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Fig 1 (online suppl.) Measurement protocol followed to extract bifurcation-vessel diameter values. Red 

arrows indicate approximate locations of measurements, black arrows indicate approximate distances (d= 

parent vessel lumen diameter at aneurysm location) among consecutive measurements locations. A similar 

measurement protocol was followed for aneurysms at other locations. 
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Fig 2 (online suppl.) Closed loop circuit filled with ultrasound compatible blood mimicking fluid and 

connected to a programmable pump. Silicone models were produced based on patient-specific geometry. 
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Fig 3 (online suppl.) Graph showing distribution of vessel narrowing (shadowed grey) and patent (dark grey) 

jailed vessels subgroup by location of aneurysm in internal carotid artery (ICA)/ophthalmic artery (OphthA) 

(left) and in middle cerebral artery (MCA)/basilar artery (BA)/anterior communicating artery (AcomA) 

bifurcations (right). 
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Fig 4 Whisker plots showing distribution of FDS resistance to flow as a percentage of overall jailed vessel 

vascular resistance (RFDS%) for datasets showing jailed vessel patency (left, mean = 1.048, lower bound = 

1.046, upper bound = 1.05) and narrowing (right, mean =3.7, lower bound = 3.33, upper bound = 4.5). 

Solid lines within the boxes indicate median values. Each boxplot describes first quartile values (bottom 

black line), median values (middle black line), and third quartile values (top black line). Error bars 

(whiskers) show minimum (bottom black bar) and maximum (top black bar) values. Stars denote outliers 

identified by using the maximum normed residual test. 
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Fig 5 WSS contours at peak systole (Qin= 7.5 ml s-1) for the unstented (top left) and stented (top right) 

models. WSS contours at end diastole (Qin= 4 ml s-1) for the unstented (bottom left) and stented (bottom 

right) models. 
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Fig 6 (Top) Velocity profile PD-US measurements (for Qin= 4 ml s-1) for the unstented (dashed line) and 

stented (solid line) replicas. The in-box images show the PD-US images and the locations along the OphthA 

where the velocity measurements were extracted (flow in OphthA directed left-to-right in in-box images). 

(Bottom) Normalized velocity discrepancy obtained from 75 measurements taken at different locations along 

the OphthA. The continuous line indicates the median value and the dashed lines represent quartiles Q1 and 

Q3. 
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Fig 1 (online suppl.) Measurement protocol followed to extract bifurcation-vessel diameter 

values. Red arrows indicate approximate locations of measurements, black arrows indicate 

approximate distances (d= parent vessel lumen diameter at aneurysm location) among 

consecutive measurements locations. A similar measurement protocol was followed for 

aneurysms at other locations.

Fig 2 (online suppl.) Closed loop circuit filled with ultrasound compatible blood mimicking 

fluid and connected to a programmable pump. Silicone models were produced based on 

patient-specific geometry. 

Fig 3 (online suppl.) Graph showing distribution of vessel narrowing (shadowed grey) and 

patent (dark grey) jailed vessels subgroup by location of aneurysm in internal carotid artery 

(ICA)/ophthalmic artery (OphthA) (left) and in middle cerebral artery (MCA)/basilar artery 

(BA)/anterior communicating artery (AcomA) bifurcations (right). 

Fig 4 Whisker plots showing distribution of FDS resistance to flow as a percentage of overall 

jailed vessel vascular resistance (RFDS%) for datasets showing jailed vessel patency (left, 

mean = 1.048, lower bound = 1.046, upper bound = 1.05) and narrowing (right, mean =3.7, 

lower bound = 3.33, upper bound = 4.5). Solid lines within the boxes indicate median values. 

Each boxplot describes first quartile values (bottom black line), median values (middle black 

line), and third quartile values (top black line). Error bars (whiskers) show minimum (bottom 

black bar) and maximum (top black bar) values. Stars denote outliers identified by using the 

maximum normed residual test.

Fig 5 WSS contours at peak systole (Qin= 7.5 ml s-1) for the unstented (top left) and stented 

(top right) models. WSS contours at end diastole (Qin= 4 ml s-1) for the unstented (bottom 

left) and stented (bottom right) models.
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Fig 6 (Top) Velocity profile PD-US measurements (for Qin= 4 ml s-1) for the unstented 

(dashed line) and stented (solid line) replicas. The in-box images show the PD-US images and 

the locations along the OphthA where the velocity measurements were extracted (flow in 

OphthA directed left-to-right in in-box images). (Bottom) Normalized velocity discrepancy 

obtained from 75 measurements taken at different locations along the OphthA. The 

continuous line indicates the median value and the dashed lines represent quartiles Q1 and 

Q3.
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Table 2 Quantification of FDS-induced changes to haemodynamic variables extracted from OphthA bifurcation at peak 

systole (peak) and end diastole (dia). Avg WSS is the space-averaged WSS extracted from the OphthA. ICA and Ophth 

outflow are the volumetric flow rates calculated at the outlet of the ICA and OphthA, respectivelty.

