
This is a repository copy of Approximate counting in SMT and value estimation for
probabilistic programs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156771/

Version: Accepted Version

Article:

Chistikov, D., Dimitrova, R. and Majumdar, R. (2017) Approximate counting in SMT and
value estimation for probabilistic programs. Acta Informatica, 54 (8). pp. 729-764. ISSN
0001-5903

https://doi.org/10.1007/s00236-017-0297-2

This is a post-peer-review, pre-copyedit version of an article published in Acta Informatica.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/s00236-017-0297-2.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Acta Informatica manuscript No.
(will be inserted by the editor)

Approximate Counting in SMT and

Value Estimation for Probabilistic Programs

Dmitry Chistikov · Rayna Dimitrova · Rupak

Majumdar

Received: date / Accepted: date

Abstract #SMT, or model counting for logical theories, is a well-known hard problem that

generalizes such tasks as counting the number of satisfying assignments to a Boolean for-

mula and computing the volume of a polytope. In the realm of satisfiability modulo theories

(SMT) there is a growing need for model counting solvers, coming from several application

domains (quantitative information flow, static analysis of probabilistic programs). In this

paper, we show a reduction from an approximate version of #SMT to SMT.

We focus on the theories of integer arithmetic and linear real arithmetic. We propose

model counting algorithms that provide approximate solutions with formal bounds on the

approximation error. They run in polynomial time and make a polynomial number of queries

to the SMT solver for the underlying theory, exploiting “for free” the sophisticated heuris-

tics implemented within modern SMT solvers. We have implemented the algorithms and

used them to solve the value problem for a model of loop-free probabilistic programs with

nondeterminism.

Keywords #SMT · model counting · satisfiability modulo theory · #SAT · volume

computation · approximation algorithms · probabilistic programming

1 Introduction

Satisfiability modulo theories (SMT) is a foundational problem in formal methods, and the

research landscape is not only enjoying the success of existing SMT solvers, but also gen-

erating demand for new features. In particular, there is a growing need for model counting

solvers; for example, questions in quantitative information flow and in static analysis of

probabilistic programs are naturally cast as instances of model counting problems for ap-

propriate logical theories [24,43,52].

We define the #SMT problem that generalizes several model counting questions relative

to logical theories, such as computing the number of satisfying assignments to a Boolean

formula (#SAT) and computing the volume of a bounded polyhedron in a finite-dimensional

real vector space. Specifically, to define model counting modulo a measured theory, first

suppose every variable in a logical formula comes with a domain which is also a measure

Max Planck Institute for Software Systems (MPI-SWS), Germany

E-mail: {dch,rayna,rupak}@mpi-sws.org

2 Dmitry Chistikov et al.

space. Assume that, for every logical formula ϕ in the theory, the set of its models JϕK is

measurable with respect to the product measure; the model counting (or #SMT) problem

then asks, given ϕ , to compute the measure of JϕK, called the model count of ϕ .

In our work we focus on the model counting problems for the theories of bounded integer

arithmetic and linear real arithmetic. These problems are complete for the complexity class

#P, so fast exact algorithms are unlikely to exist.

We extend to the realm of SMT the well-known hashing approach from the world of

#SAT, which reduces approximate versions of counting to decision problems. From a theo-

retical perspective, we solve a model counting problem with a resource-bounded algorithm

that has access to an oracle for the decision problem. From a practical perspective, we show

how to use unmodified existing SMT solvers to obtain approximate solutions to model-

counting problems. This reduces an approximate version of #SMT to SMT.

Specifically, for integer arithmetic (not necessarily linear), we give a randomized algo-

rithm that approximates the model count of a given formula ϕ to within a multiplicative

factor (1+ ε) for any given ε > 0. The algorithm makes O(1
ε |ϕ|) SMT queries of size at

most O(1
ε2 |ϕ|2) where |ϕ| is the size of ϕ .

For linear real arithmetic, we give a randomized algorithm that approximates the model

count with an additive error γN, where N is the volume of a box containing all models of

the formula, and the coefficient γ is part of the input. The number of steps of the algorithm

and the number of SMT queries (modulo the combined theory of integer and linear real

arithmetic) are again polynomial.

As an application, we show how to solve the value problem (cf. [52]) for a model of

loop-free probabilistic programs with nondeterminism.

Techniques

Approximation of #P functions by randomized algorithms has a rich history in complexity

theory [58,62,34,33]. Jerrum, Valiant, and Vazirani [34] described a hashing-based BPPNP

procedure to approximately compute any #P function, and noted that this procedure already

appeared implicitly in previous papers by Sipser [54] and Stockmeyer [58]. The procedure

works with encoded computations of a Turing machine and is thus unlikely to perform well

in practice. Instead, we show a direct reduction from approximate model counting to SMT

solving, which allows us to retain the structure of the original formula. An alternate ap-

proach could eagerly encode #SMT problems into #SAT, but experience with SMT solvers

suggests that a “lazy” approach may be preferable for some problems.

For the theory of linear real arithmetic, we also need an ingredient to handle continuous

domains. Dyer and Frieze [19] suggested a discretization that introduces bounded additive

error; this placed approximate volume computation for polytopes—or, in logical terms, ap-

proximate model counting for quantifier-free linear real arithmetic—in #P. Motivated by

the application in the analysis of probabilistic programs, we extend this technique to han-

dle formulas with existentially quantified variables, while Dyer and Frieze only work with

quantifier-free formulas. To this end, we prove a geometric result that bounds the effect of

projections: this gives us an approximate model counting procedure for existentially quanti-

fied linear arithmetic formulas. Note that applying quantifier elimination as a preprocessing

step can make the resulting formula exponentially big; instead, our approach works directly

on the original formula that contains existentially quantified variables.

We have implemented our algorithm on top of the Z3 SMT solver [17] and applied it to

formulas that encode the value problem for probabilistic programs. Our initial experience

Approximate Counting in SMT 3

suggests that simple randomized algorithms using off-the-shelf SMT solvers can be effective

on small examples.

Counting in SMT

#SMT is a well-known hard problem whose instances have been studied before, e. g., in

volume computation [19], in enumeration of lattice points in integer polyhedra [2], and

as #SAT [28]. Indeed, very simple sub-problems, such as counting the number of satisfy-

ing assignments of a Boolean formula or computing the volume of a union of axis-parallel

rectangles in Rn (called Klee’s measure problem [37]) are already #P-hard (see Section 2

below).

Existing techniques for #SMT either incorporate model counting primitives into propo-

sitional reasoning [44,63,5] or are based on enumerative combinatorics [40,43,24]. Typi-

cally, exact algorithms [40,44,24] are exponential in the worst case, whereas approximate

algorithms [43,63] lack provable performance guarantees. In contrast to exact counting tech-

niques, our procedure is easily implementable and uses “for free” the sophisticated heuris-

tics built in off-the-shelf SMT solvers. Although the solutions it produces are not exact, they

provably meet user-provided requirements on approximation quality. This is achieved by

extending the hashing approach from SAT [27,28,10,21] to the SMT context.

A famous result of Dyer, Frieze, and Kannan [20] states that the volume of a convex

polyhedron can be approximated with a multiplicative error in probabilistic polynomial time

(without the need for an SMT solver). In our application, analysis of probabilistic programs,

we wish to compute the volume of a projection of a Boolean combination of polyhedra; in

general, it is, of course, non-convex. Thus, we cannot apply the volume estimation algorithm

of [20], so we turn to the “generic” approximation of #P using an NP oracle instead. Our

#SMT procedure for linear real arithmetic allows an additive error in the approximation; it

is known that the volume of a polytope does not always have a small exact representation as

a rational number [41].

An alternative approach to approximate #SMT is to apply Monte Carlo methods for

volume estimation. They can easily handle complicated measures for which there is limited

symbolic reasoning available. Like the hashing technique, this approach is also exponential

in the worst case [33]: suppose the volume in question, p, is very small and the required

precision is a constant multiple of p. In this case, Chernoff bound arguments would suggest

the need for Ω(1
p
) samples; the hashing approach, in contrast, will perform well. So, while

in “regular” settings (when p is non-vanishing) the Monte Carlo approach performs better,

“singular” settings (when p is close to zero) are better handled by the hashing approach.

The two techniques, therefore, are complementary to each other (see the remark at the end

of Subsection 5.5).

Related work

Probably closest to our work is a series of papers by Chakraborty, Meel, Vardi et al. [9,10,

8], who apply the hashing technique to uniformly sample satisfying assignments of SAT

formulas [9]. They use CryptoMiniSat [55] as a practical implementation of an NP (SAT)

oracle, as it has built-in support for XOR (addition modulo 2) constraints that are used for

hashing. Their recent work [8] supports weighted sampling and weighted model counting,

where different satisfying assignments are associated with possibly different probabilities

(this can be expressed as a discrete case of #SMT). Concurrently, Ermon et al. [21] apply

the hashing technique in the context of counting problems, relying on CryptoMiniSat as

4 Dmitry Chistikov et al.

well. Ermon et al. also consider a weighted setting where the weights of satisfying assign-

ments are given in a factorized form; for this setting, as a basic building block, they invoke

an optimization solver ToulBar2 [1] to answer MAP (maximum a posteriori assignment)

queries. More recently and concurrently with (the conference version of) our work, Belle,

Van den Broeck, and Passerini [4] apply the techniques of Chakraborty et al. in the context

of so-called weighted model integration. This is an instance of #SMT where the weights

of the satisfying assignments (models) are computed in a more complicated fashion. Belle

et al. adapt the procedure of Chakraborty et al., also using CryptoMiniSat, but additionally

rely on the Z3 SMT solver to check candidate models against the theory constraints (real

arithmetic in this case) encoded by the propositional variables, and use the LattE tool [40]

for computing the volume of polyhedra.

We briefly review the problem settings of Ermon et al. [21] and Belle et al. [4,5] in

Section 2. In our work, the problem setting is more reminiscent of those in Chakraborty

et al. [10] and Ermon et al. [21], and the hashing approach itself is the same as the one de-

scribed, e.g., in [10] for the #SAT case. We lift this idea to the SMT world, in particular for

the cases of bounded integer arithmetic and linear real arithmetic with existential quantifi-

cation. Our implementation is a proof of concept for the extension, to SMT, of the hashing

approach to approximate model counting. While we discuss some preliminary experiments

in Section 6, a scalable implementation and extensive empirical evaluation are beyond the

scope of this paper. We now outline some challenges towards a scalable tool for #SMT.

From an implementation perspective, bounded integer arithmetic can be reduced to the

Boolean case, which is readily handled by approximate #SAT tools such as ApproxMC [10].

Modern SMT solvers such as Z3 [17] contain conversion and preprocessing heuristics to bit-

blast arithmetic formulas. Our approach, on the other hand, handles bounded integer arith-

metic formulas directly, relying on the SMT solver for performing word-level reasoning. As

in SMT solving, the relative performance of the two techniques (direct theory reasoning vs.

bitblasting) is likely to depend on the considered benchmarks, and choosing between them

in a practical tool remains an open problem.

Our use of hashing introduces many Boolean XOR constraints. Modern SAT solvers

perform poorly on XOR constraints, unless they implement specialized heuristics (see, e.g.,

the CryptoMiniSat solver [55]). Our implementation currently uses an unmodified theory

solver with an additional pre-processor that solves the system of XOR equations (see Sub-

section 5.6). A better implementation would replace the “usual” SAT solver within the SMT

solver to one that has special heuristics for XOR constraints, e.g., those implemented in

CryptoMiniSat. An open question is whether there is a different family of hash functions that

combines well with theory reasoning. A step in this direction was taken by Chakraborty et al.

in their recent work [11], where they use word-level hashing functions to enable better us-

age of the power of modern SMT solvers. Chakraborty et al. show, empirically, that on

a large number of benchmarks word-level reasoning leads to improved performance com-

pared to the bit-level XOR reasoning. However, they also establish that these word-level

hash functions do not help for formulas involving word-level multiplication—and, in fact,

the XOR-based approach performs better on several such benchmarks [11].

Contributions

We extend, from SAT to SMT, the hashing approach to approximate model counting:

1. We formulate the notion of a measured theory (Section 2) that gives a unified framework

for model-counting problems.

Approximate Counting in SMT 5

2. For the theory of bounded integer arithmetic, we provide a direct reduction (Theorem 1

in Section 2) from approximate counting to SMT.

3. For the theory of bounded linear real arithmetic, we give a technical construction (Lemma 2

in Subsection 3.3) that lets us extend the results of Dyer and Frieze to the case where the

polyhedral set is given as a projection of a Boolean combination of polytopes; this leads

to an approximate model counting procedure for this theory (Theorem 2 in Section 2).

4. As an application, we show that the value problem for small loop-free probabilistic

programs with nondeterminism reduces to #SMT (Section 5).

The conference version of this paper appeared as [13].

2 The #SMT Problem

We present a framework for a uniform treatment of model counting both in discrete theories

like SAT (where it is literally counting models) and in linear real arithmetic (where it is

really volume computation for polyhedra). We then introduce the notion of approximation

and give an algorithm for approximate model counting by reduction to SMT.

Preliminaries: Counting Problems and #P

A relation R ⊆ Σ∗ × Σ∗ is a p-relation if (1) there exists a polynomial p(n) such that if

(x,y) ∈ R then |y| = p(|x|) and (2) the predicate (x,y) ∈ R can be checked in deterministic

polynomial time in the size of x. Intuitively, a p-relation relates inputs x to solutions y. It

is easy to see that a decision problem L belongs to NP if there is a p-relation R such that

L = {x | ∃y.R(x,y)}.

A counting problem is a function that maps Σ∗ to N. A counting problem f : Σ∗ → N
belongs to the class #P if there exists a p-relation R such that f (x) = |{y | R(x,y)}|, i. e.,

the class #P consists of functions that count the number of solutions to a p-relation [61].

Completeness in #P is with respect to Turing reductions; the same term is also (ab)used

to encompass problems that reduce to a fixed number of queries to a #P function (see,

e. g., [19]).

#SAT is an example of a #P-complete problem: it asks for the number of satisfying

assignments to a Boolean formula in conjunctive normal form (CNF) [61]. Remarkably,

#P characterizes the computational complexity not only of “discrete” problems, but also of

problems involving real-valued variables: approximate volume computation (with additive

error) for bounded rational polyhedra in Rk is #P-complete [19].

