃ ′′, where j̃ ′ is the index in τ̃ corresponding to the index j ′

in τi ′ and j̃ ′′ is the index in τ̃ corresponding to j ′′ in τi ′′ ,

– for each j̃ ′′′ ≥ j̃ ′′′′ ≥ j̃ it holds that σ̃i ′, j̃ ′′′′ /∈ � × {0, . . . , k}2 × {1, . . . , t},

– for each j̃ ′′′ ≥ j̃ ′′′′ ≥ j̃ ′′ it holds that σ̃i ′′, j̃ ′′′′ /∈ � × {0, . . . , k}2 × {1, . . . , t}.

(3) For each i ∈ {1, . . . , t} and j ∈ {1, . . . , fi }, if σ̃ = (σi, j , j1, j2, l) is the letter of τ̃i

corresponding to the letter σi, j of τi , then j1 > 0 iff κ(ni,(j−1)) and j2 > 0 iff κ(ni, j).

123

172 R. Dimitrova, R. Majumdar

4.4 2NFA accepting executions

We construct a 2NFA Ãn for each n ∈ {1, . . . , m} that checks that the sequence described

by the rows of the word that correspond to n is indeed an execution of M that reads the

corresponding rows of the trace word. Furthermore, Ãn verifies that the machine switches

between traces described by different rows of the trace word only at positions at which the

traces share a node in the corresponding paths. The automaton Ãn is a two-way automaton,

that reverses its direction at the two endmarkers of the word, and makes exactly r reversals.

Since the reversals of Mn can occur at arbitrary positions of the trace, Ãn additionally verifies

that the machine’s state remains unchanged in parts of the trace where Mn is inactive.

The 2NFA Ãn = (Q̃n, Q̃0
n, �̃ ∪̇ {⊢,⊣}, δ̃n, F̃n) has the following components.

– Q̃n = Q × {1, . . . , t} × {1, . . . , r̃} × {⊤,⊥, ∗}.

Each state q̃ ∈ Q̃n of Ãn = (Q̃n, Q̃0
n, �̃ ∪̇ {⊢,⊣}, δ̃n, Q̃n) contains a state q ∈ Q of M,

which is the current state of the simulated machine, and an index i ∈ {1, . . . , t} in the

trace-word that is part of the input word. The row of the trace word that is read in state

q̃ is determined by i . The third component of the state counts the number of reversals of

An . The last component is used to check that block number 0 in τ̃ is used to correctly

encode the reversals of the machine (which do not have to be at the start or sink nodes

of the graph).

– Q̃0
n =

{
(q0, i, 1,⊥) | i ∈ {1, . . . , t}

}
and F̃n = Q̃n .

In the initial state of the automaton the machine is in its initial state q0, and all states of

the automaton are accepting.

– The transition relation δ̃n refers to the transition relation δ of M to check the existence

of a transition of M that performs the read and write operations determined by the read

letter of τ̃ . The state q of the machine is updated according to δ and remains unchanged

when the machine is inactive in the current part of the trace. The index i of a row in the

trace word can be changed by δ̃n only if for the current letter we have σ̃tn,h
∈ {1, . . . , t}

and pn,h > 0, and for the new value i ′ it must hold that σi ′ = σi . That is, the machine

can switch between traces only at positions where the paths intersect.

Fix σ̃ = (̃σ1, . . . , σ̃t , η̃1,1, . . . , η̃1,̃r , . . . , η̃m,1, . . . , η̃m ,̃r) ∈ �̃, where for all h ∈

{1, . . . , r̃}, we have η̃n,h = (pn,h, bn,h, b′n,h, q ′n,h, tn,h).

We let ((q, i, h, z), σ̃ , (q ′, i ′, h′, z′), d) ∈ δ̃n iff the following conditions hold.

(1) • If σ̃tn,h
= (σ, l, j1, j2) ∈ � × {1, . . . , t} × {0, . . . , k}2 and pn,h > 0, then

(q, σ, bn,h, q ′n,h, d, b′n,h) ∈ δ̃ and q ′ = q ′n,h .

• If pn,h = 0 or σ̃tn,h
∈ {♭}× {1, . . . , t}× {0, . . . , k}2 ∪ {1, . . . , t}, then q ′ = q .

(2) • h′ = h, and if h is odd, then d = 1 and if h is even, then d = −1;

• if pn,h > 0, then tn,h = i ;

• if σ̃tn,h
∈ {1, . . . , t} and pn,h > 0, then σi ′ = σtn,h

, otherwise i ′ = i ;

(3) • if z = ⊤, then pn,h = pn,h+1 = 0, and if z = ∗, then pn,h = pn,h−1 = 0;

• if z = ⊥ and pn,h = 0, then z′ = ⊤; if z = ∗ and pn,h > 0, then z′ = ⊥;

z′ = z, in all other cases.

– For σ̃ {⊢,⊣} we have ((q, i, h, z), σ̃ , (q ′, i ′, h′, z′), d) ∈ δ̃n iff

– q ′ = q , i ′ = i and z′ = ∗ if z = ⊤ and z′ = z otherwise;

– if σ̃ =⊢ and h = 1, then h′ = h and d = 1;

– if σ̃ =⊢, h
= 1 and h < r̃ , then d = 1 and h′ = h + 1;

– if σ̃ =⊢, h
= 1 and h = r̃ , then d = −1 and h′ = h;

123

Reachability analysis of reversal-bounded automata on… 173

– if σ̃ =⊣ and h = r̃ , then d = 1 and h′ = h;

– if σ̃ =⊣ and h < r̃ , then d = −1 and h′ = h + 1.

By construction, τ̃ ∈ L(Ãn) iff by taking the elements of τ̃ corresponding to machine n

in the appropriate order we can construct an execution ξn . The construction of ξn is given in

the following proposition, proven in the “Appendix”.

Proposition 6 Let τ̃ = σ̃1 · · · σ̃ f ∈ �̃∗. Then τ̃ ∈ L(Ãn) iff τ̃ satisfies the following

conditions.

(1) For each 1 ≤ h ≤ r̃ there exist 1 ≤ l ′h ≤ l ′′h ≤ f such that:

– for every l such that 1 ≤ l < l ′h or l ′′h < l ≤ f it holds that pn,h,l = 0,

– for every l such that l ′h ≤ l ≤ l ′′h it holds that pn,h,l > 0,

– if h is odd and h < r̃ , l ′′h = l ′′h+1; if h is even and h > 1, l ′h = l ′h−1.

(2) For each h ∈ {1, . . . , r̃} and l ∈ {1, . . . , f } we define ξ̂n,h,l as follows:

– If σ̃tn,h,l ,l = (σ, c, j1, j2) ∈ � × {1, . . . , t} × {0, . . . , k}2, pn,h,l > 0 and h is odd,

then let ξ̂n,h,l = (σ, bn,h,l , b′n,h,l) · q
′
n,h,l ,

– If σ̃tn,h,l ,l = (σ, c, j1, j2) ∈ � × {1, . . . , t} × {0, . . . , k}2, pn,h,l > 0 and h is even,

then let ξ̂n,h,l = q ′n,h,l · (σ, bn,h,l , b′n,h,l).

– In all other cases, let ξ̂n,h,l = ε be the empty word.

Let ξ̂n,h = ξ̂n,h,1 · · · · · ξ̂n,h, f if h is odd, and ξ̂n,h = ξ̂n,h, f · · · · · ξ̂n,h,1 otherwise.

The sequence ξn = q0 · ξ̂n,1 · · · · · ξ̂n,̃r is an execution of M.

4.5 2NFA accepting valid read–write sequences

Here we describe a 2NFA Ãc that checks that the executions of the different machines

described by the input word are compatible with each other. That, is that the read and write

operations of different machines match when executed in the order determined by the input

word, where each operation is labelled with a block number. Ãc verifies that each block

number is used in a single execution and that for each execution the sequence of positive block

numbers is nondecreasing. To check the validity of the corresponding read–write sequence

w.r.t. the initial register values, Ãc tracks the register values at the end and at the beginning

of each block and compares the values at the beginning of block i + 1 with those at the

end of block i . An assumption is a partial function A : {1, . . . , p} → B
k that maps a

block number to a valuation of the registers, representing the obligation to verify that at

the beginning of a block the registers have the respective values. Similarly, a guarantee is a

function G : {1, . . . , p} → B
k used to propagate the guarantee that at the end of a block the

registers have a certain value. A read–write word is accepted if all the assumptions have a

matching guarantee.

The 2NFA Ãc = (Q̃c, {q̃
0
c }, �̃ ∪̇ {⊢,⊣}, δ̃c, F̃c) has components defined as follows.

– Q̃c = {1, . . . , r̃} × {1, . . . , p}m × 2{1,...,p} × (Bk)
m
×

(
(Bk){1,...,p}

)2
.

Each state q̃ = (h, p1, . . . , pm, P, β1, . . . , βm, A, G) of the automaton Ãc contains a

block number pn and a valuation of the registers βn for machine n, a set P of already

seen block numbers, an assumption A and a guarantee G.

– q̃0
c =

(
1, 0, . . . , 0,∅, 0, . . . , 0,∅, {(0, 0)}

)
is the initial state.

123

174 R. Dimitrova, R. Majumdar

– The transition relation δ̃c checks that all read operations of machine n, except those at the

beginning of a block, read the value stored in βn . At the beginning of a block of machine

n, δ̃c guesses a valuation of the registers for read operations and stores them in βn . The

new block number and the guess are added to the set of assumptions A. The values of

write operations are used to update βn and, at the end of a block the respective guarantee

is added to G. δ̃c discharges assumptions in A for which the respective guarantees are in

G.