Unstented
[peak/dia]

Stended
[peak/dia]

Diff
[peak/dia]

%Diff
[peak/dia]

Avg WSS [Pa] 11.56/5.30 10.98/5.04 -0.58/-0.26 -5.0/-4.7

ICA outflow [ml/s] 7.20/3.80 7.19/3.82 -0.01/-0.02 0.1/0.5

Ophth outflow [ml/s] 0.38/0.20 0.38/0.201 0.0/0.001 0.0/0.5
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nlyTable 1 Demographic constitution and anatomical data of patients' population. J-Vess Diam = jailed vessel diameter, J-

Vess R = jailed vessel vascular resistance, Periph R = peripheral resistance, RFDS= FDS-induced resistance to flow, % RFDS= 

FDS-induced resistance to flow given as a percentage of overall resistance (FDS plus vascular plus peripheral).

Dataset Location J-Ves 

Narrowing

J-Vess Diam [mm] J-Vess R [mmHg s 

ml^-1]

Periph R [mmHg 

s ml^-1]

RFDS 

[mmHg 

s ml^-1]

%RFDS

1 ICA NO 1.09 8 470 5 1.04

2 ICA NO 1.05 10 470 5 1.04

3 ICA NO 1.08 9 470 5 1.04

4 ICA NO 1.07 9 470 5 1.04

5 ICA NO 1.08 9 470 5 1.04

6 ICA NO 1.16 6 470 5 1.05

7 ICA NO 1.07 9 470 5 1.04

8 ICA NO 1.24 5 470 5 1.05

9 ICA NO 1.06 9 470 5 1.04

10 ICA NO 1.13 7 470 5 1.05

11 ICA NO 1.23 5 470 5 1.05

12 ICA NO 1.09 8 470 5 1.05

13 ICA NO 1.30 4 470 5 1.05

14 ICA NO 1.14 7 470 5 1.05

15 ICA NO 1.11 8 470 5 1.05

16 ICA NO 1.13 7 470 5 1.05

17 ICA NO 1.17 6 470 5 1.05

18 ICA NO 1.21 6 470 5 1.05

19 ICA NO 1.17 6 470 5 1.05

20 ICA NO 1.11 8 470 5 1.05

21 ICA NO 1.15 7 470 5 1.05

22 ICA NO 1.15 7 470 5 1.05

23 ICA NO 1.27 5 470 5 1.05

24 ICA NO 1.15 7 470 5 1.05

25 ICA NO 1.19 6 470 5 1.05

26 ICA NO 0.98 13 470 5 1.04

27 ICA NO 1.10 8 470 5 1.05

28 ICA NO 1.16 6 470 5 1.05

29 ICA NO 1.16 7 470 5 1.05

30 ICA NO 1.19 6 470 5 1.05

31 ICA NO 1.10 8 470 5 1.05

32 ICA NO 1.18 6 470 5 1.05

33 ICA NO 1.14 7 470 5 1.05

34 ICA NO 1.01 11 470 5 1.04
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35 ICA NO 1.18 6 470 5 1.05

36 ICA NO 1.17 6 470 5 1.05

37 ICA NO 1.12 7 470 5 1.05

38 ICA NO 1.30 4 470 5 1.05

39 ICA NO 1.14 7 470 5 1.05

40 ICA NO 1.22 5 470 5 1.05

41 ICA NO 1.27 5 470 5 1.05

42 ICA NO 1.07 9 470 5 1.04

43 ICA NO 1.22 5 470 5 1.05

44 ICA NO 1.15 7 470 5 1.05

45 ICA NO 1.23 5 470 5 1.05

46 ICA NO 1.26 5 470 5 1.05

47 ICA NO 1.13 7 470 5 1.05

48 ICA NO 1.08 9 470 5 1.04

49 ICA NO 1.25 5 470 5 1.05

50 ICA NO 1.10 8 470 5 1.05

51 ICA NO 1.25 5 470 5 1.05

52 ICA NO 1.13 7 470 5 1.05

53 ICA NO 1.11 8 470 5 1.05

54 ICA NO 1.10 8 470 5 1.05

55 ICA NO 1.19 6 470 5 1.05

56 ICA NO 1.05 10 470 5 1.04

57 ICA NO 1.12 8 470 5 1.05

58 ICA NO 1.15 7 470 5 1.05

59 ICA NO 1.12 8 470 5 1.05

60 ICA NO 1.09 8 470 5 1.04

61 ICA NO 1.20 6 470 5 1.05

62 ICA NO 1.13 7 470 5 1.05

63 ICA NO 1.17 6 470 5 1.05

64 ICA NO 1.09 8 470 5 1.05

65 ICA NO 1.14 7 470 5 1.05

66 ICA NO 1.00 12 470 5 1.04

67 ICA NO 1.13 7 470 5 1.05

68 ICA NO 1.12 8 470 5 1.05

69 ICA NO 1.14 7 470 5 1.05

70 ICA NO 1.16 6 470 5 1.05

71 ICA NO 1.11 8 470 5 1.05

72 ICA NO 1.12 7 470 5 1.05

73 ICA NO 1.11 8 470 5 1.05

74 ICA NO 1.18 6 470 5 1.05

75 ICA NO 1.13 7 470 5 1.05

76 ICA NO 1.10 8 470 5 1.05
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77 ICA NO 1.13 7 470 5 1.05

78 ICA NO 1.05 10 470 5 1.04

79 ICA NO 1.17 6 470 5 1.05

80 ICA NO 1.12 7 470 5 1.05

81 ICA NO 1.14 7 470 5 1.05

82 ICA NO 1.20 6 470 5 1.05

83 ICA NO 1.14 7 470 5 1.05

84 ICA NO 1.05 10 470 5 1.04

85 ICA NO 1.19 6 470 5 1.05

86 ICA NO 1.05 10 470 5 1.04

87 ICA NO 1.14 7 470 5 1.05

88 ICA NO 1.13 7 470 5 1.05

89 ICA NO 1.15 7 470 5 1.05

90 ICA NO 1.05 10 470 5 1.04

91 ICA NO 1.20 6 470 5 1.05

92 ICA NO 1.17 6 470 5 1.05

93 ICA NO 1.12 8 470 5 1.05

94 ICA NO 1.13 7 470 5 1.05

95 ICA NO 1.03 11 470 5 1.04

96 ICA NO 1.16 7 470 5 1.05

97 ICA NO 1.13 7 470 5 1.05