Measured Theories and #SMT

We will now define the notion of model counting that generalizes #SAT and volume com-

putation for polyhedra. Suppose T is a logical theory. Let ϕ(x) be a formula in this theory

with free first-order variables x = (x1, . . . ,xk). Assume that T comes with a fixed interpre-

tation which specifies domains of the variables, denoted D1, . . . ,Dk, and assigns a meaning

to predicates and function symbols in the signature of T . Then a tuple a = (a1, . . . ,ak) ∈
D1 × . . .×Dk is called a model of ϕ if the sentence ϕ(a1, . . . ,ak) holds, i. e., if a |=T ϕ(x).
We denote the set of all models of a formula ϕ(x) by JϕK; the satisfiability problem for T

asks, for a formula ϕ given as input, whether JϕK 6= /0.

6 Dmitry Chistikov et al.

Consider the special cases of #SAT and volume computation for polyhedra; the corre-

sponding satisfiability problems are SAT and linear programming. For #SAT, atomic pred-

icates are of the form xi = b, for b ∈ {0,1}, the domain Di of each xi is {0,1}, and formulas

are propositional formulas in conjunctive normal form. For volume computation, atomic

predicates are of the form c1x1 + . . .+ ckxk ≤ d, for c1, . . . ,ck,d ∈ R, the domain Di of each

xi is R, and formulas are conjunctions of atomic predicates. Sets JϕK in these cases are the

set of satisfying assignments and the polyhedron itself, respectively.

Suppose the domains D1, . . . ,Dk given by the fixed interpretation are measure spaces:

each Di is associated with a σ -algebra Fi ⊆ 2Di and a measure µi : Fi →R. This means, by

definition, that Fi and µi satisfy the following properties: Fi contains /0 and is closed under

complement and countable unions, and µi is non-negative, assigns 0 to /0, and is σ -additive.1

In our special cases, these spaces are as follows. For #SAT, each Fi is the set of all

subsets of Di = {0,1}, and µi(A) is simply the number of elements in A. For volume com-

putation, each Fi is the set of all Borel subsets of Di = R, and µi is the Lebesgue measure.

Assume that each measure µi is σ -finite, that is, the domain Di is a countable union of

measurable sets (i. e., of elements of Fi, and so with finite measure associated with them).

This condition, which holds for both special cases, implies that the Cartesian product D1 ×
. . .×Dk is measurable with respect to a unique product measure µ , defined as follows. A set

A⊆D1× . . .×Dk is measurable (that is, µ assigns a value to A) if and only if A is an element

of the smallest σ -algebra that contains all sets of the form A1 × . . .×Ak, with Ai ∈Fi for all

i. For all such sets, it holds that µ(A1 × . . .×Ak) = µ1(A1) . . .µk(Ak).
In our special cases, the product measure µ(A) of a set A is the number of elements in

A ⊆ {0,1}k and the volume of A ⊆ Rk, respectively.

We say that the theory T is measured if for every formula ϕ(x) in T with free (first-

order) variables x = (x1, . . . ,xk) the set JϕK is measurable. We define the model count of a

formula ϕ as mc(ϕ) = µ(JϕK). Naturally, if the measures in a measured theory can assume

non-integer values, the model count of a formula is not necessarily an integer. With every

measured theory we associate a model counting problem, denoted #SMT[T]: the input is a

logical formula ϕ(x) in T , and the goal is to compute the value mc(ϕ).
The #SAT and volume computation problems are just special cases as intended, since

mc(ϕ) is equal to the number of satisfying assignments of a Boolean formula and to the

volume of a polyhedron, respectively.

Note that one can alternatively restrict the theory to a fixed number of variables k,

i.e., to x = (x1, . . . ,xk), where x ∈ D1 × . . .×Dk, and introduce a measure µ directly on

D1 × . . .×Dk; that is, µ will not be a product measure. Such measures arise, for instance,

when µ comes in a factorized form where factors span non-singleton subsets of {x1, . . . ,xk}.

A toy example, with k = 3, might have µ induced by the probability density function

Z · f1(x1,x2) · f2(x2,x3), where f1 and f2 are non-negative and absolutely continuous, and

the normalization constant Z (sometimes called the partition function) is chosen in such a

way that µ(D1 ×D2 ×D3) = 1. Note that computing Z, given f1 and f2, is itself a #SMT-

(i.e., model counting) question: the associated theory has measure µ̄ induced by f1 · f2, and

the goal is to compute mc(true), where we assume that true is a formula in the theory with

JtrueK = D1 ×D2 ×D3. (Much more sophisticated) problems of this form arise in machine

learning and have been studied, e.g., by Ermon et al. [21].

Remark A different stance on model counting questions, under the name of weighted model

integration (for real arithmetic), was recently suggested by Belle, Passerini, and Van den

1 The reader is referred to standard textbooks on probability and/or measure theory for further background;

see, e.g., [18, Chapter 1].

Approximate Counting in SMT 7

Broeck [5]. Their problem setting starts with a tuple of real-valued (theory) variables x =
(x1, . . . ,xk) and a logical formula ϕ over x and over standalone propositional variables, p =
(p1, . . . , ps). All theory atoms in the formula are also abstracted as (different) propositional

variables, q = (q1, . . . ,qt). All literals l of propositional variables p,q are annotated with

weight functions fl(x), which (can) depend on x. Take any total assignment to p,q that

satisfies the propositional abstraction of ϕ and let L be the set of all satisfied literals. The

weight of this assignment to p,q is the integral
∫

∏l∈L fl(x)dx taken over the area restricted

in Rk by the conjunction of atoms that are associated with literals l ∈ L. The weighted

model integral of ϕ is then the sum of weights of all assignments (to p,q) that satisfy the

propositional abstraction of ϕ .

We discuss several other model counting problems in the following subsection.

Approximate Model Counting

We now introduce approximate #SMT and show how approximate #SMT reduces to SMT.

We need some standard definitions. For our purposes, a randomized algorithm is an algo-

rithm that uses internal coin-tossing. We always assume, whenever we use the term, that,

for each possible input x to A , the overall probability, over the internal coin tosses r, that

A outputs a wrong answer is at most 1/4. (This error probability 1/4 can be reduced to any

smaller α > 0, by taking the median across O(logα−1) independent runs of A .)

We say that a randomized algorithm A approximates a real-valued functional problem

C : Σ∗ →R with an additive error if A takes as input an x ∈ Σ∗ and a rational number γ > 0

and produces an output A (x,γ) such that

Pr
[

|A (x,γ)−C (x)| ≤ γ U (x)
]

≥ 3/4,

where U : Σ∗ →R is some specific and efficiently computable upper bound on the absolute

value of C (x), i. e., |C (x)| ≤ U (x), that comes with the problem C . Similarly, A approx-

imates a (possibly real-valued) functional problem C : Σ∗ → R with a multiplicative error

if A takes as input an x ∈ Σ∗ and a rational number ε > 0 and produces an output A (x,ε)
such that

Pr
[

(1+ ε)−1
C (x)≤ A (x,ε)≤ (1+ ε)C (x)

]

≥ 3/4.

The computation time is usually considered relative to |x|+ γ−1 or |x|+ ε−1, respectively

(note the inverse of the admissible error). Polynomial-time algorithms that achieve approx-

imations with a multiplicative error are also known as fully polynomial-time randomized

approximation schemes (FPRAS) [34].

Algorithms can be equipped with oracles solving auxiliary problems, with the intuition

that an external solver (say, for SAT) is invoked. In theoretical considerations, the definition

of the running time of such an algorithm takes into account the preparation of queries to the

oracle (just as any other computation), but not the answer to a query—it is returned within

a single time step. Oracles may be defined as solving some specific problems (say, SAT) as

well as any problems from a class (say, from NP). The following result is well-known.

Proposition 1 (generic approximate counting [34,58]) Let C : Σ∗ → N be any member

of #P. There exists a polynomial-time randomized algorithm A which, using an NP-oracle,

approximates C with a multiplicative error.

8 Dmitry Chistikov et al.

In the rest of this section, we present our results on the complexity of model counting

problems, #SMT[T], for measured theories. For these problems, we develop randomized

polynomial-time approximation algorithms equipped with oracles, in the flavour of Propo-

sition 1. We describe the proof ideas in Section 3, and details are provided in Appendix.

We formally relate model counting and the value problem for probabilistic programs in Sec-

tion 5; in the implementation, we substitute an appropriate solver for the theory oracle. We

illustrate our approach on an example in Section 4.

Integer arithmetic. By IA we denote the bounded version of integer arithmetic: each free

variable xi of a formula ϕ(x1, . . . ,xk) comes with a bounded domain Di = [ai,bi]⊆Z, where

ai,bi ∈ Z. We use the counting measure | · | : A ⊆ Z 7→ |A|, so the model count mc(ϕ) of

a formula ϕ is the number of its models. In the formulas, we allow existential (but not

universal) quantifiers at the top level. The model counting problem for IA is #P-complete.

Example 1 Consider the formula

ϕ(x) = ∃y ∈ [1,10]. (x ≥ 1)∧ (x ≤ 10)∧ (2x+ y ≤ 6)

= ∃y. (y ≥ 1)∧ (y ≤ 10)∧ (x ≥ 1)∧ (x ≤ 10)∧ (2x+ y ≤ 6)

in the measured theory IA. This formula has one free variable x and one existentially quan-

tified variable y, let’s say both with domain [0,10]. It is easy to see that there exist only two

values of x, x ≥ 1, for which there exists a y ≥ 1 with 2x+ y ≤ 6: these are the integers 1

and 2. Hence, mc(ϕ) = 2. ⊓⊔
Theorem 1 The model counting problem for IA can be approximated with a multiplicative

error by a polynomial-time randomized algorithm that has oracle access to satisfiability of

formulas in IA.

Linear real arithmetic. By RA we denote the bounded version of linear real arithmetic, with

possible existential (but not universal) quantifiers at the top level. Each free variable xi of

a formula ϕ(x1, . . . ,xk) comes with a bounded domain Di = [ai,bi] ⊆ R, where ai,bi ∈ R.

The associated measure is the standard Lebesgue measure, and the model count mc(ϕ) of

a formula ϕ is the volume of its set of models. (Since we consider linear constraints, any

quantifier-free formula defines a finite union of polytopes. It is an easy geometric fact that

its projection on a set of variables will again be a finite union of bounded polytopes. Thus,

existential quantification involves only finite unions.)

Example 2 Consider the same formula

ϕ(x) = ∃y ∈ [1,10]. (x ≥ 1)∧ (x ≤ 10)∧ (2x+ y ≤ 6)

= ∃y. (y ≥ 1)∧ (y ≤ 10)∧ (x ≥ 1)∧ (x ≤ 10)∧ (2x+ y ≤ 6),

this time in the measured theory RA, where x∈R and y∈R. Note that now ϕ(x) is equivalent

to (x ≥ 1)∧ (x ≤ 2.5), and thus mc(ϕ) = 1.5: this is the length of the line segment defined

by this constraint. ⊓⊔
We denote the combined theory of (bounded) integer arithmetic and linear real arith-

metic by IA+RA. In the model counting problem for RA, the a priori upper bound U on

the solution is ∏
k
i=1(bi −ai); additive approximation of the problem is #P-complete.

Theorem 2 The model counting problem for RA can be approximated with an additive

error by a polynomial-time randomized algorithm that has oracle access to satisfiability of

formulas in IA+RA.

Approximate Counting in SMT 9

3 Proof Techniques

In this section we explain the techniques behind Theorems 1 and 2. The detailed analysis

can be found in Appendix.

3.1 Intuition: Hashing-based approximate counting

Let us first explain how the hashing-based approach to approximate counting works. In this

subsection we will describe the intuition behind the approach on an abstract level using

very simple examples and without referring to any implementation issues. We will later

(Subsections 3.2 and 3.3) present the approach in more generality and explain how it can be

implemented in practice.

The core of the hashing approach is the following high-level observation (see, e.g., Jer-

rum et al. [34], and historical notes in the introduction above). Let Hm be a family of hash

functions of the form h : D → {0,1}m with properties to be fixed below. Intuitively, one ex-

pects that, for each element a ∈ D, if a function h is picked at random from Hm, then the

image h(a) attains all values from {0,1}m with equal probabilities. For example, the proba-

bility that h(a) = 0m should equal 1/2m. Moreover, this behaviour should, in a way, extend

from single elements a ∈ D to sets: with high probability, the number of elements of a set

S ⊆ D that satisfy h(a) = 0m should be close to |S|/2m. Since this number is, in fact, always

integral, one can expect it to be positive if |S|≫ 2m and equal to zero if |S|≪ 2m. Obviously,

for each set S there will be individual functions h ∈ Hm violating these inequalities, but for

the majority of functions h ∈ Hm these inequalities will hold.

Now the idea is to use this observation for estimating the cardinality of a set that is

not given to us explicitly. In the scenario we are interested in, the set S will be the set of

all models of a given formula. More formally, consider a formula ϕ(x) in some measured

theory with one free variable. For simplicity, suppose the theory is IA, integer arithmetic with

a bounded domain D = [0,M], where the measure of a set A ⊆ D is simply the cardinality of

A. Denote by S the set of all models of the formula ϕ(x), i.e., S = JϕK. If, as above, the hash

function h : D→{0,1}m is chosen at random from an appropriate family Hm, then with high

probability the formula ϕ(x)∧ (h(x) = 0m) is satisfiable if mc(ϕ)≫ 2m and unsatisfiable if

mc(ϕ)≪ 2m.

Notice that we do not a priori know |S|, but we do know that it is between 0 (the for-

mula is unsatisfiable) and the entire volume D. So, we can iteratively search over this range

to approximate |S|. Let us therefore arrange the following process to estimate mc(ϕ). We

shall first check if the formula ϕ(x) is satisfiable; if it is not, mc(ϕ) = 0 and the process

terminates immediately. Suppose ϕ(x) is satisfiable; we will go over the values of m from

1 to about logM in increasing order and for each of them decide, admitting a certain ele-

ment of uncertainty, whether mc(ϕ)≫ 2m or mc(ϕ)≪ 2m. Specifically, for each m we will

draw a hash function h at random from the family Hm and check satisfiability of the for-

mula ϕ(x)∧ (h(x) = 0m). If the formula is unsatisfiable, this will suggest that mc(ϕ)≪ 2m

or mc(ϕ) ≈ 2m, and we will therefore terminate the process. If the formula is satisfiable,

this will suggest that mc(ϕ)≫ 2m or mc(ϕ) ≈ 2m, and we will therefore continue the pro-

cess, going on to the increased value of m. (Note that if mc(ϕ) ≈ 2m for some m, the for-

mula ϕ(x)∧ (h(x) = 0m) is about equally likely to be satisfiable and unsatisfiable.) Rare

events aside, we should expect the process to terminate when the value of m is such that

2m ≈mc(ϕ).