Fix two states of Ãc:

q̃ = (h, p1, . . . , pm, P, β1, . . . , βm, A, G)

q̃ ′ = (h′, p′1, . . . , p′m, P ′, β ′1, . . . , β
′
m, A′, G ′).

For σ̃ = (̃σ1, . . . , σ̃t , η̃1,1, . . . , η̃1,̃r , . . . , η̃m,1, . . . , η̃m ,̃r) ∈ �̃,

where η̃n,h = (pn,h, bn,h, b′n,h, q ′n,h, tn,h) we have (̃q, σ̃ , q̃ ′, d) ∈ δ̃c iff the requirements

(1) and (2) given below are fulfilled.

For n ∈ {1, . . . , m} and h ∈ {1, . . . , r̃}, if σ̃tn,h
= (σ, l, j1, j2) ∈ � × {1, . . . t} ×

{0, . . . , k}2, then let ĵn,h = j1 if h is odd and ĵn,h = j2 if h is even. If σtn,h
/∈ � ×

{1, . . . , t} × {0, . . . , k}2, then let ĵn,h = 0.

(1) All of the following conditions are satisfied:

– h′ = h, and if h is odd, then d = 1 and if h is even, then d = −1.

– P ′ = P ∪ {pn,h | 1 ≤ n ≤ m, pn,h > 0}.

– For every n ∈ {1, . . . , m}, p′n = pn,h if pn,h > pn , and p′n = pn otherwise.

– For every n ∈ {1, . . . , m}, pn ≤ pn,h or pn,h = 0.

– For n, n′ ∈ {1, . . . , m}, if n
= n′, then pn,h = pn′,h = 0 or pn,h
= pn′,h .

– For every n ∈ {1, . . . , m}, if pn,h
= pn and pn,h > 0, then pn,h /∈ P .

(2) There exist β
♯
n ∈ B

k for each n ∈ {1, . . . , m} such that:

– For every n ∈ {1, . . . , m}, if ĵn,h
= 0, then bn,h = β
♯
n(ĵn,h) when pn,h > pn and

bn,h = βn(ĵn,h) otherwise, and if ĵn,h = 0, then bn,h = 0.

– For every n ∈ {1, . . . , m} and j ∈ {1, . . . , k}, it holds that

β ′n(j) =

⎧
⎪⎨
⎪⎩

b′n,h if ĵn,h
= 0, j = ĵn,h and pn,h > 0,

β
♯
n(j) otherwise if pn,h
= pn and pn,h > 0,

βn(j) otherwise.

– A′ = (A\{(i, β) | (i − 1, β) ∈ G}) ∪ {(pn,h, β
♯
n) | pn,h
= pn, pn,h > 0},

– G ′ = (G\{(i, β) | (i + 1, β) ∈ A}) ∪ {(pn, βn) | pn,h
= pn}.

– For σ̃ ∈ {⊢,⊣} we have (̃q, σ̃ , q̃ ′, d) ∈ δ̃c iff

− P ′ = P , A′ = A, G ′ = G, p′n = pn and β ′n = βn for n = 1, . . . , m;

− if σ̃ =⊢ and h = 1, then d = 1 and h′ = h;

− if σ̃ =⊢, h
= 1 and h < r̃ , then d = 1 and h′ = h + 1;

− if σ̃ =⊢, h
= 1 and h = r̃ , then d = −1 and h′ = h;

− if σ̃ =⊣ and h = r̃ , then d = 1 and h′ = h;

− if σ̃ =⊣ and h < r̃ , then d = −1 and h′ = h + 1.

– F̃c = {(̃r , p1, . . . , pm, P, β1, . . . , βm,∅, G) | ∀i ∈ P.∀0 < j < i. j ∈ P}.

In an accepting state the set of assumptions should be empty and the set P of block

numbers in τ̃ should contain all block numbers smaller or equal the maximal one.

By construction, in each word τ̃ ∈ L(Ãc) each block number is assigned to at most one

machine and for each machine the sequence of positive block numbers is nondecreasing.

123

Reachability analysis of reversal-bounded automata on… 175

All such words τ̃ are accepted by Ãc iff the read–write sequence, constructed by ordering

elements of τ̃ according to block number while preserving the order for each individual

machine, is valid w.r.t. the initial register contents.

Proposition 7 Consider a word τ̃ = σ̃1 · · · σ̃ f ∈ �̃∗. Fix n ∈ {1, . . . , m}, h ∈ {1, . . . , r̃}

and i ∈ {1, . . . , f̃ } Consider η̃n,h,i = (pn,h,i , bn,h,i , b′n,h,i , q ′n,h,i , tn,h,i). If σ̃tn,h ,i =

(σ, l, j1, j2) ∈ �×{1, . . . t}× {0, . . . , k}2, then we let jn,h,i = j1 if h is odd and jn,h,i = j2
if h is even. In the other cases we let jn,h,i = 0.

Now, let η̂n,h,i = (pn,h,i , jn,h,i , bn,h,i , hn,h,i). Then we define η̂n,h = η̂n,h,1, . . . , η̂n,h, f

if h is odd and η̂n,h = η̂n,h, f , . . . , η̂n,h,1 if h is even.

Let us also define η̂n =
(
η̃n,1 · · · · · ηn,̃r

)
|(
{1,...,u}×{0,...,k}×B2

).

The word τ̃ is accepted by Ãc iff it satisfies the two conditions below.

(1) Let u = max
{

pn,h,l | n ∈ {1, . . . , m}, h ∈ {1, . . . , r̃}, l ∈ {1, . . . , f }
}
.

– For every 1 ≤ v ≤ u there exists exactly one n ∈ {1, . . . , m} such that there exist

h ∈ {1, . . . , r̃} and l ∈ {1, . . . , f } with the property pn,h,l = v.

– For all n ∈ {1, . . . , m} and 0 ≤ l1 ≤ l2 < |̂ηn | where η̂n[l1] = (p1, j1, b1, b′1) and

η̂n[l2] = (p2, j2, b2, b′2) it holds that p1 ≤ p2.

(2) Let η̂ be the unique permutation of η̂1 · · · · · η̂m that is such that

– the elements of each η̂n appear in η̂ in the same order as in η̂n ,

– for each 0 ≤ l1 ≤ l2 < |̂η|, where η̂[l1] = (p1, j1, b1, b′1) and η̂[l2] =

(p2, j2, b2, b′2) it holds that p1 ≤ p2.

Then, the sequence η = η̂|({0,...,k}×B2) is a read–write sequence that is valid w.r.t. initial

valuation β0 : {1, . . . , k} → B, where β0(j) = 0 for each j ∈ {1, . . . , k}.

4.6 NFA checking for final configurations

Given a set of final configurations F defined by a multiset Sfinal, we construct an NFA As that

checks that some run in T (M, m, Gk), corresponding to the input word As reads, reaches a

configuration in F .

Since for a configuration to be final we require that there exists a node in the graph with

a certain property, potential such configurations can be detected by inspecting (at most) two

consecutive letters in the word. The information relevant for determining if a configuration

is final consists of the block number and successor state components of the letters of the

execution word and the letters of the trace word. Thus, we define the set C = {1, . . . , p}t ×

(Q ∪ {⊥})t × �t and consider pairs of elements of C . Let us first define the following two

elements of C :

c0 = (p0
1,1, . . . , p0

m ,̃r , q0
1,1, . . . , q0

m ,̃r , σ̃
0
1,1, . . . , σ̃

0
m ,̃r),

c⊥ = (p⊥1,1, . . . , p⊥m ,̃r , q⊥1,1, . . . , q⊥m ,̃r , σ̃
⊥
1,1, . . . , σ̃

⊥
m ,̃r),

where for n ∈ {1, . . . , m} and h ∈ {1, . . . , r̃}, we have p0
n,h = p⊥n,h = 0, q0

n,h = q0,

q⊥n,h = ⊥, σ̃ 0
n,h = σ̃⊥n,h = (♭, 1, 0, 0).

Let us consider two elements of the set C :

c′ = (p′1,1, . . . , p′m ,̃r , q ′1,1, . . . , q ′m ,̃r , σ̃
′
1,1, . . . , σ̃

′
m ,̃r) ∈ C,

c′′ = (p′′1,1, . . . , p′′m ,̃r , q ′′1,1, . . . , q ′′m ,̃r , σ̃
′′
1,1, . . . , σ̃

′′
m ,̃r) ∈ C.

123

176 R. Dimitrova, R. Majumdar

We say that the pair (c′, c′′) occurs in τ̃ = σ̃1 · · · σ̃ f ∈ �̃ iff there exists a sequence of

consecutive letters in τ̃ such that those of c′ and c′′ that are not equal to c0 and c⊥ match

these letters of τ̃ in the same order. Formally, (c′, c′′) occurs in τ̃ iff one of the following

conditions is satisfied.

(1) c′ = c0, and p′′n,h = pn,h,1, q ′′n,h = qn,h,1 and σ̃ ′′n,h = σ̃tn,h,1,1 (c′′ matches σ̃1).

(2) c′′ = c⊥, and p′n,h = pn,h,1, q ′n,h = qn,h,1 and σ̃ ′n,h = σ̃tn,h,1, f (c′ matches σ̃ f).

(3) There exists 1 < l ≤ f such that

– p′n,h = pn,h,l−1, q ′n,h = qn,h,l−1 and σ̃ ′n,h = σ̃tn,h,l−1,l−1 (c′ matches σ̃l−1),

– p′′n,h = pn,h,l , q ′′n,h = qn,h,l and σ̃ ′′n,h = σ̃tn,h,l ,l (c′′ matches σ̃l).