98 ICA NO 1.11 8 470 5 1.05

99 ICA NO 1.11 8 470 5 1.05

100 ICA NO 1.07 9 470 5 1.04

101 ICA NO 1.12 8 470 5 1.05

102 ICA NO 1.17 6 470 5 1.05

103 ICA NO 1.03 10 470 5 1.04

104 ICA NO 1.13 7 470 5 1.05

105 ICA NO 1.16 6 470 5 1.05

106 ICA NO 1.09 8 470 5 1.05

107 ICA NO 1.13 7 470 5 1.05

108 ICA NO 1.17 6 470 5 1.05

109 ICA NO 1.17 6 470 5 1.05

110 ICA NO 1.13 7 470 5 1.05

111 ICA NO 1.14 7 470 5 1.05

112 ICA NO 1.17 6 470 5 1.05

113 ICA NO 1.02 11 470 5 1.04

114 ICA NO 1.13 7 470 5 1.05

115 ICA NO 1.11 8 470 5 1.05

116 ICA NO 1.15 7 470 5 1.05

117 ICA NO 1.11 8 470 5 1.05

118 MCA YES 1.05 62 75 5 3.66
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119 ACOM YES 1.05 62 75 5 3.66

120 MCA YES 1.6 11 75 5 5.79

121 MCA YES 1.05 62 75 5 3.66

122 BA YES 1.15 43 75 5 4.24

123 MCA YES 1.04 64 75 5 3.60

124 MCA NO 1.55 13 75 5 5.68

125 MCA NO 1.53 14 75 5 5.64

126 MCA YES 1.2 36 75 5 4.50

127 MCA NO 2.06 4 75 5 6.32

128 MCA NO 2.37 2 75 5 6.46

129 MCA YES 0.83 158 75 5 2.15

130 MCA NO 1.82 7 75 5 6.11

131 BA YES 0.75 237 75 5 1.60

132 MCA YES 1.83 7 75 5 6.12

133 BA NO 2.08 4 75 5 6.33

134 BA NO 1.39 20 75 5 5.26

135 MCA YES 1.04 64 75 5 3.60

136 BA YES 0.96 88 75 5 3.06

137 BA NO 1.24 32 75 5 4.69

138 MCA NO 1.68 9 75 5 5.92

139 MCA YES 1.1 51 75 5 3.96

140 MCA YES 1.6 11 75 5 5.79

141 ACOM NO 1.75 8 75 5 6.03

142 MCA YES 0.88 125 75 5 2.50
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The role of peripheral vasculature in vessel constriction after 

aneurysm treatment with flow-diverter stents

Abstract

Background Treatment of intracranial aneurysms with flow diverter stents (FDS) can lead to calibre 

changes of jailed vessels. The reason some branches remain unchanged and others are affected by 

narrowing remains unknown.

Objective This study investigates the influence of resistance to flow from distal vasculature on stent-

induced haemodynamic modifications affecting bifurcating vessels.

Materials and methods Radiological images and demographic data were acquired for 142 aneurysms 

treated with FDS. Vascular resistance values were estimated from patient-specific anatomical data. 

Correlation analysis was used to identify correspondence between anatomical data and clinical 

outcome. Computational Fluid Dynamics was performed on a typical patient-specific model to 

evaluate FDS-specific influence on flow. Relevant haemodynamic variables along the bifurcating 

vessels were quantitatively analysed and validated with in vitro data obtained using power Doppler 

ultrasound.

Results Statistical analysis showed a correlation between clinical outcome and FDS resistance to flow 

considering overall jailed-vessel vascular resistance (r=0.5, p<0.001). Computational predictions of 

blood flow showed that haemodynamics is minimally affected by FDS treatment in the OphthA.

Conclusions Jailed vessels are affected by narrowing when resistance to flow from the FDS 

constitutes a larger proportion of overall vessel resistance to flow. This knowledge may contribute to 

better understanding of intracranial hemodynamic after FDS procedure and reinforce indications of 

flow diversion in the treatment of intracranial aneurysms.
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INTRODUCTION

Flow diverter stent (FDS) procedures for proximal internal carotid artery (ICA) 

aneurysms are a frequent treatment with high aneurysm obliteration rates. Neurological 

impairment remains relatively low considering that FDS covers not only the aneurysm neck 

but also side wall arteries like ophthalmic (OphthA) and anterior choroidal arteries [1]–[3], 

that seem to be less affected than bifurcating arteries when jailed by FDS [4]–[12]. 