10 Dmitry Chistikov et al.

Example 3 Suppose ϕ(x) is the formula x = 42, and the domain of the variable x is D =
[0,255]. The set S = JϕK is a singleton: S = {42}. Since S 6= /0, that is, the formula ϕ(x) is

satisfiable, we start the process described above.

We set m= 1 at first and draw a hash function h1 : D→{0,1} at random from the set H1.

Let us omit the description of the set H1; suppose the hash function that we draw happens

to be h1(x) = x mod 2. We now check satisfiability of the formula ϕ(x)∧ (x mod 2 = 0),
which is equivalent to (x = 42)∧ (x mod 2 = 0). As x = 42 is a model of this formula, we

proceed to m = 2. Now we need to draw a hash function from H2. Suppose it has the form

h2(x) = ⌊x/64⌋ where the result is interpreted as an element of {0,1}2 in a natural way.

Since ⌊42/64⌋ = 0, the formula (x = 42)∧ (h2(x) = (0,0)) is satisfiable. Once we have

determined this, we proceed to m = 3. Here we need to draw a hash function at random

from the set H3; suppose we draw h3(x) = (h31,h32,h33) where h31 = (x+1) mod 2; then,

regardless of how h32 and h33 are defined, the formula (x = 42)∧ (h3(x) = (0,0,0)) will be

unsatisfiable. Therefore, our process will terminate at m = 3.

What will be the outcome of the process? The exact answer is tightly related to the

properties of the families of the hash functions Hm. More precisely, we asserted previously

that with high probability the formula ϕ(x)∧ (h(x) = 0m) where h ∈ Hm is satisfiable if

mc(ϕ) ≫ 2m and unsatisfiable if mc(ϕ) ≪ 2m. The precise meaning of ≫ and ≪ will, in

fact, influence the final estimate of mc(ϕ). From the fact that in our run the process termi-

nates at m = 3 we can draw the conclusion that (with high probability) mc(ϕ) belongs to the

interval [u∗2m,u∗2m] = [8u∗,8u∗] where u∗ and u∗ are positive constants that do not depend

on the formula ϕ and form a part of the description of our algorithm. One can imagine, for

instance, that u∗ = 1/2 and u∗ = 1; in our case this will give us the interval [4,8]. (The actual

formulas defining u∗ and u∗ can be found in Subsection A.2.) Of course, in our case this an-

swer will not be very satisfactory, because the correct value of mc(ϕ) is 1. If, however, we

compute the probability of such an outcome, i.e., the probability that the process will only

terminate at m ≥ 3 on input ϕ , we will see that this is a moderately rare event. If each bit of

all hash functions from Hm is chosen independently (imagine, for example, that picking h

from Hm corresponds to picking the values of each h(x) independently and uniformly—this

corresponds to the “ideal” hashing), then this probability will be 1/8. In comparison, with

probability 1/2 the process will stop at m = 1, which corresponds to the interval [1/2,1]—
and this interval contains the correct value. Standard error reduction techniques will help us

amplify the probability of such successful outcomes, thus making it very likely (according

to our choice of α) that the guessed interval will contain the correct value of mc(ϕ). In

general, with high probability, the higher the values of m that the process attains, the larger

the estimate of mc(ϕ). ⊓⊔

3.2 Approximate discrete model counting

We now explain the idea behind Theorem 1 in more detail, zooming in on some aspects that

we only sketched previously. Let ϕ(x) be an input formula in IA and let x = (x1, . . . ,xk) be

the free variables of ϕ . Suppose M is a big enough integer such that all models of ϕ have

components not exceeding M, i. e., JϕK ⊆ [0,M]k.

Our approach to approximating mc(ϕ) = |JϕK| works as follows. Suppose our goal is

to find a value v such that v ≤ mc(ϕ) ≤ 2v, and we have an oracle E , for “Estimate”, an-

swering questions of the form mc(ϕ) ≥? N. Then it is sufficient to make such queries to E

for N = Nm = 2m, m = 0, . . . ,k log(M + 1), and the overall algorithm design is reduced to

implementing such an oracle efficiently.

Approximate Counting in SMT 11

Algorithm 1: Approximate model counting for IA

Input: formula ϕ(x) in IA

Output: value v ∈ R
Parameters: ε ∈ (0,1), /* approximation factor */

α ∈ (0,1), /* error probability */

a ∈ N /* enumeration limit for SMT solver */

Compute values m∗,q, p,r based on parameters (see text);

1 if (e := SMT(ϕ, p+1))≤ p then return e;

2 ψ(x,x′) = ϕ(x)∧ t(x,x′);
3 ψq(x,x

′) = ψ(x1,x′1)∧ψ(x2,x′2)∧ . . .∧ψ(xq,x′q);
4 k′ := number of bits in x′;
5 for m = 1, . . . ,m∗ do

6 c := 0; /* majority vote counter */

7 for j = 1, . . . ,r do

8 if E (ψq,k
′,m,a) then c := c+1

9 if c ≤ r/2 then break;

10 return
q
√

a ·2m−0.5

As we already know, such an implementation can be done with the help of hashing.

Suppose that a hash function h, taken at random from some family H , maps elements of

[0,M]k to {0,1}m. If the family H is chosen appropriately, then each potential model w

is mapped by h to, say, 0m with probability 2−m; moreover, one should expect that any

set S ⊆ [0,M]k of size d has roughly 2−m · d elements in h−1(0m) = {w ∈ [0,M]k | h(w) =
0m}. In other words, if |S| ≥ 2m, then S∩ h−1(0m) is non-empty with high probability, and

if |S| ≪ 2m, then S∩ h−1(0m) is empty with high probability. So—rephrasing slightly the

observations outlined above—our task is reduced to distinguishing between empty and non-

empty sets. This, in turn, is a satisfiability question and, as such, can be entrusted to the IA

solver. As a result, we reduced the approximation of the model count of ϕ to a series of

satisfiability questions in IA.

Our algorithm posts these questions as SMT queries of the form

ϕ(x)∧ t(x,x′)∧ (h′(x′) = 0m), (1)

where x and x′ are tuples of integer variables, each component of x′ is either 0 or 1, the

formula t(x,x′) says that x′ is binary encoding of x, and the IA formula h′(x′) = 0m encodes

the computation of the hash function h on input x.

Algorithm 2: Satisfiability “oracle” E

Input: formula ψq(x,x
′) in IA; k′,m,a ∈ N

Output: true or false

1 h′ := PICK-HASH(k′,m);
2 ψh′ (x,x

′) = ψq(x,x
′)∧ (h′(x′) = 0m);

3 return (SMT(ψh′ ,a)≥ a) /* check if ψh′ has at least a models */

Algorithm 1 is the basis of our implementation. It returns a value v that satisfies the in-

equalities (1+ε)−1mc(ϕ)≤ v ≤ (1+ε)mc(ϕ) with probability at least 1−α . Algorithm 1

uses a set of parameters to discharge small values by enumeration in the SMT solver (param-

eters a, p) and to query the solver for larger instances (parameters m∗,q,r). The procedure E

12 Dmitry Chistikov et al.

given as Algorithm 2 asks the SMT solver for IA to produce a models (for a positive integer

parameter a) to formulas of the form (1) by calling the procedure SMT.

To achieve the required precision with the desired probability, the algorithm constructs

a conjunction of q copies of the formula (over disjoint sets of variables), where the number

of copies q is defined2 as

q =
⌈1+4log(

√
a+1+1)−2loga

2log(1+ ε)

⌉

;

we refer the reader to Subsection A.2 for a detailed description. This results in a formula

with k′ = qk⌈log(M + 1)⌉ = O(|ϕ|/ε) binary variables, where |ϕ| denotes the size of the

original formula ϕ . Then, in lines 5–9, Algorithm 1 performs for each dimension of the

hash function in the range {1, . . . ,m∗} a majority vote over r calls to the procedure E , where

the values of m∗ and r are computed as follows:

m∗ = ⌊k′−2log(
√

a+1+1)⌋, r =

⌈

8 · ln
(

1

α
· ⌊k′−2log(

√
a+1+1)⌋

)⌉

.

For a formal derivation of these values, see Subsection A.3.

In a practical implementation, early termination of the majority-vote loop is possible as

soon as the number of positive answers given by E exceeds r/2.

For formulas ϕ with up to p = ⌈(
√

a+1− 1)2/q⌉ models, Algorithm 1 returns the ex-

act model count mc(ϕ) (line 1 in Algorithm 1) computed by the procedure SMT, which

repeatedly calls the solver, counting the number of models up to p+1.

The values of m∗,q, p, and r used in Algorithm 1, as well as the choice of the return

value v =
q
√

a ·2m−0.5, guarantee its correctness and are formally derived in Appendix A.

For a fixed approximation factor ε the number q of copies depends only on the parame-

ter a. More precisely, the larger the parameter a is, the fewer copies q are necessary. While,

in general, smaller values for q result in fewer variables in the queries to the SMT solver,

the number of queries at each step of the loop in Algorithm 1 increases with a, albeit not

drastically. One possible heuristic for balancing this trade-off is choosing as a the smallest

value after which the value for q stabilizes. We have observed empirically that applying

this heuristic leads to good performance, and have used it to select the values for a for the

experiments on which we report in Section 5.6.

The family of hash functions H used by PICK-HASH in Algorithm 2 needs to satisfy

the condition of pairwise independence: for any two distinct vectors x1,x2 ∈ [0,M]k and

any two strings w1,w2 ∈ {0,1}m, the probability that a random function h ∈ H satisfies

h(x1) = w1 and h(x2) = w2 is equal to 1/22m. The condition of pairwise independence is

used by Algorithm 1 via the following proposition, known as (a simple form of) the Leftover

Hash Lemma. It was originally proved by Impagliazzo, Levin, and Luby [32], and here we

use a formulation due to Trevisan [59].

Lemma 1 Let H be a family of pairwise independent hash functions h : {0,1}n →{0,1}m.

Let S ⊆ {0,1}n be such that |S| ≥ 4/ρ2 · 2m. For h ∈ H , let ξ be the cardinality of the set

{w ∈ S : h(w) = 0m}. Then

Pr

[∣

∣

∣

∣

ξ − |S|
2m

∣

∣

∣

∣

≥ ρ · |S|
2m

]

≤ 1

4
.

2 We refer the reader to Subsection A.2 for a detailed description.

Approximate Counting in SMT 13

Table 1 Input and runtime parameters

i ε α a bits m time(s) result

8 0.2 0.1 100 21 10 8.16 41.6801

16 0.2 0.1 100 45 10 18.87 41.6801

32 0.2 0.1 100 93 10 44.81 41.6801

Legend:

ε: parameter in the multiplicative approximation factor (1+ ε),
α: maximum error probability,

a: the SMT enumeration threshold (number of models the SMT solver checks for),

bits: number of binary variables in the formula given to the solver,

m: maximal hash size,

result: approximate model count.

There are several constructions for pairwise independent hash functions; we employ a

commonly used family, that of random XOR constraints [62,3,28,9]. Given k′ and m, the

family contains (in binary encoding) all functions h′ = (h′1, . . . ,h
′
m) : {0,1}k′ →{0,1}m with

h′i(x1 . . . ,xk′) = ai,0+∑
k′
j=1 ai, jx j, where ai, j ∈ {0,1} for all i and + is the XOR operator (ad-

dition in GF(2)). By randomly choosing the coefficients ai, j we get a random hash function

from this family. The size of each query is thus bounded by O(k′2) = O(1
ε2 |ϕ|2), where |ϕ|

is again the size of the original formula ϕ , and there will be at most m∗+ 1 ≤ k′+O(1) =
O(1

ε |ϕ|) queries in total.

Example 4 Consider the formula ϕ(x) = (x ≤ 42), where the integer variable x ranges over

the sets Mi = [1,2i−1 −1], for i ∈ {8,16,32}. The model count mc(ϕ) = 42 is small, while

the size of the variable domain changes with i and for i = 32 is quite significant. Table 1

illustrates the performance of our approximate counting algorithm on input ϕ for this set

of values of i. The parameter ε in the multiplicative approximation factor (1+ ε) is set

to 0.2, and the maximum error probability α is set to 0.1. We report the number of Boolean

variables in the formula given to the solver (after making the respective number of copies),

and the running time in seconds. The table shows that the running time, as well as the

number of calls to the SMT solver, are small, which reflects the small model count (the

main loop of Algorithm 1 terminates early). As the size of the domain increases, the size of

the SMT queries also increases, which, however, leads to only a moderate increase in the

overall running time. ⊓⊔

Note that the entire argument remains valid even if ϕ has existentially quantified vari-

ables: queries (1) retain them as is. The prefix of existential quantifiers could simply be

dropped from (1), as searching for models of quantifier-free formulas already captures ex-

istential quantification. It is important, though, that the model enumeration done by the

procedure SMT in Algorithms 1 and 2 only count distinct assignments to the free variables

of ϕ and ψh′ respectively.

3.3 Approximate continuous model counting

In this subsection we explain the idea behind Theorem 2. Let ϕ be a formula in RA; using

appropriate scaling, we can assume without loss of generality that all its variables share the

14 Dmitry Chistikov et al.

same domain. Suppose JϕK ⊆ [0,M]k and fix some γ , with the prospect of finding a value v

that is at most ε = γMk away from mc(ϕ) (we take Mk as the value of the upper bound U in

the definition of additive approximation). We show below how to reduce this task of approx-

imate continuous model counting to additive approximation of a model counting problem

for a formula with a discrete set of possible models, which, in turn, will be reduced to that

of multiplicative approximation.

We first show how to reduce our continuous problem to a discrete one. Divide the

cube [0,M]k into sk small cubes with side δ each, δ = M/s. For every y = (y1, . . . ,yk) ∈
{0,1, . . . ,s− 1}k, set ψ ′(y) = 1 if at least one point of the cube C(y) = {y jδ ≤ x j ≤ (y j +
1)δ ,1 ≤ j ≤ k} satisfies ϕ; that is, if C(y)∩ JϕK 6= /0.