Consider a configuration γ ∈ Γ of a run ρ that is in the set of final configurations F . This

means that there exists an edge e ∈ E , such that some of the nodes src(e) and trg(e) meets

the condition for a final configuration. Furthermore, there exits a set of machines involved

in the satisfaction of this condition in γ . Among these machines, we distinguish between

the one that executed the last transition in ρ leading to this configuration and the remaining

machines. By the definition of runs of T (M, m, Gk), the current node and states of these

remaining machines should be reached at the end of one of their execution blocks. We define

a predicate about pairs of elements of C , sets of machines and corresponding positions in

their executions (i.e., rows in the respective letter of the execution word). The automaton As

will use this predicate to identify letters of the word that may encode final configurations.

Let S ∈ M(Q), M ⊆ {1, . . . , m} and fM : M → {1, . . . , r̃}. For each n ∈ M , let

fn = fM (n) and if fn is odd, then pn = p′n, fn
, qn = q ′n, fn

and σn = σ̃ ′n, fn
, and if fn

is even, then pn = p′′n, fn
, qn = q ′′n, fn

and σn = σ̃ ′′n, fn
. Let n0 ∈ M be such that for each

n ∈ M , it holds that pn ≤ pn0 . We define pn(c′, c′′, M, fM) = pn for each n ∈ M and

n0(c
′, c′′, M, fM) = n0.

The node predicate NodeProperty(S, c′, c′′, M, fM) is true iff the conditions listed below

hold.

– S = [qn | n ∈ M] and for each n ∈ M\{n0}, pn < pn0 and p′n, fn

= p′′n, fn

.

– One of the following requirements is satisfied:

– σ ′n0
∈ {1, . . . , t} and σ ′n = σ ′n0

for each n ∈ M .

– σ ′n0
= (σ0, l0, j0, j ′0) ∈ �×{1, . . . , t}× {0, . . . , k}2 and for each n ∈ M there exist

σ ∈ �, j, j ′ ∈ {0, . . . , k} such that σ ′n = (σ, l0, j, j ′).

– σ ′′n0
∈ {1, . . . , t} and σ ′′n = σ ′′n0

for each n ∈ M .

– σ ′′n0
= (σ0, l0, j0, j ′0) ∈ �×{1, . . . , t}× {0, . . . , k}2 and for each n ∈ M there exist

σ ∈ �, j, j ′ ∈ {0, . . . , k} such that σ ′′n = (σ, l0, j, j ′).

In order to evaluate NodeProperty on positions of the input word τ̃ , the NFA As stores

in its state an element c′ of C . The current letter of the input word determines an element c′′

of C , and As evaluates the node predicate on the pair (c′, c′′). In order to verify that some run

corresponding to τ̃ contains a final configuration in F , As must detect all pairs on which the

predicate NodeProperty holds true, that is, they might encode a final configuration. Then,

As must verify that some of the pairs on which the predicate NodeProperty holds actually

fulfils a global condition on τ̃ . Namely, that for all the involved machines, the currently

executed block number is the last one. (We can, w.l.o.g. restrict to runs where only the last

configuration can be final.) This guarantees that all involved machines are simultaneously

located at the respective node of the graph, in their respective local states, which in turn

means that the configuration is in F .

123

Reachability analysis of reversal-bounded automata on… 177

Given the set of final configurations F defined by a multiset Sfinal, we define the NFA

As = (Q̃s, {q̃
0
s }, �̃ ∪̇ {⊢,⊣}, δ̃s, F̃s) as follows.

– Q̃s = Q̃s
′
∪ F̃s and q̃0

s = (c0,∅, . . . ,∅,∅, . . . ,∅, p, . . . , p, 0
)
, where F̃s = {̃q

f
s } and

Q̃s
′
= C ×

(
2{1,...,p}

)m
× {0, . . . , p}m × B.

A state q̃ = (c′, P1, . . . , Pm, p1, . . . , pm, f inal) of As contains an element c′ of C , a

Boolean value f inal ∈ B, and for each machine n it contains components Pn ∈ 2{1,...,p}

and pn ∈ {0, . . . , p}. The set Pn consists of the already seen block numbers for machine n.

– Let σ̃ = (̃σ1, . . . , σ̃t , η̃1,1, . . . , η̃1,̃r , . . . , η̃m,1, . . . , η̃m ,̃r) ∈ �̃, where for all n ∈

{1, . . . , m} and h ∈ {1, . . . , r̃} we have η̃n,h = (pn,h, bn,h, b′n,h, q ′n,h, tn,h). Let

q̃ = (c′, P1, . . . , Pm, p1, . . . , pm, f inal)

q̃ ′ = (p′′′1,1, . . . , p′′′m ,̃r , q ′′′1,1, . . . , q ′′′m ,̃r , σ̃
′′′
1,1, . . . , σ̃

′′′
m ,̃r ,

p′′′′1,1, . . . , p′′′′m ,̃r , q ′′′′1,1, . . . , q ′′′′m ,̃r , σ̃
′′′′
1,1, . . . , σ̃

′′′′
m ,̃r ,

P ′1, . . . , P ′m, p′1, . . . , p′m, f inal ′),

c′ = (p′1,1, . . . , p′m ,̃r , q ′1,1, . . . , q ′m ,̃r , σ̃
′
1,1, . . . , σ̃

′
m ,̃r), and

c = (p1,1, . . . , pm ,̃r , q1,1, . . . , qm ,̃r , σ̃t1,1 , . . . , σ̃tm ,̃r).

Then, (̃q, σ̃ , q̃ ′, d) ∈ δ̃s iff d = 1 and the following conditions are satisfied.

(1) For each n ∈ {1, . . . , m} and h ∈ {1, . . . , r̃}, pn,h ≤ pn , σ̃ ′′′n,h = σ̃ ′′n,h , σ̃ ′′′′n,h = σ̃tn,h
,

and if pn,h > 0 and σ̃tn,h
∈ � × {0, . . . , k}2 × {1, . . . , t}, then p′′′n,h = p′′n,h ,

q ′′′n,h = q ′′n,h , p′′′′n,h = pn,h and q ′′′′n,h = qn,h .

Based on the currently read letter of τ̃ , the transition relation δ̃s updates the compo-

nent c′ of the state.

(2) For each n ∈ {1, . . . , m}

– P ′n = Pn ∪ {pn,h | h ∈ {1, . . . , r̃}, pn,h > 0} and

– if f inal ′ = f inal, then p′n = pn .

(3) If f inal ′
= f inal, then f inal = 0 and there exist M ⊆ {1, . . . , m} and a function

fM : M → {1, . . . , r̃}, such that:

– the predicate NodeProperty(Sfinal, c′, c, M, fM) holds true,

– for every n′ ∈ M , p′
n′
= pn′(c

′, c, M, fM),

– for every n′ ∈ {1, . . . , m}\M it holds that p′
n′
= pn′ .

If the current letter defines c ∈ C such that NodeProperty(Sfinal, c′, c, M, fM) holds

true for some M ⊆ {1, . . . , m} and some function fM , then f inal can be set to 1 if it

is 0, and the current block number of machine n for each n ∈ M can be stored in pn , in

order to verify later that a final configuration is indeed reached (by checking that pn is

the maximal block number for machine n).

– (̃q,⊢, q̃ ′, d) ∈ δ̃s iff q̃ = q̃ ′ and d = 1;

– Let q̃ ′ ∈ Q̃s and q̃ = (c′, P1, . . . , Pm, p1, . . . , pm, f inal), where

c′ = (p′1,1, . . . , p′m ,̃r , q ′1,1, . . . , q ′m ,̃r , σ̃
′
1,1, . . . , σ̃

′
m ,̃r).

Then, (̃q,⊣, q̃ ′, d) ∈ δ̃s iff d = 1 and it holds that q̃ ′ = q̃
f

s iff we have that:

123

178 R. Dimitrova, R. Majumdar

– if f inal = 1, then for each n ∈ {1, . . . , m}, pn ≥ max Pn ;

– if f inal = 0, then for some M ⊆ {1, . . . , m} and function fM we have:

• NodeProperty(S, c′, c⊥, M, fM) holds true and

• for every n ∈ M , pn(c′, c⊥, M, fM) ≥ max Pn .

The accepting state q̃
f

s can be entered after reading ⊣ if f inal = 1 and if pn is the

maximal block number for machine n for each n.

The construction of As ensures that τ̃ ∈ L(As) iff there exists a pair (c′, c′′) occurring in

τ̃ encoding a configuration that is in F .

Proposition 8 Consider a word τ̃ = σ̃1 · · · σ̃ f ∈ �̃∗ and let Pn = {pn,h,l | 1 ≤ h ≤

r̃ , 1 ≤ l ≤ f }. The word τ̃ is accepted by As iff there exists a tuple (c′, c′′) occurring in

τ̃ , set M ⊆ {1, . . . , m} and a function fM : M → {1, . . . , r̃} which satisfy the predicate

NodeProperty(Sfinal, A, c′, c′′, M, fM) and are such that for every n ∈ M it holds that

pn(c′, c′′, M, fM) = max Pn .

4.7 Correctness of the algorithm

Let A1, . . . , Am be an NFA obtained respectively from Ã1, . . . , Ãm such that for each i ∈

{1, . . . , m}, L(Ai) = L(Ãi). Let Ac be an NFA constructed from Ãc such that L(Ac) =

L(Ãc). We then construct the NFA Ae by intersecting A1, . . . , Am , Ac and As and projecting

the result on �t, i.e., L(Ae) =
(⋂m

i=1 L(Ai) ∩ L(Ac) ∩ L(As)
)
|�t

. The PDA A is the

intersection of Pt and Ae.