Narrowing and occlusion are a frequent event after FDS procedure for middle cerebral artery 

(MCA) and some anterior cerebral artery (ACA) bifurcation aneurysms (MCA and ACA 

bifurcations without opposite A1) and anatomic parameters could be involved in 

hemodynamic changes that affect the vessel wall.  Asymmetry of branches, hemodynamic 

alterations and clinical outcome after treatment with FDS for bifurcation aneurysms have 

been correlated in a study that identified an anatomical threshold of the daughter vessel 

diameter ratio (0.7) below which FDS-induced alterations of volumetric flow rates and 

significant changes in wall shear stress (WSS) correlate to poor clinical outcome[13]. It is 

difficult to apply this theory in the context of proximal ICA aneurysms considering that the 

ratio between OphthA and ICA are lower than 0.7, and jailed OphthA remains mostly patent. 

Iosif and colleagues evaluated the presence of collaterals converging to the same territory of 

the jailed artery to explain the narrowing process, however this hypothesis does not explain 

OphthA permeability after FDS procedures as collaterals are often present in this territory 

too [14].

In an attempt to explain this phenomenon, Cebral et al.[15] proposed the role of 

high peripheral vascular resistance (RPER) as the most significant factor affecting 

hemodynamics and possibly vessel calibre changes after FDS treatment. Their study showed 

that computational estimations of blood flow patterns in the jailed arteries are only 
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minimally affected by the small perturbation imposed by the FDS and mainly influenced by 

the much larger resistance to flow imposed by the peripheral bed distal to these small 

arteries. Blood flow distribution throughout the cardiovascular system is highly influenced by 

RPER, which can be described as the viscous impediment to blood flow in a vessel as 

described by the Hagen-Poiseuille relationship that links pressure to flow [16]. This 

relationship shows that resistance, or impediment to flow, increases with higher values of 

blood viscosity (hematocrit), vessel length and smaller vessel radii.

The aim of this study is to perform a quantitative estimation of the factors affecting 

hemodynamics of FDS-jailed arteries, with a focus on the quantification of the impediment 

to flow from the FDS (RFDS) in relation to the overall artery resistance (RTOT) to flow, and for a 

larger cohort of datasets. The study also includes an experimental validation of our 

theoretical and numerical observations using power doppler-ultrasound (PD-US). 

MATERIALS AND METHODS

The hypothesis of this study is that clinical outcome and FDS-induced hemodynamic 

alterations depend on the relative significance of RFDS to flow with respect to overall artery 

resistance (RTOT= RFDS+RJV+RPER) in the jailed artery (local jailed artery resistance= RJV). The 

methodology of this study was developed to test this hypothesis and organized within 3 

different phases: Phase I=analysis of clinical data (radiological and demographic) for 

estimation of vascular resistances and possible associations with clinical outcomes; Phase 

II=patient-specific computational fluid dynamics (CFD) analysis of flow through a typical 

OphthA aneurysm to analyze and illustrate the effect of RFDS to flow at a location normally 
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less affected by vessel narrowing; Phase III=validation of numerical predictions through 

experimental analysis.

Phase I

Clinical data from 142 patients were retrospectively collected upon appropriate 

ethical approval and patient consent. Bifurcation aneurysms from middle cerebral artery 

(MCA), basilar artery with hypoplasia of posterior communicating artery and anterior 

communicating artery aneurysms with agenesis of contra-lateral anterior cerebral artery and 

treated with FDS between December 2010 and December 2015 were included (25 

aneurysms from 25 patients). OphthA aneurysms data were collected from December 2014 

to December 2017 (117 aneurysms from 117 patients). All patients included had 3D-

angiography prior to FDS positioning and at 3-6 months follow-up.  Images were acquired 

using a biplane X-ray system (General Electric Healthcare Innova IGS 650, Marlbourough, 

Massachusetts, USA) and were obtained during a 240 degrees rotation for a duration of 5 

seconds and for a total of 244 projections. This resulted in a 3D volume dataset of 

512x512x512 voxels covering a field of view of 116 mm.

Table 1 (online suppl.) illustrates the demographic constitution of the data together 

with jailed-vessel outcomes, anatomic information (lumen diameter) and estimations of 

local resistance to flow. Resistances were calculated from jailed-vessel patient-specific 

diameter values using Hagen-Poiseuille’s theory R = 8 𝜇 L / (𝜋 r^4), where 𝜇=0.0035 Pa s is 

whole blood viscosity, L is vessel length and r is lumen radius. Typical values of vessel length 

for jailed arteries and RPER values were taken from Reymond et al.[17]. Three vessel diameter 

values were taken from radiological images by two fully trained neuroradiologists along the 
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vessels of each bifurcating branch (Fig 1, online suppl.), reporting only its arithmetic average 

value and their standard deviation to quantify interobserver variability. OsiriX was used to 

measure vessel diameters from 2D acquisitions by digital subtraction angiography and 3D-

angiography images. 2-way, mixed intra-class correlation coefficients was used to assess the 

reliability of measurements with 95% confidence interval. 2-tailed Pearson correlation 

analysis was performed to identify associations between clinical outcome, anatomical data 

and estimation of vascular and relative RFDS to flow. Although normally a probability value of 

p < 0.05 is sufficient to test correlation significance, for our relatively small cohort, we 

wanted to test our hypothesis to a more stringent significant region and decided to set 0.01 

as probability value threshold.