Imagine that we have a formula ψ such that ψ(y) = ψ ′(y) for all y ∈ {0,1, . . . ,s −
1}k, and let ψ be written in a theory with a uniform measure that assigns “weight” M/s to

each point y j ∈ {0,1, . . . ,s−1}; one can think of these weights as coefficients in numerical

integration. From the technique of Dyer and Frieze [19, Theorem 2] it follows that for a

quantifier-free ϕ and an appropriate value of s the inequality |mc(ψ)−mc(ϕ)| ≤ ε/2 holds.

Indeed, Dyer and Frieze prove a statement of this form in the context of volume compu-

tation of a polyhedron, defined by a system of inequalities Ax ≤ b. However, they actually

show a stronger statement: given a collection of m hyperplanes in Rk and a set [0,M]k, an ap-

propriate setting of s will ensure that out of sk cubes with side δ = M/s only a small number

J will be cut, i. e., intersected by some hyperplane. More precisely, if s =
⌈

mk2Mk/(ε/2)
⌉

,

then this number J will satisfy the inequality δ k · J ≤ ε/2. Thus, the total volume of cut

cubes is at most ε/2, and so, in our terms, we have |mc(ψ)−mc(ϕ)| ≤ ε/2 as desired.

However, in our case the formula ϕ need not be quantifier-free and may contain exis-

tential quantifiers at the top level. If ϕ(x) = ∃u.Φ(x,u) where Φ is quantifier-free, then the

constraints that can “cut” the x-cubes are not necessarily inequalities from Φ. These con-

straints can rather arise from projections of constraints on variables x and, what makes the

problem more difficult, their combinations. However, we are able to prove the following

statement:

Lemma 2 The number J̄ of points y∈{0,1, . . . ,s−1}k for which cubes C(y) are cut satisfies

δ̄ k · J̄ ≤ ε/2 if δ̄ = M/s̄, where s̄ =
⌈

2m+2kk2Mk/(ε/2)
⌉

=
⌈

2m+2kk2/(γ/2)
⌉

and m is the

number of atomic predicates in Φ.

Proof Observe that a cube C(y) is cut if and only if it is intersected by a hyperplane de-

fined by some predicate in variables x. Such a predicate does not necessarily come from the

formula Φ itself, but can arise when a polytope in variables (x,u) is projected to the space

associated with variables x. Put differently, each cut cube C(y) has some d-dimensional

face with 0 ≤ d ≤ k− 1 that “cuts” it; this face is an intersection of C(y) with some affine

subspace π in variables x.

Consider this subspace π . It can be, first, the projection of a hyperplane defined in vari-

ables (x,u) by an atomic predicate in Φ or, second, the projection of an intersection of several

such hyperplanes. Now note that each predicate in (x,u) defines exactly one hyperplane; an

intersection of hyperplanes in (x,u) projects to some specific affine subspace in variables x.

Therefore, each “cutting” affine subspace π is associated with a distinct subset of atomic

predicates in Φ, where, since the domain is bounded, we count in constraints 0 ≤ x j ≤ M as

well. This gives us at most 2m+2k cutting subspaces, so it remains to apply the result of Dyer

and Frieze with m = 2m+2k. ⊓⊔

A consequence of the lemma is that the choice of the number s̄ ensures that the formula

ψ(y) = ∃x.(ϕ(x)∧x ∈C(y)) written in the combined theory IA+RA satisfies the inequality

Approximate Counting in SMT 15

|mc(ψ)−mc(ϕ)| ≤ ε/2. Here we associate the domain of each free variable y j ∈{0,1, . . . , s̄−
1} with the uniform measure µ j(v) = M/s̄. Note that the value of s̄ chosen in Lemma 2 will

still keep the number of steps of our algorithm polynomial in the size of the input, because

the number of bits needed to store the integer index along each axis is ⌈log(s̄+1)⌉ and not

s̄ itself.

As a result, it remains to approximate mc(ψ) with additive error of at most ε ′ = ε/2 =
γMk/2, which can be done by invoking the procedure from Theorem 1 that delivers approx-

imation with multiplicative error β = ε ′/Mk = γ/2.

4 A Fully Worked-Out Example

We now show how our approach to #SMT, developed in Sections 2 and 3 above, works on a

specific example, coming from the value problem for probabilistic programs. Probabilistic

programs are a means of describing probability distributions; the model we use combines

probabilistic assignments and nondeterministic choice, making programs more expressive,

but analysis problems more difficult.

For this section we choose a relatively high level of presentation in order to convey the

main ideas in a more understandable way; a formal treatment follows in Section 5, where

we discuss (our model of) probabilistic programs and their analysis in detail.

The Monty Hall problem [53,50]

We describe our approach using as an example the following classic problem from probabil-

ity theory. Imagine a television game show with two characters: the player and the host. The

player is facing three doors, numbered 1, 2, and 3; behind one of these there is a car, and

behind the other two there are goats. The player initially picks one of the doors, say door i,

but does not open it. The host, who knows the position of the car, then opens another door,

say door j with j 6= i, and shows a goat behind it. The player then gets to open one of the

remaining doors. There are two available strategies: stay with the original choice, door i, or

switch to the remaining alternative, door k 6∈ {i, j}. The Monty Hall problem asks, which

strategy is better? It is widely known that, in the standard probabilistic setting of the prob-

lem, the switching strategy is the better one: it has payoff 2/3, i. e., it chooses the door with

the car with probability 2/3; the staying strategy has payoff of only 1/3.

Modeling with a probabilistic program

We model the setting of the Monty Hall problem with the probabilistic program in Proce-

dure 3: “Switch” strategy in Monty Hall problem, which implements the “switch” strategy.

In this problem, there are several kinds of uncertainty and choice, so we briefly explain how

they are expressed with the features of our programming model.

First, there is uncertainty in what door hides the car and what door the player initially

picks. It is standard to model the initial position of the car, c, by a random variable distributed

uniformly on {1,2,3}; we simply follow the information-theoretic guidelines here. At the

same time, due to the symmetry of the setting we can safely assume that the player always

picks door i = 1 at first, so here choice is modeled by a deterministic assignment.

Second, there is uncertainty in what door the host opens. We model this with non-

deterministic choice. Since the host knows that the car is behind door c and does not

16 Dmitry Chistikov et al.

Procedure 3: “Switch” strategy in Monty Hall problem

c ∼ Uniform({1,2,3}) /* position of the car */

i := 1 /* initial choice of the player */

choice:
case: j := 2; assume(j 6= c)
case: j := 3; assume(j 6= c)

/* the host opens door j with a goat */

if i 6= c then accept else reject /* the player switches from door i */

open door c accordingly, we restrict this choice by stipulating that j 6= c. For the seman-

tics of the program, this means that for different outcomes of the probabilistic assignment

c ∼ Uniform({1,2,3}) different sets of paths through the program are available (some paths

are excluded, because they are incompatible with the results of observations stipulated by

assume statements3).

Note that we don’t know the nature of the host’s choice in the case that more than one

option is available (when c = 1, either element of {2,3} can be chosen as j). In principle,

this choice may be cooperative (the host helps the player to win the car), adversarial (the

host wants to prevent the player from winning), probabilistic (the host tosses a coin), or any

other. In our example, the cooperative and the adversarial behavior of the host are identical,

so our model is compatible with either of them. For now, let us defer the in-depth discussion

of the treatment of nondeterminism to Subsection 5.3.

Finally, uncertainty in the final choice of the player is modeled by fixing a specific

behaviour of the player and declaring acceptance if the result is successful. Our procedure

implements the “switching” strategy; that is, the player always switches from door i. The

analysis of the program will show how good the strategy is.

Semantics and value of the program

Informally, consider all possible outcomes of the probabilistic assignments. Restrict atten-

tion to those that may result in the program reaching (nondeterministically) at least one

of accept or reject statements—such elementary outcomes form the set Term (for “ter-

mination”); only these scenarios are compatible with the observations. Similarly, some of

these outcomes may result in the program reaching (again, nondeterministically) an accept

statement—they form the set Accept; the interpretation is that for these scenarios the strategy

is successful.

These sets Term and Accept are events in a probability space. The value of the program

(in this case interpreted as the payoff of the player’s strategy) is the probability of acceptance

conditioned on termination4:

val(Switch) = Pr [Accept | Term] =
Pr [Accept]

Pr [Term]
,

where, in general, we assume Pr [Term]> 0 and the last equality follows because Accept∩
Term = Accept. In general, this semantics corresponds to the cooperative behavior of the

host, but in our case the adversarial behavior would be identical: there is no value of c such

3 Our assume statement has the same semantics as the observe statement in [29].
4 As we consider loop-free probabilistic programs, all executions are finite. Thus, here a “terminating”

execution is one that satisfies all assume statements which it encounters, and reaches accept or reject.

Approximate Counting in SMT 17

Table 2 Semantics of the probabilistic program in Procedure 3: “Switch” strategy in Monty Hall problem

Nondeterministic

branches:

Probabilistic outcomes:

c = 1 c = 2 c = 3

Pr = 1/3 Pr = 1/3 Pr = 1/3

—with j = 2 reject × accept

—with j = 3 reject accept ×
Verdict rejected accepted accepted

Belongs to Accept no yes yes

Belongs to Term yes yes yes

that one nondeterministic choice leads to accept and another leads to reject. (We can also

deal with adversarial nondeterminism, see Subsection 5.3.)

Indeed, consider Table 2, which illustrates the semantics of the probabilistic program

in Procedure 3: “Switch” strategy in Monty Hall problem. There are three probabilistic

assignments c = 1,2,3, each associated with probability 1/3. For c = 1 there are two paths

to reject, and for each of c = 2,3 there is a single path to accept and a path that hits a

violated assume, indicated by the symbol ×. Therefore, the nondeterministic execution for

c = 1 is rejecting, and the nondeterministic executions for c = 2 and c = 3 are accepting.

The set Accept thus includes the assignments c = 2 and c = 3, and the set Term all three

assignments c = 1,2,3; as a result, val(Switch) = Pr [Accept]/Pr [Term] = (2/3)/(3/3) =
2/3, as intended.

Remark Probably the most common mistake that occurs in the analysis of the Monty Hall

example (as a puzzle in probability theory) is an inadequate choice of the probability space.

Note that our model only associates probabilities with the choice of position of the car

(c ∈ {1,2,3}). The assume statements in the program do not act on these probabilistic as-

signments directly: rather, they eliminate certain paths through the program (more precisely,

the paths that hit a violated assume). If for a particular probabilistic outcome all paths are

eliminated, then this outcome is removed from the set Term, thus rescaling the probability

weight for all other outcomes (this does not happen in the Monty Hall example). In all other

aspects, however, the space of all probabilistic outcomes (c ∈ {1,2,3}) remains the same,

and each individual outcome is classified as accepted or rejected according to the standard

(cooperative) semantics of the induced nondeterministic execution.

Reduction of value estimation to model counting

To estimate the value of the program, we first reduce its computation to a model counting

problem (as defined in Section 2) for an appropriate logical theory. We write down the

verification condition vc(N,P) that defines a valid computation of the program, by asserting

a relation between (values of) nondeterministic and probabilistic variables N and P. Then

we construct existential formulas of the form

ϕacc(P) = ∃N . vc(N,P)∧accept and

ϕterm(P) = ∃N . vc(N,P)∧ (accept∨ reject),

which assert that the program terminates with “accept” (resp. “accept” or “reject”), and

whose sets of models (i. e., satisfying assignments) are exactly the sets Accept and Term

defined above. For the Monty Hall program, these formulas ϕacc(c) and ϕterm(c), with c ∈
{1,2,3}, will be equivalent to c 6= 1 and true, respectively. The value of the program is

18 Dmitry Chistikov et al.

Table 3 Typical run for the Monty Hall example

m Satisfiable Unsatisfiable Majority vote

0. . . 6 62 0 Sat

7. . . 9 61 1 Sat

10 55 7 Sat

11 50 12 Sat

12 48 14 Sat

13 21 41 Unsat

the ratio mc(ϕacc)/mc(ϕterm), where mc(·) denotes the model count of a formula, as in

Section 2. Technically, we can use IA, the theory of integer arithmetic, with the domain

{1,2,3} for the free variable c and with the counting measure | · | : A 7→ |A|, also following

Section 2. So in our example, mc(ϕacc) = 2 and mc(ϕterm) = 3.

Computing the value of the program

We show how our method (see Subsection 3.2) estimates mc(ϕacc). We make several copies

of the variable c, denoted c1, . . . ,cq. The formula

ϕ(c) = ϕacc(c
1)∧ϕacc(c

2)∧ . . .∧ϕacc(c
q)

has 2q models, and we can estimate mc(ϕacc) by estimating mc(ϕ) and taking the qth root

of the estimate. Enlarging ϕacc to ϕ and then taking the qth root increases precision: for

example, if the approximation procedure gives a result up to a factor of 2, the qth root of the

estimate for mc(ϕ) gives an approximation for mc(ϕacc) up to a factor of 21/q.

Now observe that for a hash function h with values in {0,1}m, taken at random from an

appropriate family, the expected model count of the formula

ϕ(c)∧ (h(c) = 0m) (2)

is mc(ϕ) ·2−m. By a Chernoff bound argument, the model count is concentrated around the

expectation. Our algorithm will, for increasing values of m, sample random hash functions

from an appropriate class, construct the formula (2), and give the formula to an SMT solver

to check satisfiability. (Note that such formulas are purely existential—in variables c as well

as in q copies of N.) With high probability, the first m for which the sampled formula is

unsatisfiable will give a good enough estimate of mc(ϕ) and, by the reduction above, of

mc(ϕacc).
Let us give some concrete values to support the intuition. We encode the number c ∈

{1,2,3} in binary, as c ≡ c0c1. We make q = 12 copies, and this will ensure that we will

obtain the exact value of mc(ϕacc) by taking qth root of mc(ϕ), where ϕ is as above (for

exact rather than approximate solution, a multiplicative gap of less than 3/2 suffices in

our setting). In reality, mc(ϕacc) = 2 and so mc(ϕ) = 212, but we only know a priori that

mc(ϕacc)∈ [0,3] and mc(ϕ)≤ 312. We iterate over the dimension m of the hash function and

perform the SMT query (2) for each m. Using standard statistical techniques, we can reduce

the error probability α by repeating each random experiment a sufficiently large number

of times, r; in our case r = 62 leads to α = 0.01. A typical run of our implementation

is demonstrated in Table 3; for each m we show how many of the sampled formulas are

satisfiable, and how many are not. The “Majority vote” column is used by our procedure to

decide if the number of models is more than 2m times a constant factor. From the table, our

procedure will conclude that mc(ϕ) is between 0.17 ·212 and 11.66 ·212 with probability at

Approximate Counting in SMT 19

least 0.99 (see Appendix A for derivation of the constants 0.17 and 11.66). This gives us the

interval [1.73,2.45] for mc(ϕacc); since mc(ϕacc) is integer, we conclude that mc(ϕacc) = 2

with probability at least 0.99.