Theorem 2 L(A)
= ∅ iff there exists an r-reversal bounded run ρ = γ0 · · · γ f in

T (M, m, Gk) such that γi ∈ F for some 0 ≤ i ≤ f , i.e., a run that reaches a configu-

ration in F.

Proof Suppose that L(A)
= ∅. We show that there exists an r -reversal bounded run ρ that

reaches a configuration in F .

Let us fix τ̃t ∈ L(A). By the construction of A, the word τ̃t is accepted by P and Ar,

and there exists a word τ̃ = σ̃1 · · · σ̃ f accepted by Ãc, Ã1, . . . , Ãm and Ãs such that for

every l ∈ {1, . . . , f } if σ̃l = (̃σ1,l , . . . , σ̃t,l , η̃1,1,l , . . . , η̃1,̃r ,l , . . . , η̃m,1,l , . . . , η̃m ,̃r ,l) is the

lth letter of τ̃ , then (̃σ1,l , . . . , σ̃t,l) is the lth letter of τ̃t. Let for n ∈ {1, . . . , m}, h ∈ {1, . . . , r̃}

and l ∈ {1, . . . , f }, η̃n,h,l = (pn,h,l , bn,h,l , b′n,h,l , q ′n,h,l , tn,h,l).

According to Proposition 4, there exists (G, κ) ∈ Lu(Gk) where G = (N , E, nb, ne), and

there exist sequences of nodes πi = ni,0, . . . , ni, fi
∈ N∗ for each i ∈ {1, . . . , t}, that satisfy

the conditions listed in the statement of the proposition.

Since the graph G contains at most k registers positioned at nodes marked by a mapping

κ , we can assign to each of those nodes unique identifiers from the set {1, . . . , k} and assign

0 to all other nodes. Furthermore, this assignment can be made consistent with the annotation

in the word τ̃ according to the correspondence established in Proposition 4. Let us denote

with κ̂(n) the identifier assigned to node n in this way.

For each n ∈ {1, . . . , m}, h ∈ {1, . . . , r̃} and l ∈ {1, . . . , f }, if σ̃tn,h,l ,l ∈ � ×

{1, . . . , t} × {0, . . . , k}2 and pn,h,l > 0, then we define π̂n,h,l = (pn,h,l , ntn,h,l+1
) and

ζ̂n,h,l = (pn,h,l , n, q ′n,h,l , κ̂(ntn,h,l+1
), b′n,h,l), and otherwise, π̂n,h,l = ǫ and ζ̂n,h,l = ǫ.

π̂n,h = π̂n,h,1 · · · · · π̂n,h, f if h is odd, and π̂n,h = π̂n,h, f · · · · · π̂n,h,1 otherwise, ζ̂n,h =

ζ̂n,h,1 · · · · · ζ̂n,h, f if h is odd, and ζ̂n,h = ζ̂n,h, f · · · · · ζ̂n,h,1 otherwise.

Let π̂ be the unique permutation of the sequence π̂n,1 · · · · · π̂n, f such that the elements of

each π̂n,h appear in π̂ in the same order as in π̂n,h , and if 0 ≤ l1 ≤ l2 < |π̂ |, π̂[l1] = (p1, n1)

and π̂ [l2] = (p2, n2), then p1 ≤ p2.

123

Reachability analysis of reversal-bounded automata on… 179

Let ζ̂ be the unique permutation of the sequence ζ̂n,1 · · · · · ζ̂n, f such that the elements

of each ζ̂n,h appear in ζ̂ in the same order as in ζ̂n,h , and if 0 ≤ l1 ≤ l2 < |̂ζ |, ζ̂ [l1] =

(p1, m1, q1, j1, b1) and ζ̂ [l2] = (p2, m2, q2, j2, b2), then p1 ≤ p2.

By definition |̂ζ | = |π̂ |. Let |̂ζ | = |π̂ | = s, π̂ = (p1, n1), . . . , (ps, ns) and ζ̂ =

(p1, m1, q1, j1, b′1), . . . , (ps , ms, qs, js, b′s).

We construct a sequence of configurations ρ = γ0, . . . , γs ∈ Γ as follows. Let γ0 =

〈G, K , κ, μ0, β0〉, where μ0(nb) = {(i, q0) | i ∈ {1, . . . , m}}, μ0(n) = ∅ for every n ∈

N\{nb}, and β0(j) = 0 for every j ∈ {1, . . . , k}. For each 1 ≤ i ≤ s, if π̂[i] = (pi , ni) and

ζ̂ [i] = (p′i , mi , qi , ji , b′i), then pi = p′i and we define:

– μi (n) = μi−1(n)\{(mi , q)} and μi (ni) = μi−1(ni) ∪ {(mi , qi)},

– μi (n
′) = μi−1(n

′) for each n′ ∈ N\{n, ni },

– if ji > 0, then βi (ji) = b′i , βi (j) = βi−1(j) for each j ∈ {1, . . . , k}\{ ji },

where n ∈ N and q ∈ Q are the unique node and state such that (mi , q) ∈ μi−1(n).

Propositions 6 and 7 imply that ρ is an r -reversal bounded run. Propositions 4, 6–8 imply

that for each 0 ≤ i ≤ s it holds that γs ∈ F . This completes this direction of the proof.

For the other direction, suppose that there exists an r -reversal bounded run ρ = γ0γ1 · · · γs

such that γs ∈ F . We will show that L(A)
= ∅.

Let (G, κ) ∈ Lu(Gk), where G = (N , E, nb, ne), be the corresponding graph. Since the

graph G contains at most k registers positioned at nodes marked by a mapping κ , we can

assign to each of those nodes unique identifiers from the set {1, . . . , k} and assign 0 to all

other nodes.

Let γi = 〈G, μi , βi 〉 for 0 ≤ i ≤ s. According to Proposition 2 we can w.l.o.g. assume

that ρ consists of u blocks, where 0 ≤ u ≤ p. We number the blocks in ρ sequentially with

1, . . . , u.

Let us fix a trace τ compatible with ρ. For each n ∈ {1, . . . , m}we denote with τn the trace

obtained from τ by taking the subsequences corresponding to the transitions of machine Mn .

Since ρ is r -reversal bounded, according to Proposition 3, given ρ and τ , there exist for each

n ∈ {1, . . . , m} and each h ∈ {1, . . . , r̃} a trace τ̂n,h ∈ �∗ and a path π̂n,h ∈ Paths(G, τ̂n,h)

that satisfy the properties in the proposition. Let us fix for each n ∈ {1, . . . , m} and each

1 ≤ h ≤ rn , where rn is the number of reversals done by machine n in ρ, the traces

τ ′n,h, τ ′′n,h, τ ′′′n,h and the paths π ′n,h, π ′′n,h, π ′′′n,h as in Proposition 3.

According to Proposition 5 there exists a bijection g : {1, . . . , m} × {1, . . . , r̃} →

{1, . . . , t} such that if for each i ∈ {1, . . . , t} we define τi = τ̂g−1(i) and πi = π̂g−1(i),

then there exists a word τ̃t ∈ L(P)∩L(Ar) which satisfies the conditions of this proposition.

Let (̃σ1,l , . . . , σ̃t,l) be the lth letter of τ̃t for l ∈ {1, . . . , f } and let τ̃i = σ̃i,1, . . . , σ̃i, f be the

i th row of τ̃t for i ∈ {1, . . . , t}.

Now, we define a word τ̃ = σ̃1 · · · σ̃ f , where for 1 ≤ l ≤ f

σ̃l = (̃σ1,l , . . . , σ̃t,l , η̃1,1,l , . . . , η̃1,̃r ,l , . . . , η̃m,1,l , . . . , η̃m ,̃r ,l),

for i ∈ {1, . . . , t} the i th row of τ̃ is τ̃i = σ̃i,1 · · · σ̃i, f , and for n ∈ {1, . . . , m} and h ∈

{1, . . . , r̃},

η̃n,h,l = (pn,h,l , bn,h,l , b′n,h,l , q ′n,h,l , tn,h,l).

For each n ∈ {1, . . . , m}, h ∈ {1, . . . , r̃} and l ∈ {1, . . . , f }:

– if h ≤ rn + 1 and σ̃g(n,h),l corresponds to a position in τ ′′n,h , then:

– the value pn,h,l is the block number of the corresponding transition in ρ,

– the values bn,h,l and b′n,h,l are obtained from the values of the registers in the corre-

sponding nodes of the graph in the corresponding configurations of the run ρ;

123

180 R. Dimitrova, R. Majumdar

– the value q ′n,h,l is the target state of the corresponding transition in ρ;

– if h ≤ rn + 1 and σ̃g(n,h),l does not correspond to a position in τg(n,h) (̃σg(n,h),l ∈

{♭} × {1, . . . , t} × {0, . . . , k}2 ∪ {1, . . . , t} ∪ {1, . . . , t}), then:

– if h is odd and l > 0, then pn,h,l = pn,h,l−1,

– if h is odd, l = 0, h > 1 then pn,h,l = pn,h−1,0,

– if h is odd, l = 0, h = 1 then pn,h,l = 0,

– if h is even and l < f , then pn,h,l = pn,h,l+1,

– if h is even and l = f , then pn,h,l = pn,h−1, f ,

– bn,h,l = b′n,h,l = 0,

– q ′n,h,l is an arbitrarily fixed element of the set Q;

– if h > rn + 1 or σ̃g(n,h),l corresponds to a position in τ ′n,h or τ ′′′n,h , then pn,h,l = 0,

bn,h,l = b′n,h,l = 0, and fix arbitrary q ′n,h,l .