Phase II

For the patient-specific CFD analysis, an aneurysm located at OphthA segment was 

selected. Medical image segmentation and surface reconstruction were performed using the 

@neurIST computational toolchain[18]. Blender® was used for removal of artefacts and 

further surface mesh refinements. FDS was deployed virtually, in accordance with clinical 

procedures, and using the process described by Larrabide et al [19]. The FDS model 

represents a typical Surpass FDS (Stryker, Kalamazoo, MI, USA) of 4 mm diameter with 72 

wires. For the same patient-specific geometry we run several analyses, with and without 

stent, and for different flow conditions.

The equations governing the physics of steady laminar flow were solved by using 

ANSYS CFX (ANSYS, Canonsburg, Pennsylvania). Blood was assumed incompressible (density 

ρ = 1050 kg m-3) and Newtonian (viscosity μ = 0.0035 Pa s). Appropriateness of modelling 

approaches and accuracy of the numerical solutions was ensured by adopting methodologies 
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already reported in the literature[13], [18], [20], [21]. The mesh used for the unstented 

model comprised approximately 0.8 million nodes (4 million nodes for stented model) and 

2.7 million elements (19 million elements for stented model), resulting in a mesh volumetric 

density of 2.7 thousand elements mm-3 (19 thousand el. mm-3 for stented model). Typical 

volumetric flow rates, time-averaged along the cardiac cycle, were imposed at inlet in the 

form of a fully developed parabolic velocity profile to mimic peak systolic (Qin = 4 ml s-1) and 

end diastolic (Qin = 7.5 ml s-1) conditions. Outlet boundary conditions were imposed by 

mimicking typical resistance to flow imposed by the peripheral networks distal to the ICA 

and OphthA [22]. RPER at distal ICA outlet boundary was set to RICA = 25 mmHg s mL-1, 

whereas resistances at the OphthA outlet were set to ROphthA = 470 mmHg s mL-1. CFD 

analysis and results were also used to obtain values of resistance to flow caused by the FDS 

by extracting values of pressure drops and flow across the wires and calculating resistance as 

R= P/Q, where P is the pressure drop measured across the stent wires, and Q the flow rate ∆ ∆
across the same location. 

Phase III

CFD data were validated via PD-US measurements from life-size silicone replicas 

purposely produced for the study. Two silicone replicas of the geometry used in the CFD 

analysis were produced. The difference between the surfaces of the produced replicas and 

their target STL surfaces was evaluated quantitatively using a position error index method 

[23]. This resulted in a median value for the distribution of position errors across the surface 

mesh below 70μm. One of the replicas received an FDS Surpass (Stryker, Kalamazoo, MI, 

USA) 4mm diameter by 20mm length with 72 wires, deployed by a senior intervention 

neuroradiologist (APN) carefully placing the stent to match with CFD model. Both replicas 
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were connected to a closed loop circuit filled with ultrasound compatible blood mimicking 

fluid and connected to a programmable pump (CompuFlow 1000, Shelley Medical Imaging 

Technologies, Toronto, Canada).

An Ultrasound System (Aixplorer® Multiwave Supersonic Imagine, S.A.; Aix-en-

Provence, France) equipped with a 256-element (SL15–4) 7.5-MHz linear-array transducer 

was used to take PD-US measurements of velocity magnitude along the OphthA from both 

replicas. Velocities profiles were extracted from PD-US along the OphthA and compared to 

identify FDS-induced changes and validation of CFD data (Fig 2, online suppl.).

RESULTS

Phase I: Clinical data analysis results

Reports of the incidence of vessel narrowing per location, showing a higher 

incidence of clinical complications for vessels jailed by the FDS in bifurcating aneurysms and 

no complications for FDS-treatment of aneurysms at OphthA location at 3 months follow up 

are shown in Fig 3 (online suppl.). The intra-class correlation and Pearson correlation 

performed to assess the reliability of the anatomical measurements showed high interclass 

correlation coefficient (ICC=0.97, CI 95%, lower bound = 0.95, upper bound = 0.998, 

p<0.0001 and Pearson Correlation Coefficient r=0.743, p<0.0001 ). Mortality was not 

considered as only patients with control at 3 months follow-up were included.

Box-plots graphs in Fig 4 show relation between RFDS to flow and RTOT (RFDS+RJV+RPER) 

for cases showing patency (no narrowing) and narrowing of the jailed vessel. The graphs 

clearly indicate that those cases where median RFDS to flow is low compared with RTOT are 

also the cases presenting no complications (Fig 4, patent group, mean=1.05). On the 
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contrary, cases with relatively higher RFDS to flow are also the cases presenting vessel 

narrowing (Fig 4, narrowing group, mean=3.6). This correlation is statistically significant as 

showed by the Pearson correlation analysis reporting a Pearson correlation coefficient of 

r=0.5 (p<0.0001).