As mentioned above, the same technique will deliver us mc(ϕterm) = 3 and hence,

val(Switch) = 2/3.

5 Value Estimation for Probabilistic Programs

In this section we show how our approach to #SMT applies to the value problem for proba-

bilistic programs.

What are probabilistic programs?

Probabilistic models such as Bayesian networks, Markov chains, probabilistic guarded-

command languages, and Markov decision processes have a rich history and form the model-

ing basis in many different domains (see, e.g., [22,45,16,38]). More recently, there has been

a move toward integrating probabilistic modeling with “usual” programming languages [25,

46]. Semantics and abstract interpretation for probabilistic programs with angelic and de-

monic non-determinism has been studied before [39,45,47,15], and we base our semantics

on these works.

Probabilistic programming models extend “usual” nondeterministic programs with the

ability to sample values from a distribution and condition the behavior of the programs based

on observations [29]. Intuitively, probabilistic programs extend an imperative programming

language like C with two constructs: a nondeterministic assignment to a variable from a

range of values, and a probabilistic assignment that sets a variable to a random value sampled

from a distribution. Designed as a modeling framework, probabilistic programs are typically

treated as descriptions of probability distributions and not meant to be implemented and

executed as usual programs.

Section summary

We consider a core loop-free imperative language extended with probabilistic statements,

similarly to [52], and with nondeterministic choice. Under each given assignment to the

probabilistic variables, a program accepts (rejects) if there is an execution path that is com-

patible with the observations and goes from the initial vertex to the accepting (resp., reject-

ing) vertex of its control flow automaton. Consider all possible outcomes of the probabilistic

assignments in a program P . Restrict attention to those that result in P reaching (nondeter-

ministically) at least one of the accepting or rejecting vertices—such elementary outcomes

form the set Term (for “termination”); only these scenarios are compatible with the observa-

tions. Similarly, some of these outcomes may result in the program reaching (again, nonde-

terministically) the accepting vertex—they form the set Accept. Note that the sets Term and

Accept are events in a probability space; define val(P), the value of P , as the conditional

probability Pr[Accept | Term], which is equal to the ratio
Pr[Accept]
Pr[Term] as Accept ⊆ Term. We

assume that programs are well-formed in that Pr [Term] is bounded away from 0.

Now consider a probabilistic program P over a measured theory T , i. e., where the

expressions and predicates come from T . Associate a separate variable r with each proba-

bilistic assignment in P and denote the corresponding distribution by dist(r). Let R be the

set of all such variables r.

20 Dmitry Chistikov et al.

Proposition 2 There exists a polynomial-time algorithm that, given a program P over T ,

constructs logical formulas ϕacc(R) and ϕterm(R) over T such that Accept = JϕaccK and

Term= JϕtermK, where each free variable r ∈ R is interpreted over its domain with measure

dist(r). Thus, val(P) =mc(ϕacc)/mc(ϕterm).

Proposition 2 reduces the value problem—i. e., the problem of computing val(P)—to model

counting. This enables us to characterize the complexity of the value problem and solve this

problem approximately using the hashing approach from Section 3. These results appear as

Theorem 4 in Subsection 5.5 below.

In the remainder of this section we define the syntax (Subsection 5.1) and semantics

(Subsection 5.2) of our programs and the value problem. By reducing this problem to #SMT

(Subsection 5.5) we show an application of our approach to approximate model counting (an

experimental evaluation is provided in Subsection 5.6). We also discuss modeling different

kinds of nondeterminism: cooperative and adversarial (Subsection 5.3), and give an short

overview of known probabilistic models subsumed by ours (Subsection 5.4).

5.1 Syntax

A program has a set of variables X , partitioned into Boolean, integer, and real-valued vari-

ables. We assume expressions are type correct, i.e., there are no conversions between vari-

ables of different types. The basic statements of a program are:

– skip (do nothing),

– deterministic assignments x := e,

– probabilistic assignments x ∼ Uniform(a,b),
– assume statements assume(ϕ),

where e and ϕ come from an (unspecified) language of expressions and predicates, respec-

tively.

The (deterministic) assignment and assume statements have the usual meaning: the de-

terministic assignment x := e sets the value of the variable x to the value of the expression

on the right-hand side, and assume(ϕ) continues execution only if the predicate is satisfied

in the current state (i.e., it models observations used to condition a distribution). The prob-

abilistic assignment operation x ∼ Uniform(a,b) samples the uniform distribution over the

range [a,b] with constant parameters a,b and assigns the resulting value to the variable x. For

example, for a real variable x, the statement x ∼ Uniform(0,1) draws a value uniformly at

random from the segment [0,1], and for an integer variable y, the statement y∼Uniform(0,1)
sets y to 0 or 1 with equal probability.

The control flow of a program is represented using directed acyclic graphs, called con-

trol flow automata (CFA), whose nodes represent program locations and whose edges are

labeled with program statements. Let S denote the set of basic statements; then a control

flow automaton (CFA) P = (X ,V,E, init,acc, rej) consists of a set of variables X , a la-

beled, directed, acyclic graph (V,E), with E ⊆ V ×S ×V , and three designated vertices

init, acc, and rej in V called the initial, accepting, and rejecting vertices.

Figure 1 depicts the CFA for the probabilistic program shown in Procedure 3: “Switch”

strategy in Monty Hall problem. The accept and reject statements from the procedure cor-

respond to the acc and rej vertices of the CFA respectively.

We assume init has no incoming edges and acc and rej have no outgoing edges. We write

v
s−→ v′ if (v,s,v′) ∈ E. We also assume programs are in static single assignment (SSA) form,

Approximate Counting in SMT 21

init

acc

rej

c ∼ Uniform({1,2,3})
i := 1

j := 2

j := 3

assume(j 6= c)

assume(j 6= c)

i 6= c

i = c

Fig. 1 CFA for the probabilistic program given as Procedure 3: “Switch” strategy in Monty Hall problem.

that is, each variable is assigned at most once along any execution path. A program can be

converted to SSA form using standard techniques [48,31].

Since control flow automata are acyclic, our programs do not have looping constructs.

Loops can be accommodated in two different ways: by assuming that the user provides loop

invariants [35], or by assuming an outer (statistical) procedure that selects a finite set of

executions that is sufficient for the analysis up to a given confidence level [52,51]. In either

case, the core analysis problem reduces to analyzing finite-path unwindings of programs

with loops, which is exactly what our model captures.

Although our syntax only allows uniform distributions, we can model some other dis-

tributions. For example, to simulate a Bernoulli random variable x that takes value 0 with

probability p and 1 with probability 1− p, we write the following code:

X ∼ Uniform(0,1);

if (X ≤ p){x := 0;}else{x := 1;}

We can similarly encode uniform distributions with non-constant boundaries as well as (ap-

proximately encode) normal distributions (using repeated samples from uniform distribu-

tions and the central limit theorem). To encode uniform distributions with non-constant

boundaries, we use assume conditioning: e.g., to simulate a random variable x that has dis-

tribution Uniform(−y2,1+2y) where y ∈ [0,10] is a previously assigned variable, we write

the following code:

x ∼ Uniform(−100,21);

assume(−y∗ y ≤ x ≤ 1+2∗ y);

The semantics of this conditioning is explained in the following subsection.

5.2 Semantics

The semantics of a probabilistic program is given as a superposition of nondeterministic

programs, following [39,15]. Intuitively, when a probabilistic program runs, an oracle makes

all random choices faced by the program along its execution up front. With these choices,

the program reduces to a usual nondeterministic program.

We first provide some intuition behind our semantics. Let us partition the variables X

of a program into random variables R (those assigned in a probabilistic assignment) and

nondeterministic variables N =X \R (the rest). (The partition is possible because programs

are in static single assignment form.) We consider two events. The (normal) termination

event (resp. the acceptance event) states that under a scenario ω for the random variables

22 Dmitry Chistikov et al.

in R, there is an assignment to the variables in N such that the program execution under

this choice of values reaches acc or rej (resp. reaches acc). The termination is “normal” in

that all assumes are satisfied. Our semantics computes the conditional probability, under all

scenarios, of the acceptance event given that the termination event occurred.

We now formalize the semantics. A state of a program is a pair (v,x) of a control node

v ∈ V and a type-preserving assignment of values to all program variables in X . Let Σ

denote the set of all states and Σ∗ the set of finite sequences over Σ.

Let (Ω,F ,Pr) be the probability space associated with probabilistic assignments in a

program P; elements of Ω will be called scenarios. The probabilistic semantics of P ,

denoted 〈[P]〉, is a function from Ω to 2Σ∗
, mapping each scenario ω ∈ Ω to a collection of

maximal executions of the nondeterministic program obtained by fixing ω . It is defined with

the help of an extension of 〈[·]〉 from programs to states, which, in turn, is defined inductively

as follows:

– (acc,x) ∈ 〈[acc]〉ω and (rej,x) ∈ 〈[rej]〉ω for all x;

– (v,x)(v′,x)σ ∈ 〈[v]〉ω if v
skip−−→ v′ and (v′,x)σ ∈ 〈[v′]〉ω;

– (v,x)(v′,x′)σ ∈ 〈[v]〉ω if v
x:=e−−→ v′, x′ = x[x := eval(e)(x,ω)], and (v′,x)σ ∈ 〈[v′]〉ω;

similarly, if v
x∼Uniform(a,b)−−−−−−−−−→ v′, we have x′ = x[x := c] where c is the value chosen for x

in the scenario ω;

– (v,x)(v′,x)σ ∈ 〈[v]〉ω if v
assume(ϕ)−−−−−−→ v′, eval(ϕ)(x,ω) = true, and (v′,x)σ ∈ 〈[v′]〉ω .

Finally, define 〈[P]〉ω = 〈[init]〉ω . Here eval(e)(x,ω) (resp. eval(ϕ)(x,ω)) denotes the value

of the expression e (resp. predicate ϕ) taken in the scenario ω under the current assignment

x of values to program variables, and x[x := c] is the assignment that maps variable x to the

value c and agrees with x on all other variables.

Let Φ ⊆ Σ∗ be a set of paths of a program P . The probability that the run of P has a

property Φ is defined as

Pr [run of P satisfies Φ] =
∫

Ω
1

[

〈[P]〉∩Φ 6= /0
]

dPr(ω)

where 1
[

〈[P]〉 ∩Φ 6= /0
]

denotes the indicator event that at least one execution path from

〈[P]〉 belongs to Φ. Specifically, let Φacc ⊆ Σ∗ be the set of all sequences that end in a state

(acc,x) for some x, and Φterm ⊆ Σ∗ be the set of all sequences that end in either (acc,x) or

(rej,x). We define the termination and acceptance events as

Term= [run of P satisfies Φterm] ,

Accept= [run of P satisfies Φacc] .

The value val(P) of a program P is defined as the conditional probability Pr[Accept |
Term], which is equal to the ratio

Pr[Accept]
Pr[Term] as Accept⊆ Term. Thus, the value of a program

is the conditional probability

Prω [∃z .P(ω,z) reaches acc | ∃z .P(ω,z) reaches acc or rej].

For simplicity of exposition, we restrict attention to well-formed programs, for which Pr[Term]
is bounded away from 0. The value problem takes as input a program P and computes

val(P).
Before we show in Subsection 5.5 how the value problem reduces to model counting,

we first discuss the features and expressivity of our model of probabilistic programs. In

Subsection 5.3 we discuss the semantics of nondeterminism and in Subsection 5.4 we relate

our programming model to well-known probabilistic models.

Approximate Counting in SMT 23

5.3 Cooperative vs. adversarial nondeterminism

Our semantics corresponds to a cooperative understanding of nondeterminism, in the fol-

lowing sense. For each individual scenario ω , the set 〈[P]〉ω can have one of the following

four forms:

1) there are no paths to acc nor rej (for any assignment z for the nondeterministic variables

in N),

2) there is a path to rej, but no paths to acc,

3) there is a path to acc, but no paths to rej,

4) there are paths to both acc and rej (under different assignments z,z′ for the nondeter-

ministic variables).

The conditional probability measure

Prω [· | Term] = Prω [· | ∃z .P(z,ω) reaches acc or rej]

restricts the attention to ω of the forms 2, 3, 4. Now our definition of Accept says that all

ω of the form 4 are counted towards acceptance. The value of the program is accordingly

defined as the (conditional) probability of options 3, 4.

In the Monty Hall problem in Section 4, this semantics worked as intended only be-

cause there are no scenarios ω of the form 4. However, a cooperative interpretation may not

always be desirable. Imagine, for instance, that in a game, for some fixed strategy of the

player all scenarios ω have the form 4, which means that the outcome of the game depends

on the host’s choice. Our semantics evaluates the strategy as perfect, with the value 1, al-

though using the strategy may even lead to losing with probability 1 once nondeterminism

is interpreted adversarially.

We can distinguish between semantics with cooperative and adversarial (also known as

angelic and demonic) nondeterminism by defining the upper and lower values of a program

by

val(P) = Prω [∃z .P(z,ω) reaches acc | Term] and

val(P) = Prω [∄z .P(z,ω) reaches rej | Term].

The upper value val(P) coincides with val(P) as defined in Subsection 5.2, and the lower

value val(P) indeed corresponds to the adversarial interpretation of nondeterministic choice:

only scenarios of the form 3 are counted towards acceptance, and scenarios of the form 2

and, most importantly, 4 towards rejection. Obviously, val(P) ≤ val(P), with equality if

and only if the set of scenarios of the form 4 has (conditional) measure zero, as in Section 4.

Observe now that the problem of computing val(P) reduces to the problem of comput-

ing val(P): the reason for that is the equality

val(P) = 1− val(P∗),

where for a program P = (X ,V,E, init,acc, rej) we define the corresponding dual program

P∗ = (X ,V,E, init, rej,acc). The details are easily checked.