For each n ∈ {1, . . . , m}, h ∈ {1, . . . , r̃} and l ∈ {1, . . . , f }, let tn,h,l = g(n, h).

By construction, the word τ̃ fulfills for every n ∈ {1, . . . , m} the conditions of Proposi-

tion 6 and is thus accepted by the automata Ã1, . . . , Ãm . Also by construction, τ̃ satisfies

the conditions of Proposition 7 and is thus accepted by the automaton Ãc. Since γs ∈ F , the

construction of τ̃t and τ̃ ensure that τ̃ satisfies the conditions of Proposition 8, and is hence

accepted by Ãs. Therefore τ̃t ∈ L(A), and hence L(A)
= ∅. ⊓⊔

4.8 Complexity

We establish an EXPTIME lower bound for the reversal- and register-bounded reachability

problem by reduction from the intersection nonemptiness problem for one PDA and several

deterministic finite automata, which is well-known to be EXPTIME-complete [15].1

Proposition 9 The reversal- and register-bounded reachability problem for graph-grammar

transition systems is EXPTIME-hard.

Proof Let D be a PDA and B1, . . . , Bm be m deterministic finite automata over a com-

mon alphabet �̂, with D = (QD, q0
D

, �̂,Δ,⊥, δD) and Bi = (Qi , q0
i , �̂, δi , Fi) for

i = 1, . . . , m. We reduce the intersection nonemptiness ofD, B1, . . . , Bm , that is, the question

whether L(D) ∩ L(B1) ∩ · · · ∩ L(Bm)
= ∅ to the 0-reversal m-register bounded reach-

ability problem for a graph-grammar transition system T (M, m, Gm) with m machines.

The number of states of M = (Q, q0, �, δ) is Q =
∑n

i=1 |Qi | + 2, and its alphabet is

� = �̂ ∪ {a1, . . . , am, f }, where a1, . . . , am, f /∈ �̂.

The graph grammar G generates linear graphs with edges as follows:

(n0, n1, a1), . . . , (nm−1, nm, am), (nm, n̂1, σ̂1), . . . (̂nl−1, n̂l , σ̂l), (̂nl , n̂l+1, f),

in which the nodes n0, n1, . . . , nm−1 are equipped with registers.

Intuitively, G is defined such that each graph generated by G represents a word in L(D)

preceded by the word a1 · · · am and followed by the single-letter word f . All graphs of this

form for words in L(D) are generated by G.

The SPGG G has terminal symbols �̂ ∪ {a1, . . . , am, f }. It contains two rules for each of

the letters a1, . . . , am, f . The rest of the rules of G encode the transition relation δD of the

PDA D, following the standard construction [16].

1 This reduction was pointed out to us by Aiswarya Cyriac.

123

Reachability analysis of reversal-bounded automata on… 181

The set Q =
⋃m

i=1 Qi ∪ {q
0, q f } of states of M consists of the union of states of the

automata B1, . . . , Bm together with a dedicated initial state q0 and dedicated final state q f .

The transition relation δ of M consists of the following transitions:

– (q0, ai+1, 0, q0
i+1, 1, 1), for i = 0, . . . , m − 1,

– (q0, ai+1, 1, q0, 1, 1), for i = 0, . . . , m − 1,

– (q0
j , ai+1, b, q0

j , 1, b), for i = 0, . . . , m − 1 and b ∈ B,

– (q, σ, 0, q ′, 1, 0), for all (q, σ, q ′, 1) ∈ δ1 ∪ · · · ∪ δm ,

– (q, f, 0, q f , 1, 0), for all q ∈ F1 ∪ · · · ∪ Fm .

Intuitively, each machine starts in state q0 and traverses the graph until reaching the first node

ni whose register has value 0, when it transitions to state q0
i+1 and updates the value of the

register at ni to 1. The definitions of the transitions in the first three items above guarantee

that for each automaton Bi exactly one of the machines transitions to the initial state q0
i of

Bi . Once this machine reaches node nm it starts to simulate automaton Bi on the portion of

the linear graph labelled with letters from �̂. Finally, when the edge labelled with the letter

f is reached, if the machine is in state from Fi , it transitions to the end node in the final state

q f .

For the multiset of final states Sfinal we take the multiset consisting of m copies of q f .

By the construction of M and G it follows that there exists a run of T (M, m, Gm) that

reaches Sfinal if and only if there exists a word in L(D) (the corresponding graph for which is

generated by G), that is accepted by all of the automata B1, . . . , Bm (the machines simulating

them all reach the end node in state q f).

This completes the reduction, and since the sizes of G and M are at most polynomial in

the sum of sizes of the input automata, the claim follows. ⊓⊔

Our algorithm reduces the reversal- and register-bounded reachability problem to checking

non-emptiness of the intersection of word automata: one PDA and several NFA. Some of the

nondeterministic automata are given in our construction as two-way automata (NFA), but

since two-way NFA and one-way NFA are equally expressive, they can be as well translated

to NFA. Moreover, as we explain below, due to the specific structure of the 2NFA in our

construction and the fixed number of passes each of them does on the input word, this

translation can be done in a more direct matter than the classical conversions from 2NFA to

NFA.

Below we give the size of the input alphabets, and the size (number of states) for each of

the automata involved in our algorithm. Recall that t = (r+1) ·m, where m is the number of

machines and r is the bound on the number of reversals of each machine, and k is the bound

on the number of registers. Recall also that p =
(
r ·m + k ·m · (r + 1)+ 1

)
· (m + 1) is the

derived bound on the number of blocks.

The size of the trace alphabet is |�̃t| =
(
(|�| + 1) · (k + 1)2 · t

)t
+ t t . The size of the

alphabet �̃ is |�̃| = |�̃t|.
(
(p + 1) · 4 · |Q| · t)t .

– The number of states of the PDA Pt is |Qp| = 2.

– The number of states of the NFA Ar is

|Qr| =
(
t · (k + 1)

)t
· 2(k+1).

– The number of states of each 2NFA Ãn is

|Q̃n | = |Q| · t · (r + 1) · 3.

By the construction of Ãn , its runs make exactly r reversals on the input word, simulating

the r reversals of the machine. Thus, Ãn can be converted to an NFA by guessing at the

123

182 R. Dimitrova, R. Majumdar

beginning of the word states for the passes in the reverse direction and then simulating

the machine backwards on the reverse passes on the word, verifying that the guess was

correct at the end of the word. The resulting NFA will have O(|Q̃n |
r+1) states.

– The number of states of the 2NFA Ãc is

|Q̃c| = (r + 1) · pm · 2(p+k·m+2·k·p).

Similarly to Ãn , the automaton Ãc also makes r + 1 passes over the input word and can

be converted to an NFA that guesses states from which to simulate Ãc backwards for

the reverse runs, and at the end of the word verifies that these guesses are correct. The

resulting NFA will have O(|Q̃c|
r+1) states.

– The number of states of the NFA As is

|Qs| =
(

p · (|Q| + 1))t ·
((

(|�| + 1) · (k + 1)2 · t
)t
+ t t

)
· 2p·m · (p + 1)m · 2+ 1.

Thus, the problem can be reduced to checking language emptiness for a product automaton

whose size is α1(|Q|, |�|, m, r, k)m·(r+1) · 2α2(m,r,k), where α1 is a polynomial in |Q|, |�|,

m, r and k, and α2 is a polynomial in m, r and k. Language emptiness of the product PDA

can be checked in time polynomial in its size.

Thus, the algorithm based on our construction gives us an EXPTIME upper bound. Hence

we can conclude that the problem is EXPTIME-complete.

Theorem 3 The reversal- and register-bounded reachability problem for graph-grammar

transition systems is EXPTIME-complete.

5 Conclusion

In this paper we define and study a class of concurrent finite-state automata traversing series–

parallel graphs and communicating through shared finite registers located at the nodes of the

graph. We considered a model in which a fixed number of finite-state machines traverse

the nodes of a series–parallel graph. The series–parallel graphs are generated by a graph

grammar, and as we do not impose an a priori bound on the size of the graphs, the resulting

system is infinite-state. Since the emptiness problem for this model is in general undecidable,

we consider a natural restriction by putting bounds on the number of reversals along the

computation and the number of shared registers in the graph. With these two restrictions, we

show that the emptiness problem is decidable and can be reduced to PDA emptiness.

As we noted in Sect. 2.4, our decidability result holds for a more general model of com-

munication between the machines, in which either read or write (but not both) operations on

registers can be non-local, that is, access a register that is not at the node where the machine

is currently located. Another possible extension that we omitted for simplicity concerns the

set of final configurations in the reachability problem. While here we consider properties

that quantify over individual nodes in the graph, we can, in principle, extend the construction

described in Sect. 4.6 to handle properties asserting the existence of edges with certain labels,

or a fixed number of adjacent nodes and edges.

Interesting directions for future work include establishing the complexity of the bounded

emptiness problem for our model, as well as studying different extensions. One possibility is

to allow parametrization in the number of concurrent machines, another is to consider other

classes of context-free GTSs. For example, using the techniques from [21] one can try to

extend our results to a more general class of graphs of bounded tree width.

123

Reachability analysis of reversal-bounded automata on… 183

Acknowledgements Open access funding provided by Max Planck Society.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proofs omitted in Sect. 4

Proposition 10 If a word τ̃ = σ̃1 · · · σ̃ f ∈ �∗t is accepted by Pt, then there exists (G, κ) ∈

Lu(Gk) with G = (N , E, nb, ne) and for each i ∈ {1, . . . , t} there exists a sequence of nodes

π̃i = ñi,0, . . . , ñi, f in the graph G such that all of the following conditions are satisfied.