Phase II: CFD analysis

The CFD results obtained for the patient-specific analysis of flow through an OphthA 

showed that FDS-induced changes mostly affect values within the aneurysm sac and parent 

vessel, and not visibly affect values in the jailed OphthA (Table 2 and Fig 5). Table 2 reports 

FDS-induced changes on flow redistributions (ICA and OphthA outflow) at peak systole 

(peak) and end diastole (dia), showing values below 0.5%. FDS-induced changes on WSS 

space-averaged across the OphthA show reduction in values below 5%. In accordance with 

the quantitative values reported in Table 2, Fig 5 shows the spatial distribution of WSS 

magnitude across the patient-specific model, indicating that FDS-induced changes mostly 

affect values within the aneurysm sac and parent vessel, and not visibly affect values in the 

jailed OphthA, both at peak systole and end diastole.

Phase III: Validation results

Velocity profiles from both replicas were obtained from PD-US measurements. 

Profiles at the same positions along the OphthA were extracted and the changes were 

quantified using a normalized discrepancy index . Profiles at four D =
|Vunstented ― Vstented|

max (Vunstented)

different positions are presented in Fig 6. The discrepancy index, D, was computed up to 

0.4mm deep into the vessel due to limitations in accuracy in the PD-US approach. Fig 6 

presents the histogram of the discrepancy D (N=75 samples). The median of the discrepancy 
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is 3.6%, in agreement with CFD analysis. The measurements corroborate that FDS does not 

induce significant changes to the flow in the jailed OphthA.

DISCUSSION

The aim of the study was to investigate, for a cohort of 142 aneurysm datasets, the 

role of resistance to flow in the context of flow changes induced by FDS treatment that may 

relate to vessel narrowing/occlusion in a subacute phase. The effect of FDS on flow 

distribution at symmetric and asymmetric bifurcations was studied in the past, but this was 

contrasted to a small number of cases (25) which was not enough to explain the changes in 

vessel diameter [13].

The statistical analysis results of this study showed significant correlations between 

flow resistance attributed to the presence of the FDS and vessel narrowing at follow-up. 

Analysis of RFDS were considered as values relative to the overall resistance to flow, RTOT, 

encountered by the viscous flow of blood through the jailed vessel and distal RPER. RFDS 

estimated from the CFD simulations in the OphthA were almost negligible (1%) when 

compared to RTOT, mostly due to a large RPER. Correlation was found with the CFD analysis, 

which showed that WSS values and flow redistributions were only marginally affected by the 

presence of the stent (changes ranging from 0 to 5%). Experimental data obtained with PD-

US on a silicon replica of a typical OpthA found similar alterations to flow (median value = 

3.6%). The importance of RPER in side-wall branches after stenting was also highlighted by 

Appanaboyinaa et al.[24] in their analysis of blood flow in three patient-specific models. 
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The study presented here goes one step further by estimating not only RPER but all 

resistances encountered by blood as it flows through the jailed vessels and how these relate 

to the additional resistance to flow imposed by the stent. For these calculations lumen 

caliber data were derived from imaging data of 142 datasets. It is well established that flow 

distribution and WSS are heavily dominated by vessel anatomy and the viscous nature of 

blood as smaller vessels, such as the OphthA, will oppose higher resistance to flow than 

relatively larger vessels like MCA branches. So the presence of a FDS will not affect the 

resistance in the OphthA because it is already high.

The distribution of RFDS to flow as a percentage of RTOT between cases showing jailed 

vessel patency and narrowing/occlusion was much higher (2 to 6 fold) in this latter group. In 

the not narrowing cases, a series of outliers ranging from 4.5 to 6.5 fold the RFDS% can be 

observed. This can be explained by the fact that the data have been collected from follow up 

images. The narrowing is a biological response to a change in flow, which is not 

instantaneous and might take different times depending on the physiological condition of 

the patient, or might not happen at all. 

This study has some limitations that should be highlighted. Some of the data used 

to compute vascular resistance (eq. 2) were typical values from the literature (i.e. blood 

viscosity, vessel length), and vessel tortuosity and its effect on flow resistance was not 

considered. This might result in some discrepancies between our estimations and the real 

values. However, these discrepancies could be negligible as the most influential parameter 

to flow resistance (lumen radius) was patient-specific. CFD simplifying assumptions included: 

Newtonian, incompressible and stationary fluid, which were adopted following previous 

results in the literature, where it was observed that CFD variables like velocity and WSS 

resulting from steady state simulations were equivalent to averaging the same variables over 
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the cardiac cycle for a transient simulation [25]. In this study we are assessing pressure drop, 

velocity, mass inflow, and WSS at specific locations for a period of time that is considerably 

longer than a single cardiac cycle. Therefore, the use of steady state instead of transient CFD 

simulations is safe, with additional benefit of a considerable computational time reduction. 

The non-Newtonian effect on the above mentioned variables is observed for shear rates at a 

much lower regime than considered in this study [26]. Vascular remodeling is a complex 

biological process strongly related to fluid-wall mechanics and their interaction. The study of 

vascular wall remodeling and wall change over time has been modelled computationally in 

the past with promising results [27]. Still, the complexity of determining personalized wall 

properties and associated mechanobiological parameters makes the use of such models non 

practical in the cases studied, which is a limitation. The link of such models to local 

hemodynamic parameters (WSS) that might induce vascular changes and remodeling should 

be a subject of future studies, to help further understand the reasons for these changes at 

follow-up.