Note that the type of nondeterminism is interpreted at the level of programs and not on

the level of individual statements. Mixing statements with different type of nondeterminism

is equivalent to considering probabilistic programs with alternation, which raises the com-

plexity of the value problem: even non-probabilistic loop-free programs with two kinds of

nondeterminism on the per-statement basis are PSPACE-hard to analyze.

24 Dmitry Chistikov et al.

Also note that our semantics resolves the nondeterminism after the probabilistic choice.

This indicates that the nondeterministic choice can “look in the future.” For example, con-

sider a program that first chooses a bit x nondeterministically, then chooses a bit r uniformly

at random, and then accepts if x = r and rejects if x 6= r. Under our semantics, the pro-

gram always accepts: there is a way for the nondeterministic choice to guess correctly. This

feature of our model can be undesirable in certain cases: in formal approaches to security,

for example, a scheduler that uses the power to look into the future when resolving nonde-

terminism is unrealistic; its existence, however, can lead to classifying secure protocols as

insecure [12].

We now briefly discuss the synthesis question in which the nondeterminism is resolved

before the probabilistic choice. A more general setting, where nondeterministic and proba-

bilistic choice alternate, is PSPACE-complete [49].

Verification vs. synthesis. In this paper, we consider the verification question: given a prob-

ability space over random inputs, the value of the program is the conditional probability

of acceptance, given the program terminates. As stated above, nondeterminism is resolved

after probabilistic choice. In decision making under uncertainty, one is also interested in

the synthesis question: is there a strategy (a way to resolve nondeterministic choices) such

that the resulting probabilistic program achieves a certain value. That is, the value synthesis

problem asks to compute, for a given p ≥ 0, if

∃z .val(P(·,z))≥ p.

The complexity of the synthesis problem is, in general, harder than that of the verification

problem. The precise complexity characterization is NP#P, the class of problems solvable by

a nondeterministic polynomial-time Turing machine with access to a #P oracle. Intuitively,

the NP-computation guesses the values of variables in z, and asks a #P oracle to resolve

the resulting verification problem. Moreover, the problem is NP#P-hard already for Boolean

programs, by using a reduction from E-MAJSAT, a canonical NP#P-complete problem.

Proposition 3 Synthesis for probabilistic programs over IA and RA is NP#P-complete.

In general, one can study models with arbitrary interleavings of probabilistic and nonde-

terministic choice. For such models, the static analysis problem reduces to stochastic SMT,

which is known to be PSPACE-complete [49].

We leave the study of “approximate synthesis” techniques for the future.

5.4 Related models

Our programming model captures (finite-path) behaviors of several different probabilistic

models that have been considered before, including the programming models studied re-

cently [52,31,51]. In contrast to models that only capture probabilistic behavior, such as

(dynamic) Bayesian networks, we additionally allow nondeterministic choices. We show a

few additional probabilistic models that can be expressed as programs.

Approximate Counting in SMT 25

(Dynamic) Bayesian networks [16,38]. A Bayesian network over V is a directed acyclic

graph G = (V,E), where each vertex v ∈ V represents a random variable and each edge

(u,v) ∈ E represents a direct dependence of the random variable v on the random variable u.

Each node v is labeled with a conditional probability distribution: that of v conditioned on

the values of the random variables {u | (u,v) ∈ E}. A Bayesian network can be represented

as a probabilistic program that encodes the conditional probability distribution for each node

using a sequence of conditionals and the Bernoulli distribution.

A temporal graphical model is a probabilistic model for states that evolve over time. In

such a model, there is a set of random variables X (t) indexed by a time t, and the distribution

of a variable v(t+1) ∈ X (t+1) is given by a conditional probability distribution over the values

of random variables in X (t). One example of a temporal model is a dynamic Bayesian net-

work. A dynamic Bayesian network consists of a pair 〈B0,B→〉, where B0 is a Bayesian

network over X that gives the initial probability distribution and B→ is a Bayesian network

over X ∪X ′, such that only variables in X ′ have incoming edges (or conditional probabil-

ity distributions associated with them). Here, X ′ denotes a fresh copy of variables in X .

The network B→ defines the distribution of variables in X ′ given values of variables in X .

The distribution of X (t+1) is obtained from X (t) according to B→. Given a time horizon T ,

a dynamic Bayesian network is unrolled for T steps in the obvious way: by first running

B0 and running T copies of B→ in sequence. Again, for any T , such an unrolling can be

expressed by a probabilistic program. Dynamic Bayesian networks subsume several other

models, such as hidden Markov models and linear-Gaussian dynamical systems.

Influence diagrams [38]. Influence diagrams are a common model to study decision making

under uncertainty. They extend Bayesian networks with nondeterministic variables under the

control of an agent. An influence diagram is a directed acyclic graph G = (V,E), where the

nodes are partitioned into random variables VR, decision variables VD, and utility variables

VU . Each variable in VR ∪VD has a finite domain. The incoming edges to variables in VR

model direct dependencies as in a Bayesian network, and the distribution of a random vari-

able is given by a distribution conditioned on the values of all incoming variables. Decision

variables are chosen by an adversary. Utility variables have no outgoing edges and model

the utility derived by an agent under a given scenario and choice of decisions. The value of

a utility variable is derived as a deterministic function of values of incoming edges. For a

given scenario of random variables and choice of decision variables, the value of the dia-

gram is the sum of all utility variables. By comparing the utility to a constant, we can reduce

computing a bound on the utility to the value problem. Influence diagrams subsume mod-

els such as Markov decision processes with adversarial nondeterminism.5 The Monty Hall

problem in Section 4 represents an example of an influence diagram.

Probabilistic guarded command languages (pGCL) [45]. pGCLs extend Dijkstra’s guarded

command language with a probabilistic choice operation. They have been used to model

communication protocols involving randomization. Our programs can model bounded un-

rollings of pGCLs, and the value problem can be used to check probabilistic assertions of

loop-free pGCL code. This is the core problem in the deductive verification of pGCLs [35].

5 Strictly speaking, MDPs and influence diagrams, where nondeterminism is resolved adversarially, are

modeled by the duals of our programs (as defined in Subsection 5.3). Thus, the verification problem asks

what is the worst case effect of the environment.

26 Dmitry Chistikov et al.

5.5 From value estimation to model counting

We show a reduction from the value problem for a probabilistic program to a model counting

problem. First, we define a symbolic semantics of programs.

Let P = (X ,V,E, init,acc, rej) be a program in SSA form. Let R = {x ∈ X | x ∼
Uniform(a,b) is a statement in P}. For each variable r ∈R, we write dist(r) for the (unique)

distribution Uniform(a,b) such that r ∼ Uniform(a,b) appears in the program.

Let BV = {bv | v ∈ V} be a set of fresh Boolean variables. We associate the following

verification condition vc(P) with the program P:

∧

v∈V



bv ⇒





∨

(v′,s,v)∈E

bv′ ∧Ψ(s)







∧binit

where Ψ(s) is defined as follows: Ψ(skip) is true, Ψ(x := e) is x = e, Ψ(x ∼ Uniform(a,b))
is true, and Ψ(assume(ϕ)) is ϕ .

Intuitively, the variable bv encodes “node v is visited along the current execution.” The

constraints encode that in order for v to be visited, the execution must traverse an edge

(v′,s,v) and update the state according to s. The predicate Ψ(s) describes the effect of the

execution on the state.

The predicates Ψ(s) do not add an additional constraint for probabilistic assignments

because we account for such assignments separately as follows. Define formulas

ϕacc = ∃BV ∃X \R . vc(P)∧bacc, and

ϕterm = ∃BV ∃X \R . vc(P)∧ (bacc∨brej).

Note that ϕacc and ϕterm are over the free variables R; if the program P is over a mea-

sured theory T , i. e., its expressions and predicates come from T , then ϕacc and ϕterm are

formulas in T .

Theorem 3 (cf. Proposition 2) For a program P , we have Accept = JϕaccK and Term =
JϕtermK, where each free variable r ∈ R is interpreted over its domain with measure dist(r).
Thus, val(P) =mc(ϕacc)/mc(ϕterm).

Theorem 3 reduces the value estimation question to model counting. Note that our reasoning

is program-level as opposed to path-level: in contrast to other techniques (see, e.g., [52,23]),

our analysis makes only two #SMT queries and not one query per path through the program.

While this results in more complex satisfiability queries, the burden of path enumeration is

shifted from the analysis procedure to the underlying SMT solver.

For the theories of integer and linear real arithmetic, Theorem 3 gives us a #P upper

bound on the complexity of the value problem. On the other hand, the value problem is #P-

hard, as it easily encodes #SAT. Indeed, given an instance of #SAT (a Boolean formula in

conjunctive normal form), consider a program that picks the Boolean variables uniformly at

random, and accepts iff all the clauses are satisfied. The number of satisfying assignments

to the formula is obtained from the probability of reaching the accept vertex. Finally, since

the model counting problem can be approximated using a polynomial-time randomized al-

gorithm with an SMT oracle, we also get an algorithm for approximate value estimation.

Theorem 4 (complexity of the value problem)

1. The value problem for loop-free probabilistic programs (over IA and RA) is #P-complete.

The problem is #P-hard even for programs with only Boolean variables.

Approximate Counting in SMT 27

2. The value problem for loop-free probabilistic programs over IA can be approximated

with a multiplicative error by a polynomial-time randomized algorithm that has oracle

access to satisfiability of formulas in IA.

3. The value problem for loop-free probabilistic programs over RA can be approximated

with an additive error by a polynomial-time randomized algorithm that has oracle ac-

cess to satisfiability of formulas in IA+RA.

Remark. The core of our value estimation algorithms is a procedure to estimate the number

of models of a formula in a given theory (approximate #SMT). An alternative approach to

the value problem—and, similarly, to model counting—would perform Monte Carlo simu-

lation. It can easily handle complicated probability distributions for which there is limited

symbolic reasoning available. However, to achieve good performance, Monte Carlo often

depends on heuristics that sacrifice theoretical guarantees. In contrast, while using “for free”

successful heuristics that are already implemented in off-the-shelf SMT solvers to search the

state space, our approach still preserves the theoretical guarantees.

There are simple instances in which Monte Carlo simulation must be run for an expo-

nential number of steps before providing a non-trivial answer [33]. Consider the case when

the probability in question, p, is very low and the required precision is a constant multiple

of p. In such a case, model counts are small and so there are only a few queries to the SMT

solver. On the other hand, for Monte Carlo simulation, Chernoff bound arguments would

suggest running the program Ω(1
p
) times.

While our SMT-based techniques can also require exponential time within the SMT

solver in the worst case, experience with SMT-based verification of deterministic programs

suggests that SMT solvers can be quite effective in symbolically searching large state spaces

in reasonable time. An illustrative analogy is that the relation between Monte Carlo tech-

niques and SMT-based techniques resembles that between enumerative techniques and sym-

bolic techniques in deterministic model checking: while in the worst case, both must enu-

merate all potential behaviors, symbolic search often empirically scales to larger state spaces.

In conclusion, Monte Carlo sampling will easily outperform hashing techniques in a

host of “regular” settings, i. e., where the probability of termination is non-vanishing. “Sin-

gular” settings where this probability is close to zero—as, for instance, the formula from

Example 4 in Subsection 3.2—will be beyond the reach of Monte Carlo even for generating

a single positive sample (path), let alone for providing a confidence interval sufficient for

multiplicative approximation of the value of the program. Indeed, since the success probabil-

ity decreases exponentially with the number of bits, the number of Monte Carlo simulations

required increases exponentially. The hashing approach that we explore deals with such set-

tings easily, so the two techniques are, in fact, complementary to each other.

5.6 Evaluation

We have implemented the algorithm from Subsection 3.2 in C++ on top of the SMT solver

Z3 [17]6. The SMT solver is used unmodified, with default settings.

6 More specifically, using version Z3 4.4.0.

28 Dmitry Chistikov et al.

Table 4 Input and runtime parameters

Example free atoms ε α a k′

Monty Hall (1) 1 5 0.2 0.01 13 10

Three prisoners (2) 2 6 0.2 0.01 27 12

Alarm (3) 4 8 0.5 0.1 19 56

Grass model (4) 6 8 0.5 0.1 19 48

Sensitivity est. (5) 8 63 0.5 0.1 19 66

Legend:

free: number of free (probabilistic) variables in the input formula,

atoms: number of atomic arithmetic predicates in the input formula,

ε: parameter in the multiplicative approximation factor (1+ ε),
α: maximum error probability,

a: the SMT enumeration threshold (number of models the SMT solver checks for),

k′: number of binary variables in the formula given to the solver.

Examples

We evaluate our techniques on five examples. The first two are probabilistic programs that

use nondeterminism. The remaining examples are Bayesian networks encoded in our lan-

guage.

The Monty Hall problem [53] For the example from Section 4 we compute the probability

of success of the switching strategy.

The three prisoners problem. Our second example is a problem that appeared in Martin

Gardner’s “Mathematical Games” column in the Scientific American in 1959. There, one of

three prisoners (1, 2, and 3), who are sentenced to death, is randomly pardoned. The guard

gives prisoner 1 the following information: If 2 is pardoned, he gives 1 the name of 3. If 3

is pardoned, he gives him the name of 2. If 1 is pardoned, he flips a coin to decide whether

to name 2 or 3. Provided that the guard tells prisoner 1 that prisoner 2 is to be executed,

determine what is prisoner 1’s chance to be pardoned?

Pearl’s burglar alarm; grass model. These two examples are classical Bayesian networks

from the literature. Pearl’s burglar alarm example is as given in [29, Figure 15]; the grass

model is taken from [36, Figure 1].

Kidney disease eGFR sensitivity estimation. The last example is a probabilistic model of a

medical diagnostics system with noisy inputs. We considered the program given in [29, Fig-

ure 11] using a simplified model of the input distributions. In our setting, we approximate the

original lognormal distribution (the logarithm of the patient’s creatinine level) by drawing

its value uniformly from the set {−0.16,−0.09,−0.08,0,0.08,0.09,0.16,0.17}, regardless

of the patient’s gender, and we draw the patient’s age uniformly from the interval [30,80].
The patient’s gender and ethnicity are distributed in the same way as described in [52].

Approximate Counting in SMT 29

Table 5 Running time of the tool

Example macc mterm time(s) for ϕacc time(s) for ϕterm

Monty Hall (1) 2 5 0.27 0.89

Three prisoners (2) 0 2 0.01 0.73

Alarm (3) 36 49 121.94 76.34

Grass model (4) 34 35 54.86 50.61

Sensitivity est. (5) 56 57 250.69 223.56

Legend:

macc, mterm: maximal hash sizes for ϕacc, ϕterm, respectively.