(1) For each i ∈ {1, . . . , t} it holds that:

– For each 1 < j ≤ f :

– If σ̃i, j = (σ, j1, j2, l) ∈ � × {0, . . . , k}2 × {1, . . . , t}, then there exists e ∈ E

with src(e) = ñi,(j−1), trg(e) = ñi, j and α(e) = σ ,

– If σ̃i, j ∈
(
{♭} × {0, . . . , k}2 × {1, . . . , t}

)
∪ {1, . . . , t}, then ñi,(j−1) = ñi, j .

– Let τi =
(
τ̃i |�×{0,...,k}2×{1,...,t}

)
|� be the projection of τ̃i .

Then, there exists a subsequence πi = n0, . . . , n fi
of π̃i with πi ∈ Paths(G, τi).

(2) For all i1, i2 ∈ {1, . . . , t} and j ∈ {1, . . . , f } it holds that:

– If σ̃i1, j , σ̃i2, j ∈ � × {0, . . . , k}2 × {1, . . . , t}, σ̃i1, j = (σ, j1, j2, l) and σ̃i2, j =

(σ ′, j ′1, j ′2, l ′), then l = l ′ implies ñi1,(j−1) = ñi2,(j−1), ñi1, j = ñi2, j and and

σ = σ ′.

– If σ̃ j ∈ {1, . . . , t}t , then σ̃i1, j = σ̃i2, j iff ñi1, j−1 = ñi2, j−1, ñi1, j = ñi2, j .

(3) For every i ∈ {1, . . . , t} and j ∈ {1, . . . , f }with σ̃i, j = (σ, j1, j2, l) ∈ �×{0, . . . , k}2×

{1, . . . , t} it holds that j1 > 0 iff κ(̃ni,(j−1)) and j2 > 0 iff κ(̃ni, j).

Proof (Proof sketch) The automaton P simulates the derivation by rules of Gk of a t-tuple

of traces in some graph G derived by Gk . On its stack it stores tuples of variables, again

one for each of the traces, or terminal letters. For shared parts of the paths corresponding to

these traces, a shared copy of the variables is used. New copies are introduced by expanding

variables using the parallel composition rules. As the number of symbols in a tuple is bounded

by t , P nondeterministically guesses which of the two (or both) variables on the right hand

side of a parallel composition rule should be present in the tuple that is put on the stack. This

corresponds to nondeterministically guessing the paths for the traces in the graph. Since we

assume that each variable in Gk generates at least one graph, we are guaranteed that if P

accepts some tuple of traces, the corresponding set of paths can be extended to a graph G

derived by G.

Transitions of P that add to the stack symbols which are matched against symbols of

the input word from the alphabet
(
� × {0, . . . , k}2 × {1, . . . , t}

)t
correspond to rules of the

grammar of type (1). Thus, such letters correspond to tuples of edges in the graph and since

the automaton simulates a derivation, the edges for each row in the word form a path. Thus, for

each i ∈ {1, . . . , t} we can construct a path πi = n0, . . . , n fi
of π̃i with πi ∈ Paths(G, τi),

where τi =
(
τ̃i |�×{0,...,k}2×{1,...,t}

)
|� . By duplicating nodes we can extend the sequence πi

to a sequence π̃i = ñi,0, . . . , ñi, f that satisfies condition (1) of the proposition.

The automaton P uses a common part of the stack symbols Ṽ for the common parts of

the paths for different traces. These shared parts are expanded using their multiplicity before

123

http://creativecommons.org/licenses/by/4.0/

184 R. Dimitrova, R. Majumdar

being compared to letters of the input word. In the same way P checks that parts of the

input letter corresponding to a shared part also share the same path index as part of the letter.

In this way P verifies the first part of condition (2). The second part of this conditions is

guaranteed by the fact that the shared parts of the stack symbols are only split into separate

symbol components during transitions that correspond to parallel composition rules in the

grammar. These transitions are also the exact point when symbols of the form {1, . . . , t}t

are put on the stack, using in the tuple the same number for all the branches emerging from

a given trace. Thus the automaton checks that input symbols of this type satisfy the second

part of condition (2).

To check that condition (3) is satisfied, the transitions of P take into account the local

mapping of nodes to boolean values associated with each rule in R. Thus P ensures that if a

register index in a symbol that is put on the stack is different from 0, then the corresponding

node is marked by the mapping associated with the rule. The automaton Ar verifies that the

letters corresponding to edges in the graph incident with a node carry the same register index.

This is done in conditions (1), (2) and (4) of the definition of δr . Conditions (1), (3) and (4)

of δr check that the same register index is not used for more than one node in the graph. This

guarantees that if we define κ̂ such that for every i ∈ {1, . . . , t} and j ∈ {1, . . . , f } we let

κ̂ (̃ni, j) = true iff j2 > 0, where σ̃i, j = (σ, j1, j2, l), then we can extend κ̂ to κ such that

(G, κ) ∈ Lu(Gk). Clearly, κ will fulfill condition (3). ⊓⊔

Proposition 11 Let (G, κ) ∈ Lu(Gk) and G = (N , E, nb, ne). Let for every n ∈ {1, . . . , m}

and h ∈ {1, . . . , r̃}, τ̂n,h ∈ �∗ be a trace and π̂n,h ∈ N∗ be a path such that π̂n,h ∈

Paths(G, τ̂n,h).

Then, there exists a bijection g : {1, . . . , m} × {1, . . . , r̃} → {1, . . . , t} such that if for

each i ∈ {1, . . . , t} we define τi = τ̂g−1(i) = σi,1 · · · σi, fi
and πi = π̂g−1(i) = ni,0, . . . , ni, fi

,

then there exists a word τ̃ = σ̃1 · · · σ̃ f ∈ L(Pt) that satisfies the following requirements.

(1) For each i ∈ {1, . . . , t}, it holds that τi =
(
τ̃i |�×{0,...,k}2×{1,...,t}

)
|� .

(2) For all i ′, i ′′ ∈ {1, . . . , t}, j ∈ {1, . . . , f }, j ′ ∈ {1, . . . , f̃i ′}, j ′′ ∈ {1, . . . , f̃i ′′} we have:

– If σ̃i ′, j = (σ ′, j ′1, j ′2, l ′), σ̃i ′′, j = (σ ′′, j ′′1 , j ′′2 , l ′′), n and n′ are the nodes in πi ′

corresponding to the position of the respective occurrence of σ ′ in τi ′ , and n′′ and

n′′′ are the nodes in πi ′′ corresponding to the position of the respective occurrence

of σ ′′ in τi ′′ , then l ′ = l ′′ implies n = n′′ and n′ = n′′′.

– If σ̃i ′, j ′ = (σ ′, j ′1, j ′2, l ′), σ̃i ′′, j ′′ = (σ ′′, j ′′1 , j ′′2 , l ′′) and l ′
= l ′′, then ni ′, j ′ = ni ′′, j ′′

iff there is σ̃ j̃ ′′′ = (̃σ1, j ′′′ , . . . , σ̃t, j ′′′) ∈ {1, . . . , t}t with σ̃i ′, j̃ ′′′ = σ̃i ′′, j̃ ′′′ , and

– j̃ ′′′ ≤ j̃ ′ and j̃ ′′′ ≤ j̃ ′′, where j̃ ′ is the index in τ̃ corresponding to the index j ′

in τi ′ and j̃ ′′ is the index in τ̃ corresponding to j ′′ in τi ′′ ,

– for each j̃ ′′′ ≤ j̃ ′′′′ ≤ j̃ ′ it holds that σ̃i ′, j̃ ′′′′ /∈ � × {0, . . . , k}2 × {1, . . . , t},

– for each j̃ ′′′ ≤ j̃ ′′′′ ≤ j̃ ′′ it holds that σ̃i ′′, j̃ ′′′′ /∈ � × {0, . . . , k}2 × {1, . . . , t}.

– If σ̃i ′, j ′ = (σ ′, j ′1, j ′2, l ′), σ̃i ′′, j ′′ = (σ ′′, j ′′1 , j ′′2 , l ′′) and l ′
= l ′′, then ni ′, j ′+1 =

ni ′′, j ′′+1 iff there is σ̃ j̃ ′′′ = (̃σ1, j ′′′ , . . . , σ̃t, j ′′′) ∈ {1, . . . , t}t such that σ̃i ′, j̃ ′′′ = σ̃i ′′, j̃ ′′′

and:

– j̃ ′′′ ≥ j̃ ′ and j̃ ′′′ ≥ j̃ ′′, where j̃ ′ is the index in τ̃ corresponding to the index j ′

in τi ′ and j̃ ′′ is the index in τ̃ corresponding to j ′′ in τi ′′ ,

– for each j̃ ′′′ ≥ j̃ ′′′′ ≥ j̃ it holds that σ̃i ′, j̃ ′′′′ /∈ � × {0, . . . , k}2 × {1, . . . , t},

– for each j̃ ′′′ ≥ j̃ ′′′′ ≥ j̃ ′′ it holds that σ̃i ′′, j̃ ′′′′ /∈ � × {0, . . . , k}2 × {1, . . . , t}.

(3) For each i ∈ {1, . . . , t} and j ∈ {1, . . . , fi }, if σ̃ = (σi, j , j1, j2, l) is the letter of τ̃i

corresponding to the letter σi, j of τi , then j1 > 0 iff κ(ni,(j−1)) and j2 > 0 iff κ(ni, j).

123

Reachability analysis of reversal-bounded automata on… 185

Proof (Proof sketch) The bijection g can be defined by ordering the traces τn,h such that the

order matches the derivation of the graph G. Since the graph G contains at most k registers

positioned at nodes marked by a mapping κ , we can assign to each of those nodes unique

identifiers from the set {1, . . . , k} and assign 0 to all other nodes. Let us denote with κ̂(n)

the identifier assigned to node n in this way.