CONCLUSIONS

Observations of FDS procedures in some bifurcation aneurysms and side-wall arteries seem 

to have different arterial narrowing/occlusion rates of the jailed arteries by the stent. This 

study identified statistically significant correlations between flow resistance and vessel 

narrowing that could explain large patency rates in OphthA in a cohort of 142 aneurysms. 

This was further supported by a numerical and experimental analysis of blood flow through a 

typical OphthA that were used to identify and illustrate the mechanisms explaining these 

correlations. A complete understanding of the phenomena at play will only be possible when 

mechanobiological pathways linking hemodynamics alterations to endothelial cells and 
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arterial wall response (vasoconstriction or remodeling) are also considered. It is necessary a 

better understanding of intracranial hemodynamic after FDS procedure to reinforce 

indications of flow diversion in the treatment of intracranial aneurysms.
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Table 1 (online suppl.) Demographic constitution and anatomical data of patients' population. J-Vess Diam = jailed vessel 

diameter, J-Vess R = jailed vessel vascular resistance, Periph R = peripheral resistance, RFDS= FDS-induced resistance to flow, 

% RFDS= FDS-induced resistance to flow given as a percentage of overall resistance (FDS plus vascular plus peripheral).

Dataset Location J-Ves 

Narrowing

J-Vess Diam [mm] J-Vess R [mmHg s 

ml^-1]

Periph R [mmHg 

s ml^-1]

RFDS 

[mmHg 

s ml^-1]