Results

For each program P , we used our tool to estimate the model count of the formulas ϕacc and

ϕterm; the value val(P) of the program is approximated by vacc/vterm, where vacc and vterm
are the approximate model counts computed by our tool. Table 4 shows input and runtime

parameters for the considered examples. The approximation factor ε , the bound α on the

error probability, and the enumeration limit a for the SMT solver are provided by the user.

For examples (1) and (2), we choose ε to be 0.2, while for the remaining examples we take

0.5. The chosen value of ε has impact on the number of copies q of the formula that we

construct, an thus on the number k′ of binary variables in the formula given to the solver.

Furthermore, the more satisfying assignments a formula has, the larger dimension m of the

hash function is reached during the run. Table 5 shows macc and mterm: the maximal values

of m reached during the runs on ϕacc and ϕterm; it also shows the time (in seconds) our tool

takes to compute vacc and vterm. It might seem strange that for examples (3), (4) and (5)

the time it takes to compute vacc is larger than that for vterm, despite that the set of paths

satisfying ϕacc is a subset of ϕterm. While, as expected, we have macc < mterm, the calls to

the SMT solver for ϕterm take less time than those for ϕacc.

While our technique can solve these small instances in reasonable time, there remains

much room for improvement. Although SAT solvers can scale to large instances, it is well

known that even a small number of XOR constraints can quickly exceed the capabilities

of state-of-the-art solvers [60,57,30]. Since for each m we add m parity constraints to the

formula, we run into the SAT bottleneck: computing an approximation of mc(ϕacc) for ex-

ample (4) with ε = 0.3 results in running time of several hours. (At the same time, exact

counting by enumerating satisfying assignments is not a feasible alternative either: for the

formula ϕacc in example (4), which has more than 400000 of them, performing this task

naively with Z3 also took several hours.) Our current implementation pre-solves the system

of XOR constraints before passing them to Z3, which somewhat improves the performance;

however, the efficiency of the hashing approach can benefit greatly from better handling

of XOR constraints in the SMT solver. For example, a SAT solver that deals with XOR

constraints efficiently—such as CryptoMiniSat [55,56]—can scale to over a thousand vari-

ables [9,8,28]; incorporating such a SAT solver within Z3 remains a task for the future.

(Needless to say, other families of pairwise independent hash functions can be used instead

of XOR constraints, but essentially all of them seem to use arithmetic modulo p for p ≥ 2,

which appears hard for theory solvers.)

The scalability needs improvement also in the continuous case, where our discretization

procedure introduces a large number of discrete variables. For instance, a more realistic

30 Dmitry Chistikov et al.

model of example (5) would be one in which the logarithm of the creatinine level is modeled

as a continuous random variable. This would result, after discretization, in formulas with

hundreds of Boolean variables, which appears to be beyond the limit of Z3’s XOR reasoning.

6 Concluding Remarks

Static reasoning questions for probabilistic programs [29,52,31], as well as quantitative

and probabilistic analysis of software [6,24,23,42], have received a lot of recent attention.

There are two predominant approaches to these questions. The first one is to perform Monte

Carlo sampling of the program [52,6,42,7,51]. To improve performance, such methods use

sophisticated heuristics and variance reduction techniques, such as stratified sampling in [52,

6]. The second approach is based on reduction to model counting [23,24,44,43], either

using off-the-shelf #SMT solvers or developing #SMT procedures on top of existing tools.

Another recent approach is based on data flow analysis [14]. Our work introduces a new

dimension of approximation to this area: we reduce program analysis to #SMT, but carry

out a randomized approximation procedure for the count. In contrast to previous techniques,

our analysis is performed at the program level and not at the path level: the entire analysis

makes only two queries to a #SMT oracle (not one query per path through the program).

Analysis at the path level requires enumeration of the program-paths, whose number can be

exponential in the length of the program. Our approach shifts this enumeration to the SMT

oracle. It avoids the need for implementing complex heuristics for efficient path enumeration

at the price of harder SMT queries, thus relying on the efficiency of SMT solvers.

By known connections between counting and uniform generation [34,3], our techniques

can be adapted to generate (approximately) uniform random samples from the set of models

of a formula in IA or RA. Uniform generation from Boolean formulas using hashing tech-

niques was recently implemented and evaluated in the context of constrained random testing

of hardware [9,8]. We extend this technique to the SMT setting, which was left as a future

direction in [9] (previously known methods for counting integral points of polytopes [2,24]

do not generalize to the nonlinear theory IA).

Further directions

Scalability. An extension of the presented techniques may be desirable to cope with larger

instances of #SMT. As argued in Subsection 5.6, incorporating XOR-aware reasoning into

an SMT solver can be an important step in this direction.

Theories. Similar techniques apply to theories other than IA and RA. For example, our al-

gorithm can be extended to an appropriate fragment of the combined theory of string con-

straints and integer arithmetic. While SMT solvers can handle this theory (using heuristics),

it would be nontrivial to design a model counting procedure using the previously known

approach based on generating functions [43].

Distributions. Although the syntax of our probabilistic programs supports only Uniform, it

is easy to simulate other distributions: Bernoulli, uniform with non-constant endpoints, (ap-

proximation of) normal. This, however, will not scale well, so future work may incorporate

non-uniform distributions as a basic primitive. (An important special case covers weighted

model counting in SAT, for which a novel extension of the hashing approach was recently

proposed [8] and, by the time the present paper was submitted, also studied in the context of

SMT [4].)

Approximate Counting in SMT 31

Applications. A natural application of the uniform generation technique in the SMT setting

would be a procedure that generates program behaviors uniformly at random from the space

of possible behaviors. (For the model we studied, program behaviors are trees: the branch-

ing comes from nondeterministic choice, and the random variables are sampled from their

respective distributions.)

References

1. Allouche, D., de Givry, S., Schiex, T.: Toulbar2, an open source exact cost function network solver. Tech.

rep., Technical report, INRIA (2010)

2. Barvinok, A.: A polynomial time algorithm for counting integral points in polyhedra when the dimension

is fixed. In: FOCS 93. ACM (1993)

3. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using an NP-oracle. Inf.

Comput. 163(2), 510–526 (2000)

4. Belle, V., Van den Broeck, G., Passerini, A.: Hashing-based approximate probabilistic inference in hy-

brid domains. In: Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI),

Amsterdam, Netherlands (2015)

5. Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid domains by weighted model

integration. In: Q. Yang, M. Wooldridge (eds.) Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 2770–

2776. AAAI Press (2015). URL http://ijcai.org/papers15/Abstracts/IJCAI15-392.html

6. Borges, M., Filieri, A., d’Amorim, M., Pasareanu, C., Visser, W.: Compositional solution space quantifi-

cation for probabilistic software analysis. In: PLDI, p. 15. ACM (2014)

7. Chaganty, A., Nori, A., Rajamani, S.: Efficiently sampling probabilistic programs via program analysis.

In: AISTATS, JMLR Proceedings, vol. 31, pp. 153–160. JMLR.org (2013)

8. Chakraborty, S., Fremont, D., Meel, K., Seshia, S., Vardi, M.: Distribution-aware sampling and weighted

model counting for SAT. In: AAAI’14, pp. 1722–1730 (2014). URL http://www.aaai.org/ocs/

index.php/AAAI/AAAI14/paper/view/8364

9. Chakraborty, S., Meel, K., Vardi, M.: A scalable and nearly uniform generator of SAT witnesses. In:

CAV, LNCS, vol. 8044, pp. 608–623 (2013)

10. Chakraborty, S., Meel, K., Vardi, M.: A scalable approximate model counter. In: CP: Constraint Pro-

gramming, LNCS, vol. 8124, pp. 200–216 (2013)

11. Chakraborty, S., Meel, K.S., Mistry, R., Vardi, M.Y.: Approximate probabilistic inference via word-

level counting. In: D. Schuurmans, M.P. Wellman (eds.) Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pp. 3218–3224. AAAI Press

(2016)

12. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the scheduler. Inf. Comput.

208(6), 694–715 (2010). DOI 10.1016/j.ic.2009.06.006. URL http://dx.doi.org/10.1016/j.ic.

2009.06.006

13. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and value estimation for

probabilistic programs. In: Tools and Algorithms for the Construction and Analysis of Systems - 21st

International Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, pp. 320–334 (2015)

14. Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D., Borgström, J.: Bayesian inference using data

flow analysis. In: ESEC/FSE’13, pp. 92–102 (2013). DOI 10.1145/2491411.2491423. URL http:

//doi.acm.org/10.1145/2491411.2491423

15. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: ESOP, LNCS 7211, pp. 169–193.

Springer (2012)

16. Darwiche, A.: Modeling and reasoning with Bayesian networks. Cambridge University Press (2009)

17. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, TACAS’08/ETAPS’08, pp. 337–

340. Springer-Verlag (2008)

18. Durrett, R.: Probability: Theory and Examples, 4th edition edn. Cambridge University Press (2010)

19. Dyer, M., Frieze, A.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput.

17(5), 967–974 (1988)

20. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for approximating the volume

of convex bodies. J. ACM 38(1), 1–17 (1991)

21. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Taming the curse of dimensionality: Discrete integra-

tion by hashing and optimization. In: ICML (2), pp. 334–342 (2013)

http://ijcai.org/papers15/Abstracts/IJCAI15-392.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://dx.doi.org/10.1016/j.ic.2009.06.006
http://dx.doi.org/10.1016/j.ic.2009.06.006
http://doi.acm.org/10.1145/2491411.2491423
http://doi.acm.org/10.1145/2491411.2491423

32 Dmitry Chistikov et al.

22. Filar, J., Vrieze, K.: Competitive Markov decision processes. Springer (1997)

23. Filieri, A., Pasareanu, C., Visser, W.: Reliability analysis in symbolic Pathfinder. In: ICSE, pp. 622–631

(2013)

24. Fredrikson, M., Jha, S.: Satisfiability modulo counting: A new approach for analyzing privacy properties.

In: CSL-LICS, pp. 42:1–42:10. ACM (2014)

25. Gilks, W., Thomas, A., Spiegelhalter, D.: A language and program for complex Bayesian modelling. The

Statistician 43(1), 169–177 (1994)

26. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge University Press

(2008)

27. Gomes, C., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model counting. In: IJCAI, pp.

2293–2299 (2007)

28. Gomes, C., Sabharwal, A., Selman, B.: Model counting. In: Handbook of Satisfiability, Frontiers in

Artificial Intelligence and Applications, vol. 185, pp. 633–654. IOS Press (2009)

29. Gordon, A., Henzinger, T., Nori, A., Rajamani, S., Samuel, S.: Probabilistic programming. In: FOSE 14,

pp. 167–181. ACM (2014)

30. Han, C., Jiang, J.R.: When Boolean satisfiability meets Gaussian elimination in a simplex way. In:

P. Madhusudan, S.A. Seshia (eds.) Computer Aided Verification - 24th International Conference, CAV

2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, Lecture Notes in Computer Science, vol. 7358,

pp. 410–426. Springer (2012). DOI 10.1007/978-3-642-31424-7 31. URL http://dx.doi.org/10.

1007/978-3-642-31424-7_31
31. Hur, C.K., Nori, A., Rajamani, S., Samuel, S.: Slicing probabilistic programs. In: PLDI, p. 16. ACM

(2014)

32. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended

abstract). In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17,

1989, Seattle, Washigton, USA, pp. 12–24 (1989)

33. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: an approach to approximate counting

and integration. Approximation algorithms for NP-hard problems pp. 482–520 (1996)

34. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform

distribution. TCS 43, 169–188 (1986)

35. Katoen, J.P., McIver, A., Meinicke, L., Morgan, C.: Linear-invariant generation for probabilistic pro-

grams: Automated support for proof-based methods. In: SAS, LNCS 6337, pp. 390–406. Springer (2010)

36. Kiselyov, O., Shan, C.C.: Monolingual probabilistic programming using generalized coroutines. In: UAI,

pp. 285–292. AUAI Press (2009)

37. Klee, V.: Can the measure of ∪[ai,bi] be computed in less than O(n logn) steps? Amer. Math. Monthly

84, 284–285 (1977)

38. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT Press (2009)

39. Kozen, D.: Semantics of probabilistic programs. JCSS 22, 328–350 (1981)

40. LattE tool. https://www.math.ucdavis.edu/~latte
41. Lawrence, J.: Polytope volume computation. Mathematics of Computation 57(195), 259–271 (1991)

42. Luckow, K.S., Pasareanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and approximate probabilistic

symbolic execution for nondeterministic programs. In: ASE’14, pp. 575–586 (2014). DOI 10.1145/

2642937.2643011. URL http://doi.acm.org/10.1145/2642937.2643011
43. Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over unbounded strings. In:

PLDI, p. 57. ACM (2014)

44. Ma, F., Liu, S., Zhang, J.: Volume computation for Boolean combination of linear arithmetic constraints.

In: CADE-22, LNCS 5663, pp. 453–468. Springer (2009)

45. McIver, A., Morgan, C.: Abstraction, refinement and proof for probabilistic systems. Springer (2005)

46. Minka, T., Winn, J., Guiver, J., Kannan, A.: Infer.NET 2.3 (2009)

47. Monniaux, D.: Abstract interpretation of programs as Markov decision processes. Science of Computer

Programming 58, 179–205 (2005)

48. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan-Kaufman (1997)

49. Papadimitriou, C.: Games against nature. JCSS 31(2), 288–301 (1985)

50. Problem, M.H.: http://en.wikipedia.org/wiki/Monty_Hall_problem
51. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K., Grossman, D., Ceze, L.: Expressing and

verifying probabilistic assertions. In: PLDI, p. 14. ACM (2014)

52. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring

whole program properties from finitely many paths. In: PLDI, pp. 447–458. ACM (2013)

53. Selvin, S.: A problem in probability. American Statistician 29(1), 67 (1975)

54. Sipser, M.: A complexity-theoretic approach to randomness. In: STOC, pp. 330–335. ACM (1983)

55. Soos, M.: CryptoMiniSat — a SAT solver for cryptographic problems. URL http://www.msoos.org/

cryptominisat4/

http://dx.doi.org/10.1007/978-3-642-31424-7_31
http://dx.doi.org/10.1007/978-3-642-31424-7_31
https://www.math.ucdavis.edu/~latte
http://doi.acm.org/10.1145/2642937.2643011
http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.msoos.org/cryptominisat4/
http://www.msoos.org/cryptominisat4/