We extend the traces τi using the symbol ♭ in order to align the start and end points of paral-

lel traces. We then construct the word τ̃ by first replacing each σi, j by (σ, κ̂(ni, j−1), κ̂(ni, j), t)

and each symbol ♭ by (♭, 0, 0, t), where each t is chosen such that in each position of τ̃ the

same path index is given to all rows that share the same edge in G and the assignment is

monotonic in the number of the row. Then we insert letters from the set {1, . . . , t}t to mark

the positions where parallel paths branch off or come together. This insertion is done in a

way that satisfies the last two parts of condition (2) of the proposition. Thus, the construction

of τ̃ is done in a way that fulfills the conditions of the proposition.

We can construct an accepting run of P on τ̃ by simulating the derivation of the graph

G by Gk and using the paths πi to resolve the nondeterministic choices in the automaton

transitions corresponding to parallel composition rules. Similarly, the choice of placement

of the symbol ♭ in τ̃ determines the application of the transition relation δ′′p . The positions of

the letters from {1, . . . , t}t at points where traces are branching off guarantees that they can

be correctly matched by symbols put on P’s stack.

Since the register indices in the letters τ̃ are obtained using κ̂ we have that no index is

used for multiple nodes in the graph. Furthermore by the construction of τ̃ , all letters that

share a node in the graph also share the corresponding register index. This guarantees that

the conditions of the transition relation δr of Ar are satisfied and thus we can construct an

accepting run of Ar on τ̃ . ⊓⊔

Proposition 12 Let τ̃ = σ̃1 · · · σ̃ f ∈ �̃∗. Then τ̃ ∈ L(Ãn) iff τ̃ satisfies the following

conditions.

(1) For each 1 ≤ h ≤ r̃ there exist 1 ≤ l ′h ≤ l ′′h ≤ f such that:

– for every l such that 1 ≤ l < l ′h or l ′′h < l ≤ f it holds that pn,h,l = 0,

– for every l such that l ′h ≤ l ≤ l ′′h it holds that pn,h,l > 0,

– if h is odd and h < r̃ , l ′′h = l ′′h+1; if h is even and h > 1, l ′h = l ′h−1.

(2) For each h ∈ {1, . . . , r̃} and l ∈ {1, . . . , f } we define ξ̂n,h,l as follows:

– If σ̃tn,h,l ,l = (σ, c, j1, j2) ∈ � × {1, . . . , t} × {0, . . . , k}2, pn,h,l > 0 and h is odd,

then let ξ̂n,h,l = (σ, bn,h,l , b′n,h,l) · q
′
n,h,l ,

– If σ̃tn,h,l ,l = (σ, c, j1, j2) ∈ � × {1, . . . , t} × {0, . . . , k}2, pn,h,l > 0 and h is even,

then let ξ̂n,h,l = q ′n,h,l · (σ, bn,h,l , b′n,h,l).

– In all other cases, let ξ̂n,h,l = ε be the empty word.

Let ξ̂n,h = ξ̂n,h,1 · · · · · ξ̂n,h, f if h is odd, and ξ̂n,h = ξ̂n,h, f · · · · · ξ̂n,h,1 otherwise.

The sequence ξn = q0 · ξ̂n,1 · · · · · ξ̂n,̃r is an execution of M.

Proof (Proof sketch) The automaton Ãn is a two way automaton that reverses its head only

at both of the word’s ends and performs exactly r reversals, thus making r̃ = r + 1 passes

through the input word. It simulates the execution of the nth machine M described by the

part of τ̃ corresponding to the execution on the corresponding paths described by the trace

part of the input word.

123

186 R. Dimitrova, R. Majumdar

The sequences ξn are defined considering the letters of τ̃ where the block number in the

corresponding row of the execution word for machine n is positive and the symbol in the

corresponding row of the trace word is from the set � × {1, . . . , t} × {0, . . . , k}2.

Suppose that τ̃ ∈ L(Ãn). The fact that τ̃ fulfills condition (1) of the statement of the

proposition is ensured by conditions (3) in the definition of δ̃n , which verify that the encoding

of the reversals of machine m in the word τ̃ is correct. This means that the positions in the

execution word in which the block number is 0 agree on the respective rows where the head

of Ãn is moving to the (front or back) end of the word and back to the reversal point of the

machine.

The transition relation δ̃n simulates the execution of machine n described by the execution

word. This is done in condition (1) which checks that the letter in τ corresponds to a transition

of M and that the state of the machine remains unchanged when the block index is 0 (that

is, the machine is inactive for this part of the trace). Thus the automaton verifies that the

sequence ξn is an execution of M.

Now, consider a word τ̃ that satisfies the conditions of the proposition. Since ξn is an

execution of M we can construct a run of Ãn on τ̃ by updating the index i in the state of the

automaton that indicates the current row of the trace word according to ξn . As each letter of

τ̃ corresponds to a transition step of M, at each letter we can satisfy condition (1) of δ̃n . The

run is chosen such that it satisfies condition (2) of the definition of δ̃n . The third condition

must also be satisfied by the run since τ̃ meets condition (1) of the proposition. Since all

states are accepting the constructed run is accepting. ⊓⊔

Proposition 13 Consider a word τ̃ = σ̃1 · · · σ̃ f ∈ �̃∗. Fix n ∈ {1, . . . , m}, h ∈ {1, . . . , r̃}

and i ∈ {1, . . . , f̃ } Consider η̃n,h,i = (pn,h,i , bn,h,i , b′n,h,i , q ′n,h,i , tn,h,i). If σ̃tn,h ,i =

(σ, l, j1, j2) ∈ �×{1, . . . , t}×{0, . . . , k}2, then we let jn,h,i = j1 if h is odd and jn,h,i = j2
if h is even. In the other cases we let jn,h,i = 0.

Now, let η̂n,h,i = (pn,h,i , jn,h,i , bn,h,i , hn,h,i). Then we define η̂n,h = η̂n,h,1, . . . , η̂n,h, f

if h is odd and η̂n,h = η̂n,h, f , . . . , η̂n,h,1 if h is even.

Let us also define η̂n =
(
η̃n,1 · · · · · ηn,̃r

)
|(
{1,...,u}×{0,...,k}×B2

).

The word τ̃ is accepted by Ãc iff it satisfies the two conditions below.

(1) Let u = max
{

pn,h,l | n ∈ {1, . . . , m}, h ∈ {1, . . . , r̃}, l ∈ {1, . . . , f }
}
.

– For every 1 ≤ v ≤ u there exists exactly one n ∈ {1, . . . , m} such that there exist

h ∈ {1, . . . , r̃} and l ∈ {1, . . . , f } with the property pn,h,l = v.

– For all n ∈ {1, . . . , m} and 0 ≤ l1 ≤ l2 < |̂ηn | where η̂n[l1] = (p1, j1, b1, b′1) and

η̂n[l2] = (p2, j2, b2, b′2) it holds that p1 ≤ p2.

(2) Let η̂ be the unique permutation of η̂1 · · · · · η̂m that is such that

– the elements of each η̂n appear in η̂ in the same order as in η̂n ,

– for each 0 ≤ l1 ≤ l2 < |̂η|, where η̂[l1] = (p1, j1, b1, b′1) and η̂[l2] =

(p2, j2, b2, b′2) it holds that p1 ≤ p2.

Then, the sequence η = η̂|({0,...,k}×B2) is a read–write sequence that is valid w.r.t. initial

valuation β0 : {1, . . . , k} → B, where β0(j) = 0 for each j ∈ {1, . . . , k}.

Proof (Proof sketch) The automaton Ãc is a two way automaton that reverses its head only

at both of the word’s ends and performs exactly r reversals, thus making r̃ = r + 1 passes

through the input word. On each pass it traverses m rows of the execution word (one for each

of the machines) in the same direction as the machines traverse the graph in that pass.

123

Reachability analysis of reversal-bounded automata on… 187

Suppose that τ̃ ∈ L(Ac). Condition (1) from the definition of δ̃c verifies that the positive

block numbers for each machine are nondecreasing and that each block number belongs to

at most one machine. The requirement that there are no gaps in the block numbers is ensured

by the definition of accepting states where it is checked that P contains all numbers less or

equal than the maximum.

Condition (2) of the transition relation δ̃c guarantees that τ̃ encodes a valid read–write

sequence. This is done as follows. The transition relation checks that all read operations

except those at the beginning of a block read the current value of the registers that is stored

in the automaton’s state. The value read at the beginning of a block is guessed, and this

guess is added to the set A of assumptions. The values from write operations in τ̃ are used to

update the current value for the respective machine and are stored in the set G of guarantees

at the end of each block. The condition that the read–write sequence η is valid is ensured

by requiring that in an accepting state the set A must be empty, that is, all assumptions in A

have been discharged by a matching guarantee from G.

Thus, since τ̃ is accepted it must satisfy the conditions of the proposition.

Suppose now that τ̃ satisfies the conditions of the proposition. Condition (1) ensures that

for each letter of τ̃ condition (1) of the transition relation δ̃c is satisfied. For constructing

a run of Ãc on τ̃ we guess at each step for each machine register values equal to the ones

from the preceding block as given in τ̃ . Since these guesses will obviously be matched by

the respective guarantee, the word τ̃ will be accepted by Ãc. ⊓⊔

Proposition 14 Consider a word τ̃ = σ̃1 · · · σ̃ f ∈ �̃∗ and let Pn = {pn,h,l | 1 ≤ h ≤

r̃ , 1 ≤ l ≤ f }. The word τ̃ is accepted by As iff there exists a tuple (c′, c′′) occurring in

τ̃ , set M ⊆ {1, . . . , m} and a function fM : M → {1, . . . , r̃} which satisfy the predicate

NodeProperty(Sfinal, A, c′, c′′, M, fM) and are such that for every n ∈ M it holds that

pn(c′, c′′, M, fM) = max Pn .