%RFDS

1 ICA NO 1.09 8 470 5 1.04

2 ICA NO 1.05 10 470 5 1.04

3 ICA NO 1.08 9 470 5 1.04

4 ICA NO 1.07 9 470 5 1.04

5 ICA NO 1.08 9 470 5 1.04

6 ICA NO 1.16 6 470 5 1.05

7 ICA NO 1.07 9 470 5 1.04

8 ICA NO 1.24 5 470 5 1.05

9 ICA NO 1.06 9 470 5 1.04

10 ICA NO 1.13 7 470 5 1.05

11 ICA NO 1.23 5 470 5 1.05

12 ICA NO 1.09 8 470 5 1.05

13 ICA NO 1.30 4 470 5 1.05

14 ICA NO 1.14 7 470 5 1.05

15 ICA NO 1.11 8 470 5 1.05

16 ICA NO 1.13 7 470 5 1.05

17 ICA NO 1.17 6 470 5 1.05

18 ICA NO 1.21 6 470 5 1.05

19 ICA NO 1.17 6 470 5 1.05

20 ICA NO 1.11 8 470 5 1.05

21 ICA NO 1.15 7 470 5 1.05

22 ICA NO 1.15 7 470 5 1.05

23 ICA NO 1.27 5 470 5 1.05

24 ICA NO 1.15 7 470 5 1.05

25 ICA NO 1.19 6 470 5 1.05

26 ICA NO 0.98 13 470 5 1.04

27 ICA NO 1.10 8 470 5 1.05

28 ICA NO 1.16 6 470 5 1.05

29 ICA NO 1.16 7 470 5 1.05

30 ICA NO 1.19 6 470 5 1.05

31 ICA NO 1.10 8 470 5 1.05

32 ICA NO 1.18 6 470 5 1.05

33 ICA NO 1.14 7 470 5 1.05

34 ICA NO 1.01 11 470 5 1.04

35 ICA NO 1.18 6 470 5 1.05

36 ICA NO 1.17 6 470 5 1.05

37 ICA NO 1.12 7 470 5 1.05
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38 ICA NO 1.30 4 470 5 1.05

39 ICA NO 1.14 7 470 5 1.05

40 ICA NO 1.22 5 470 5 1.05

41 ICA NO 1.27 5 470 5 1.05

42 ICA NO 1.07 9 470 5 1.04

43 ICA NO 1.22 5 470 5 1.05

44 ICA NO 1.15 7 470 5 1.05

45 ICA NO 1.23 5 470 5 1.05

46 ICA NO 1.26 5 470 5 1.05

47 ICA NO 1.13 7 470 5 1.05

48 ICA NO 1.08 9 470 5 1.04

49 ICA NO 1.25 5 470 5 1.05

50 ICA NO 1.10 8 470 5 1.05

51 ICA NO 1.25 5 470 5 1.05

52 ICA NO 1.13 7 470 5 1.05

53 ICA NO 1.11 8 470 5 1.05

54 ICA NO 1.10 8 470 5 1.05

55 ICA NO 1.19 6 470 5 1.05

56 ICA NO 1.05 10 470 5 1.04

57 ICA NO 1.12 8 470 5 1.05

58 ICA NO 1.15 7 470 5 1.05

59 ICA NO 1.12 8 470 5 1.05

60 ICA NO 1.09 8 470 5 1.04

61 ICA NO 1.20 6 470 5 1.05

62 ICA NO 1.13 7 470 5 1.05

63 ICA NO 1.17 6 470 5 1.05

64 ICA NO 1.09 8 470 5 1.05

65 ICA NO 1.14 7 470 5 1.05

66 ICA NO 1.00 12 470 5 1.04

67 ICA NO 1.13 7 470 5 1.05

68 ICA NO 1.12 8 470 5 1.05

69 ICA NO 1.14 7 470 5 1.05

70 ICA NO 1.16 6 470 5 1.05

71 ICA NO 1.11 8 470 5 1.05

72 ICA NO 1.12 7 470 5 1.05

73 ICA NO 1.11 8 470 5 1.05

74 ICA NO 1.18 6 470 5 1.05

75 ICA NO 1.13 7 470 5 1.05

76 ICA NO 1.10 8 470 5 1.05

77 ICA NO 1.13 7 470 5 1.05

78 ICA NO 1.05 10 470 5 1.04

79 ICA NO 1.17 6 470 5 1.05
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80 ICA NO 1.12 7 470 5 1.05

81 ICA NO 1.14 7 470 5 1.05

82 ICA NO 1.20 6 470 5 1.05

83 ICA NO 1.14 7 470 5 1.05

84 ICA NO 1.05 10 470 5 1.04

85 ICA NO 1.19 6 470 5 1.05

86 ICA NO 1.05 10 470 5 1.04

87 ICA NO 1.14 7 470 5 1.05

88 ICA NO 1.13 7 470 5 1.05

89 ICA NO 1.15 7 470 5 1.05

90 ICA NO 1.05 10 470 5 1.04

91 ICA NO 1.20 6 470 5 1.05

92 ICA NO 1.17 6 470 5 1.05

93 ICA NO 1.12 8 470 5 1.05

94 ICA NO 1.13 7 470 5 1.05

95 ICA NO 1.03 11 470 5 1.04

96 ICA NO 1.16 7 470 5 1.05

97 ICA NO 1.13 7 470 5 1.05

98 ICA NO 1.11 8 470 5 1.05

99 ICA NO 1.11 8 470 5 1.05

100 ICA NO 1.07 9 470 5 1.04

101 ICA NO 1.12 8 470 5 1.05

102 ICA NO 1.17 6 470 5 1.05

103 ICA NO 1.03 10 470 5 1.04

104 ICA NO 1.13 7 470 5 1.05

105 ICA NO 1.16 6 470 5 1.05

106 ICA NO 1.09 8 470 5 1.05

107 ICA NO 1.13 7 470 5 1.05

108 ICA NO 1.17 6 470 5 1.05

109 ICA NO 1.17 6 470 5 1.05

110 ICA NO 1.13 7 470 5 1.05

111 ICA NO 1.14 7 470 5 1.05

112 ICA NO 1.17 6 470 5 1.05

113 ICA NO 1.02 11 470 5 1.04

114 ICA NO 1.13 7 470 5 1.05

115 ICA NO 1.11 8 470 5 1.05

116 ICA NO 1.15 7 470 5 1.05

117 ICA NO 1.11 8 470 5 1.05

118 MCA YES 1.05 62 75 5 3.66

119 ACOM YES 1.05 62 75 5 3.66

120 MCA YES 1.6 11 75 5 5.79

121 MCA YES 1.05 62 75 5 3.66
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Table 2 Quantification of FDS-induced changes to haemodynamic variables extracted from OphthA bifurcation at peak 

systole (peak) and end diastole (dia). Avg WSS is the space-averaged WSS extracted from the OphthA. ICA and Ophth 

outflow are the volumetric flow rates calculated at the outlet of the ICA and OphthA, respectivelty.

Unstented
[peak/dia]

Stended
[peak/dia]

Diff
[peak/dia]

%Diff
[peak/dia]

Avg WSS [Pa] 11.56/5.30 10.98/5.04 -0.58/-0.26 -5.0/-4.7

ICA outflow [ml/s] 7.20/3.80 7.19/3.82 -0.01/-0.02 0.1/0.5

Ophth outflow [ml/s] 0.38/0.20 0.38/0.201 0.0/0.001 0.0/0.5

122 BA YES 1.15 43 75 5 4.24

123 MCA YES 1.04 64 75 5 3.60

124 MCA NO 1.55 13 75 5 5.68

125 MCA NO 1.53 14 75 5 5.64

126 MCA YES 1.2 36 75 5 4.50

127 MCA NO 2.06 4 75 5 6.32

128 MCA NO 2.37 2 75 5 6.46

129 MCA YES 0.83 158 75 5 2.15

130 MCA NO 1.82 7 75 5 6.11

131 BA YES 0.75 237 75 5 1.60

132 MCA YES 1.83 7 75 5 6.12

133 BA NO 2.08 4 75 5 6.33

134 BA NO 1.39 20 75 5 5.26

135 MCA YES 1.04 64 75 5 3.60

136 BA YES 0.96 88 75 5 3.06

137 BA NO 1.24 32 75 5 4.69

138 MCA NO 1.68 9 75 5 5.92

139 MCA YES 1.1 51 75 5 3.96

140 MCA YES 1.6 11 75 5 5.79

141 ACOM NO 1.75 8 75 5 6.03

142 MCA YES 0.88 125 75 5 2.50
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