Approximate Counting in SMT 33

56. Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS-10. Pragmatics of SAT,

Edinburgh, UK, July 10, 2010, pp. 2–14 (2010). URL http://www.easychair.org/publications/

?page=1319113489

57. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Theory and

Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea,

UK, June 30 - July 3, 2009. Proceedings, pp. 244–257 (2009)

58. Stockmeyer, L.: On approximation algorithms for #P. SIAM J. of Computing 14, 849–861 (1985)

59. Trevisan, L.: Computational complexity (CS 254), lecture 8 (2010). URL http://www.cs.stanford.

edu/~trevisan/cs254-10/lecture08.pdf

60. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)

61. Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 9, 189–201

(1979)

62. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical Computer Science 47,

85–93 (1986)

63. Zhou, M., He, F., Song, X., He, S., Chen, G., Gu, M.: Estimating the volume of solution space for

satisfiability modulo linear real arithmetic. Theory of Computing Systems 56(2), 347–371 (2014). DOI

10.1007/s00224-014-9553-9. URL http://dx.doi.org/10.1007/s00224-014-9553-9

http://www.easychair.org/publications/?page=1319113489
http://www.easychair.org/publications/?page=1319113489
http://www.cs.stanford.edu/~trevisan/cs254-10/lecture08.pdf
http://www.cs.stanford.edu/~trevisan/cs254-10/lecture08.pdf
http://dx.doi.org/10.1007/s00224-014-9553-9

34 Dmitry Chistikov et al.

A Appendix: Technical proofs

In this section we fill in the details in the proof of Theorem 1, continuing subsection 3.2 and thus proving

correctness of Algorithm 1; however, to simplify notation, we write n instead of k′ to denote the total number

of Boolean variables. As the entire analysis is essentially Boolean, we build on a previous exposition of the

topic due to Trevisan [59]. We pay much more attention to the precise choice of parameters, though; we

assume that the SMT enumeration threshold a ≥ 1, the approximation parameter ε > 0, and the upper bound

on the probability of bad estimate α ∈ (0;1) are given as input. In subsection A.2 we show how to choose:

– q, the number of copies of the formula, see equation (9), and
– v, the output value of the algorithm (during its run), see equation (10).

In subsection A.3 we show

– p, the initial enumeration threshold (number of models that are sought before the algorithm enters the

main loop), see equation (11),
– m∗, the largest possible dimension of the hash, see equation (12), and
– r, the number of calls to the “Estimate” oracle (E), see equation (13).

Before this, in subsection A.1, we show how to choose internal parameters (equation (6)) so as to establish

key properties of the oracle E ; the choice of parameters in the following subsections A.2 and A.3 relies on

these properties.

A.1 The “Estimate” oracle from subsection 3.2

We use a simple form of the Leftover Hash Lemma. This lemma was originally proved by Impagliazzo,

Levin, and Luby [32]; we use a formulation due to Trevisan [59]. In brief, the lemma establishes the following

property: For any sufficiently large set S ⊆{0,1}n, the number of elements of S that are mapped to a particular

image, 0m, by a random hash function h from an appropriate family H does not deviate a lot from its expected

value, |S|/2m.

Lemma 1 Let H be a family of pairwise independent hash functions h : {0,1}n →{0,1}m. Let S ⊆ {0,1}n

be such that |S| ≥ 4/ρ2 ·2m. For h ∈ H , let ξ be the cardinality of the set {w ∈ S : h(w) = 0m}. Then

Pr

[∣

∣

∣

∣

ξ − |S|
2m

∣

∣

∣

∣

≥ ρ · |S|
2m

]

≤ 1

4
.

We now show how to implement the “Estimate” oracle E . Recall that its goal, roughly speaking, is to answer

questions of the form

Does the formula Ψ have at least N = 2m models? (3)

Let a be a positive integer parameter, to be chosen arbitrarily. Our oracle E will rely, in turn, on an SMT

oracle (solver) for the underlying theory (IA) and will post queries of the form

Does the formula Ψh := (Ψ∧ (h = 0)) have at least a models? (4)

where h is a hash function h : {0,1}n → {0,1}m with m chosen in an appropriate way. Instead of answering

questions (3) exactly, our oracle E will have a blind spot. Let mc(Ψ) be the number of models of Ψ; for

some parameters g < G and for any sufficiently large m, we ensure that the following properties hold: (I)

if mc(Ψ) < g · 2m, then E returns “no” with high probability; (II) if mc(Ψ) > G · 2m, then E returns “yes”

with high probability. The blind spot is the intermediate case, g · 2m ≤ mc(Ψ) ≤ G · 2m: the oracle E can

answer “yes” or “no” in an arbitrary way. The entire implementation of the oracle will be very simple: it will

pick h at random from H , ask the question (4) for the obtained formula Ψh = (Ψ∧ (h = 0)) and repeat the

answer—yes or no—of the underlying SMT oracle.

Let us now proceed to proofs of properties (I) and (II).

Claim 1 Let x > 0 be a real number such that g = 4/x2 and a = (1+ x)g. Suppose mc(Ψ) ≤ g · 2m; then

Pr[E = “no”]≥ 3/4.

Proof Denote θ =mc(Ψ)/2m ≤ g and pick any formula Ψ such that, first, JΨK⊆ JΨK and, second, mc(Ψ) =
g · 2m. Write S = JΨK and, as above, let ξ be the cardinality of the set {w ∈ S : h(w) = 0m}; note that ξ =
mc(Ψh) where Ψh = Ψ∧ (h = 0). Observe that Pr[E = “yes”] is equal to

Pr[mc(Ψh)− g ≥ a− g] ≤ Pr[mc(Ψh)− g ≥ a− g] = Pr[ξ − g ≥ x · g] ≤ Pr[|ξ − g| ≥ x · g] ≤ 1/4,

where the last inequality follows from Lemma 1 with ρ = x, since |S|=mc(Ψ) = g ·2m = 4/x2 ·2m. ⊓⊔

Approximate Counting in SMT 35

Claim 2 Let y > 0 be a real number such that G = 4/y2 and a = (1− y)G. Suppose mc(Ψ) ≥ G ·2m; then

Pr[E = “yes”]≥ 3/4.

Proof As in Claim 1, denote θ =mc(Ψ)/2m ≥ G. Now pick S = JΨK and let ξ again be the cardinality of

the set {w ∈ S : h(w) = 0m}; we have ξ =mc(Ψh). Observe that Pr[E = “yes”] is equal to

Pr[mc(Ψh)−θ ≥ a−θ]≥ Pr[mc(Ψh)−θ ≥ (1− y) ·G−G] = Pr[ξ −θ ≥−y ·G]≥
Pr[|ξ −θ | ≤ y ·G]≥ 3/4,

where the last inequality again follows from Lemma 1, now with ρ = y and |S|=mc(Ψ) = θ ·2m ≥ G ·2m =
4/y2 ·2m. ⊓⊔

Let us match the parameter settings from Claims 1 and 2. We have

g(x) = 4/x2, G(y) = 4/y2,

a(x) = (1+ x) ·4/x2, a(y) = (1− y) ·4/y2.

Needless to say, the following equality needs to be satisfied:

a = a(x) = a(y). (5)

The multiplicative gap between G and g is B = G(y)/g(x) = (x/y)2, i.e., B = λ 2 for λ = x/y. Suppose λ ≥ 1

is fixed; then equation (5) gives us

1+λy

λ 2y2
=

1− y

y2
,

1+λy = λ 2 −λ 2y,

(λ 2 +λ)y = (λ 2 −1),

y =
λ −1

λ
= 1− 1

λ
and

a = a(λ) =
1

λ
·4 · λ 2

(λ −1)2
=

4λ

(λ −1)2
.

Given an integer a ≥ 1, how big a gap B(a) does it correspond to? Rewrite the equation a(λ) = a as (λ −
1)2 ·a = 4λ and further as

λ 2 ·a−λ · (2a+4)+a = 0.

Both roots of this quadratic equation are real, but only the greater one is ≥ 1; it is given by the formula

λ (a) =
a+2+2

√
a+1

a
=

(
√

a+1+1)2

a
and corresponds to

y(a) =
λ (a)−1

λ (a)
=

2+2
√

a+1

a+2+2
√

a+1
=

2√
a+1+1

and

x(a) = λ (a) · y(a) = λ (a)−1 =
2(
√

a+1+1)

a
.

Finally,

g = g(x) =
a2

(
√

a+1+1)2
= (

√
a+1−1)2,

G = G(y) = (
√

a+1+1)2, and

B = λ 2 =
(
√

a+1+1)4

a2
=

(
√

a+1+1√
a+1−1

)2

.

(6)

To sum up, fixing a ≥ 1 for SMT queries (4) leads to the multiplicative blind spot of “size” B and constants g

and G defined in Equation (6); we will use these parameters in the following subsections.

36 Dmitry Chistikov et al.

A.2 Copies of the formula and return value of the algorithm

Recall that the formula Ψ that we use throughout the algorithm is of the following form:

Ψ = ψq = ψ(1) ∧ψ(2) ∧ . . .∧ψ(q)

where q ≥ 1 is a natural parameter and formulas ψ(i), 1 ≤ i ≤ q, are copies of ψ where all variables are

replaced by fresh copies. In total, Ψ has q times as many variables as ψ , and mc(Ψ) =mc(ψ)q.

We now describe how the parameter q is chosen. Recall that Algorithm 1 calls the “Estimate” oracle E

with m = 1,2, . . . (we ignore the majority vote machinery for now; the reader can safely assume r = 1 as the

reasoning in the general case is the same). Suppose first several calls to E result in “yes” answers, and let m

be the first dimension of the hash that corresponds to a “no”. We can now rule out (here and below—with

high probability) the case that mc(Ψ) ≥ G · 2m; similarly, it is unlikely that mc(Ψ) ≤ g · 2m−1. We should

conclude, therefore, that

g/2 ·2m <mc(Ψ)< G ·2m (7)

with high probability. Now, the task of the overall algorithm is to return a value v that lies in the segment

((1+ε)−1 ·mc(ψ);(1+ε) ·mc(ψ)); in other words, vq—which is an estimate of mc(Ψ)—should satisfy the

condition

(1+ ε)−q ·mc(Ψ)≤ vq ≤ (1+ ε)q ·mc(Ψ). (8)

We now align the segments defined in equations (7) and (8) above. First, observe that the ratios of the right

and left endpoints for each of these segments are 2G/g = 2B and (1+ ε)2q, respectively; recall that B = G/g

is given by equation (6). As our goal is thus to ensure that (1+ ε)2q ≥ 2B, we choose

q =

⌈

1+ logB

2log(1+ ε)

⌉

. (9)

Second, our best estimate for mc(Ψ) is, accordingly, the geometric mean of the left and right endpoints of

the segment in (7); in other words, the best estimate for logmc(Ψ) is the arithmetic mean of their logarithms:

log(vq) = m+
logg−1+ logG

2
= m+

log(g ·G)−1

2
= m+

log(a2)−1

2
= m+ loga− 1

2
,

and thus the return value of Algorithm 1 is

v =
q
√

a ·2m−0.5. (10)

A.3 Majority vote and confidence level

It remains to choose the parameter r that determines how many times the “Estimate” oracle E is called for

each value of m. The choice of r depends primarily on α ∈ (0;1), a number provided as part of the input:

the probability that the algorithm returns a value v that is not within a (1+ ε)-factor of mc(ψ) should be at

most α . For this choice, however, we also take into account the smallest and largest values of m that can be

reached during the run of the algorithm.

We first look into the smallest m on the run. To make the algorithm simple, we start from m = 1; to

achieve the same quality of the produced values as in the previous subsection, we need to ensure that the

maximum possible gap that arises if E returns “no” for m = 1 is (at most) of the same size. For larger

values of m, the algorithm would conclude that equation (7) is satisfied. For m = 1, this means that the case

mc(Ψ) ≤ g should be ruled out. Therefore, the initial enumeration threshold for mc(Ψ) should be set to g

(note that, in fact, g ≤ a); if the enumeration is done on the original formula ψ instead, the threshold is chosen

as

p = ⌈g1/q⌉=
⌈

(
√

a+1−1)2/q
⌉

(11)

where q is as in equation (9).

Let us now look into the largest m on the run. Here the purpose of the call to E is essentially to rule out

the case mc(Ψ)≥ G ·2m; this is needed unless G ·2m > 2n where n is the total number of Boolean variables.

Hence, the last call to E should have m ≤ m∗ where m∗ is defined as

m∗ = ⌊n− logG⌋= ⌊n−2log(
√

a+1+1)⌋. (12)

Approximate Counting in SMT 37

Finally, let us proceed to the choice of r. Suppose that m is fixed, and let Xi denote the Bernoulli random

variable that is equal to 1 if the ith call to E returns the less likely answer and to 0 otherwise (recall that,

by Claims 1 and 2, the less likely answer is “no” if mc(Ψ) ≥ G · 2m and “yes” if mc(Ψ) ≤ g · 2m; these

answers correspond to E being “wrong”). Let E denote the expectation; we have EXi ≤ 1/4 for 1 ≤ i ≤ r by

the choice of parameters in subsection A.1. Denote by Am the event that, in the presence of r “voters”, the

majority will vote “in the wrong way”; this event is captured by the inequality ∑
r
i=1 Xi ≥ r/2. If X =∑

r
i=1 Xi/r,

then Am = (X ≥ 1/2), while the expectation satisfies EX ≤ 1/4. We have

Pr[Am] = Pr[X ≥ 1/2]≤ Pr[X −EX ≥ 1/4]≤ exp

{

−2 ·
(

1

4

)2

· r
}

= e−r/8,

where the last inequality is the one-sided Chernoff bound (see, e.g., [26, Section D.1.2.3]). Therefore, the

probability of Algorithm 1 giving a bad estimate is upper-bounded by

Pr[A1 ∪ . . .∪Am∗]≤ m∗ · e−r/8;

to ensure that it is at most α , we pick the smallest r such that the right-hand side does not exceed α:

r =

⌈

8 · ln
(

1

α
· ⌊n− logG⌋

)⌉

=

⌈

8 · ln
(

1

α
· ⌊n−2log(

√
a+1+1)⌋

)⌉

. (13)

This completes our analysis.