Proof (Proof sketch) As is an NFA, reading simultaneously all r̃ rows in the execution word

of the input word τ and the respective rows of the trace word, and checking for the occurrence

of final configurations.

Suppose that τ̃ ∈ L(As), and thus there exists an accepting run of As on τ̃ .

Since the run of As on τ̃ is accepting, when reading the right endmarker of the word, either

we have f inal = 1 in the current state, which means that a potential final configuration was

already identified, or the current state of the automaton encodes a potential final configuration.

As verifies the existence of an actual final configuration by checking that for each machine

n of the ones involved in this configuration, the block number pn in that configuration

is maximal in the set Pn at the end of the run, which contains all block numbers for n

encountered in τ̃ . This, in turn, guarantees that all involved machines are simultaneously

located at the respective node of the graph, in their respective local states. Thus, the existence

of an accepting run implies the property stated in the proposition.

For the other direction, suppose that τ̃ satisfies the condition stated in the proposition.

This allows us to provide an accepting run of As on τ̃ as follows. The components pn of

the automaton’s state are updated when the tuple (c′, c′′) that exists according to condition

(1) is encountered in τ̃ . By assumption, the requirement that for each involved machine n

it holds that pn = max Pn will be satisfied. Thus, the run constructed in this way will be

accepting. ⊓⊔

123

188 R. Dimitrova, R. Majumdar

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In: Gardner, P.,

Yoshida, N. (eds.) CONCUR 2004—Concurrency Theory, 15th International Conference, London, UK,

31 Aug–3 Sept 2004, Proceedings, Lecture Notes in Computer Science, vol. 3170, pp. 35–48. Springer

(2004). doi:10.1007/978-3-540-28644-8_3

2. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: CONCUR’99: Concurrency

Theory, 10th International Conference, Eindhoven, The Netherlands, 24–27 Aug 1999, Proceedings,

Lecture Notes in Computer Science, vol. 1664, pp. 114–129. Springer (1999). doi:10.1007/3-540-48320-

9_10

3. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transformation systems. In: Pro-

ceedings of CONCUR’01, LNCS, vol. 2154, pp. 381–395. Springer (2001). doi:10.1007/3-540-44685-

0_26

4. Baldan, P., Corradini, A., König, B., Lluch-Lafuente, A.: A temporal graph logic for verification of graph

transformation systems. In: WADT, LNCS, vol. 4409, pp. 1–20. Springer (2006). doi:10.1007/978-3-

540-71998-4_1

5. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability

and coverability in graph transformation systems. In: RTA, LIPIcs, vol. 15 (2012). doi:10.4230/LIPIcs.

RTA.2012.101

6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic—A Language-Theoretic

Approach, vol. 138. Cambridge University Press (2012). doi:10.1017/CBO9780511977619

7. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific (1995)

8. Dimitrova, R., Majumdar, R.: Reachability analysis of reversal-bounded automata on series-parallel

graphs. In: Esparza, J., Tronci, E. (eds.) Proceedings Sixth International Symposium on Games, Automata,

Logics and Formal Verification, GandALF 2015, Genoa, Italy, 21–22 Sept 2015. EPTCS, vol. 193, pp.

100–114 (2015). doi:10.4204/EPTCS.193.8

9. Drewes, F., Kreowski, H.-J., Habel, A.: Hyperedge replacement graph grammars. In: Rozenberg, G. (ed.)

Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific Publishing

Co., Inc., pp. 95–162 (1997). doi:10.1142/9789812384720_0002

10. Engelfriet, J., Rozenberg, G.: In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by

Graph Transformation, chap. Node Replacement Graph Grammars, pp. 1–94. World Scientific Publishing

Co., Inc. (1997). doi:10.1142/9789812384720_0001

11. Esparza, J., Ganty, P., Majumdar, R.: A perfect model for bounded verification. In: LICS 2012, pp.

285–294. IEEE Computer Society (2012). doi:10.1109/LICS.2012.39

12. Esparza, J., Ganty, P., Poch, T.: Pattern-based verification for multithreaded programs. ACM Trans.

Program. Lang. Syst. 36(3), 9:1–9:29 (2014). doi:10.1145/2629644

13. Gurari, E., Ibarra, O.: The complexity of decision problems for finite-turn multicounter machines. J.

Comput. Syst. Sci. 22(2), 220–229 (1981). doi:10.1016/0022-0000(81)90028-3

14. Gurari, E., Ibarra, O.: Two-way counter machines and Diophantine equations. J. ACM 29(3), 863–873

(1982). doi:10.1109/SFCS.1981.52

15. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of communicating pushdown

systems. Log. Methods Comput. Sci. (2012). doi:10.2168/LMCS-8(3:23)2012

16. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation, 2nd edn.

Addison-Wesley, Boston (2000)

17. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–

133 (1978). doi:10.1145/322047.322058

18. Ibarra, O.H.: Automata with reversal-bounded counters: a survey. In: DCFS 2014, pp. 5–22. Springer

(2014). doi:10.1007/978-3-319-09704-6_2

19. König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of graph trans-

formation systems. In: TACAS, LNCS, vol. 3920, pp. 197–211. Springer (2006). doi:10.1007/11691372_

13

20. Lodaya, K., Weil, P.: Series-parallel posets: Algebra, automata and languages. In: Morvan, M., Meinel,

C., Krob, D. (eds.) STACS 98, 15th Annual Symposium on Theoretical Aspects of Computer Science,

Paris, France, 25–27 Feb 1998, Proceedings, Lecture Notes in Computer Science, vol. 1373, pp. 555–565.

Springer (1998). doi:10.1007/BFb0028590

21. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, T., Sagiv, M. (eds.) Proceedings

of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011,

Austin, TX, USA, 26–28 Jan 2011, pp. 283–294. ACM (2011). doi:10.1145/1926385.1926419

22. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125

(1959). doi:10.1147/rd.32.0114

123

http://dx.doi.org/10.1007/978-3-540-28644-8_3
http://dx.doi.org/10.1007/3-540-48320-9_10
http://dx.doi.org/10.1007/3-540-48320-9_10
http://dx.doi.org/10.1007/3-540-44685-0_26
http://dx.doi.org/10.1007/3-540-44685-0_26
http://dx.doi.org/10.1007/978-3-540-71998-4_1
http://dx.doi.org/10.1007/978-3-540-71998-4_1
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.101
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.101
http://dx.doi.org/10.1017/CBO9780511977619
http://dx.doi.org/10.4204/EPTCS.193.8
http://dx.doi.org/10.1142/9789812384720_0002
http://dx.doi.org/10.1142/9789812384720_0001
http://dx.doi.org/10.1109/LICS.2012.39
http://dx.doi.org/10.1145/2629644
http://dx.doi.org/10.1016/0022-0000(81)90028-3
http://dx.doi.org/10.1109/SFCS.1981.52
http://dx.doi.org/10.2168/LMCS-8(3:23)2012
http://dx.doi.org/10.1145/322047.322058
http://dx.doi.org/10.1007/978-3-319-09704-6_2
http://dx.doi.org/10.1007/11691372_13
http://dx.doi.org/10.1007/11691372_13
http://dx.doi.org/10.1007/BFb0028590
http://dx.doi.org/10.1145/1926385.1926419
http://dx.doi.org/10.1147/rd.32.0114

Reachability analysis of reversal-bounded automata on… 189

23. Rensink, A.: Explicit state model checking for graph grammars. In: Concurrency, Graphs and Models,

LNCS, vol. 5065, pp. 114–132. Springer (2008). doi:10.1007/978-3-540-68679-8_8

24. Rosenberg, A.L.: On multi-head finite automata. In: 6th Annual Symposium on Switching Circuit Theory

and Logical Design, pp. 221–228. IEEE Computer Society (1965). doi:10.1109/FOCS.1965.19

25. Vardi, M.: From löwenheim to PSL and SVA. In: Language, Culture, Computation. Computing—Theory

and Technology—Essays Dedicated to Yaacov Choueka on the Occasion of His 75th Birthday, Part I,

Lecture Notes in Computer Science, vol. 8001, pp. 78–102. Springer (2014). doi:10.1007/978-3-642-

45321-2_5

123

http://dx.doi.org/10.1007/978-3-540-68679-8_8
http://dx.doi.org/10.1109/FOCS.1965.19
http://dx.doi.org/10.1007/978-3-642-45321-2_5
http://dx.doi.org/10.1007/978-3-642-45321-2_5

	Reachability analysis of reversal-bounded automata on series–parallel graphs
	Abstract
	1 Introduction
	2 Graph-grammar transition systems
	2.1 Series–parallel graph grammars
	2.2 Graph-grammar transition systems
	2.3 Reachability in graph-grammar transition systems
	2.4 Reversal- and register-bounded reachability problem

	3 Properties of reversal-bounded runs
	3.1 Discussion of the imposed bounds

	4 Automata-theoretic algorithm
	4.1 Preliminaries
	4.2 Overview of the algorithm
	4.3 PDA accepting traces in a graph
	4.4 2NFA accepting executions
	4.5 2NFA accepting valid read–write sequences
	4.6 NFA checking for final configurations
	4.7 Correctness of the algorithm
	4.8 Complexity

	5 Conclusion
	Acknowledgements
	Appendix: Proofs omitted in Sect.4
	References

