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Communicated by

Abstract. The theory of Engel groups plays an important role in group theory since they are closely

related to the Burnside problems.

In this survey we consider several classical and novel algorithmic problems for Engel groups and

propose several open problems. We study these problems with a view towards applications to cryptog-

raphy.

1. Introduction

In cryptography most common protocols (RSA, Diffie-Hellman, and elliptic curve methods) depend

on the structure of commutative groups and they are related to the difficulty to solve integers factoriza-

tion and discrete logarithms. In 1994 Shor provided a quantum algorithm that solves these problems

in polynomial time [53]. For this reason, researchers are motivated to find alternative methods for

constructing cryptosystems. One of them is based on non-commutative cryptography, which does not

operate over the integers. Hence, for security reasons, in the last decade new cryptosystems and key

exchange protocols based on non-commutative cryptographic platforms have been developed.

The complexity of algorithmic problems have made available families of groups as platform groups

for cryptographic protocols. Among others, we mention braid groups (using the conjugacy search

problem [33]), polycyclic groups ([11] and [21]), linear groups [7], and right-angled Artin groups ([14]

and [15]). For this reason, the employment of algorithmic group theoretic problems in cryptography

is an active area of research nowadays.

In this paper we will present the actual state of Engel-group based cryptography. In particular, we

investigate several group theoretic problems in Engel groups, with a view towards their applications
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to cryptography via computational complexity. We are primarily motivated by the fact that some

of these group theoretic problems can be used for cryptographic purposes, such as authentication

schemes, secret sharing schemes, key exchange problems, and multilinear maps.

The study of Engel groups originates from the famous paper of Burnside in 1901 and it is closely

related to the General Burnside Problem (in the reminder GBP, for short) [9]. The General Burnside

Problem asks if a finitely generated torsion group is finite. The question whether a finitely generated

(n-)Engel group is nilpotent is the analogue of the GBP in the realm of Engel groups. In the following,

we refer to this question as the “Engel Burnside Problem”. Of course, every group that is locally

nilpotent is an Engel group, but the converse needs not to be true in general. The first main result

on Engel groups is the Theorem of Zorn which shows that any finite Engel group is nilpotent.

We recall that an element g of a given group G is said to be right Engel if for every x ∈ G there exists

an integer n = n(g, x) ≥ 1 such that [g, nx] = 1, where the commutator [g, nx] is defined recursively

by the rules [g, x] = g−1gx and

[g,n x] = [g, x, n. . ., x] = [[g, x, n−1. . . , x], x]

if n > 1. Similarly, g is a left Engel element if the variable x appears on the left. A group is said to be

an Engel group if all its elements are right Engel or, equivalently, left Engel. In a similar way, one can

talk about bounded Engel elements, with the condition that the integer n can be chosen independently

of x. A group G is n-Engel if for any x, y ∈ G we have [x,n y] = 1 for some n ∈ N.

The paper is organized as follows. In Section 2 we give basic definitions and properties of Engel

groups. We provide some identities satisfied by n-Engel groups, and, in particular, we survey known

and open questions about the Engel Burnside Problem. We conclude the section by describing Burnside

groups since we think that they have similar behaviour to Engel groups.

Section 3 is devoted to survey general problems and interesting properties in the setting of Engel

groups. We present the definition of degree of nilpotency for finite and infinite groups and some useful

results that show how one can compute it. In addition, we give the definition of the growth rate and

the Discrete Logarithm Problem.

In Section 4 we introduce several group-theoretic decision problems including the word, conjugacy,

and isomorphism decision problem. We also describe the power decision problem, the endomorphism

decision problem, the n-th root decision problem and the geodesic length decision problem. We present

also many search problems.

In Section 5 we describe a number of cryptosystems that have been built around Engel groups. In

particular, we present multilinear maps, a public key based on 2-Engel groups and a digital signature

based on 4-Engel groups. In addition, we present two secret sharing schemes based on the efficiency of

the word problem, and a key protocol whose platform groups are free nilpotent p-groups. Moreover,

we survey the Learning Problem Homomorphism which uses as platform group the Burnside groups

of exponent 3 (that are, in particular, 2-Engel groups). We conclude the section by presenting the

Discrete Logarithm Problem in finite p-groups and the status of quantum algorithms.
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The last Section 6 of the paper is devoted to survey the current status of Engel groups in cryp-

tography. We also include a list of open problems, which we hope will guide researchers who wish to

work in this field.

2. Background on Engel groups

2.1. Preliminaries. Let G be a group and let x1, x2, . . . be elements of G. We define the commutator

of weight n ≥ 1 recursively by the rule

[x1, . . . , xn] =







x1 if n = 1

[[x1, . . . , xn−1], xn] if n > 1,

where [x1, x2] = x−1
1 x−1

2 x1x2 = x−1
1 xx2

1 . If x = x1 and y = x2 = · · · = xn+1, we use the shorthand

notation

[x, ny] = [x, y, n. . ., y].

In the following we recall the definition of Engel elements of a group.

Definition 2.1. Let G be a group and g ∈ G. We say that g is a right Engel element if for any x ∈ G

there exists n = n(g, x) ≥ 1 such that [g, nx] = 1. If n can be chosen independently of x, then g is a

right n-Engel element (or a bounded right Engel element).

Similarly, g is a left Engel element if for any x ∈ G there exists n = n(g, x) ≥ 1 such that [x, ng] = 1.

Again, if the choice of n is independent of x, then g is a left n-Engel element (or a bounded left Engel

element).

The sets of right and left Engel elements of G are denoted by R(G) and L(G), respectively. Notice

that R(G) and L(G) are invariant subsets under automorphisms of G. Hence, for any g ∈ R(G) (resp.

g ∈ L(G)) and any x ∈ G, we have gx ∈ R(G) (resp. gx ∈ L(G)).

The following gives the iteration between right and left Engel elements.

Proposition 2.2 ([27]). Let G be a group. We have

R(G)−1 ⊆ L(G) and Rn(G)−1 ⊆ Ln+1(G).

Notice also that in every 2-group, elements of order 2 are left Engel, as the following proposition

(it can be found, for example, in [49]) shows.

Proposition 2.3. Let G be group and let g ∈ G such that g2 = 1. Then for any x ∈ G and any n ≥ 1:

[x, ng] = [x, g](−2)n−1

.

In particular, every involution in any 2-group is a left Engel element.

In the following we give definitions of Engel and n-Engel groups.

Definition 2.4. We say that G is an Engel group if G = R(G) or, equivalently, G = L(G). Moreover,

G is an n-Engel group if there exists n ≥ 1 such that [x, ny] = 1, for all x, y ∈ G.
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Of course every n-Engel group is Engel, and every nilpotent group of class n is n-Engel. Also, there

are nilpotent groups of class n that are not (n − 1)-Engel. An example is the groups G = Cp ≀ Cp,

that is the wreath product of two cyclic groups of order a prime p. One can see that G is nilpotent

of class p but not a (p − 1)-Engel group (see Theorem 6.2 of [36]). Furthermore is not difficult to

construct n-Engel groups that are not nilpotent. Take for example a prime p and consider the group

G = Cp ≀ Cp∞ , where Cp∞ is the Prüfer group. One can prove that G is a (p+ 1)-Engel group but it

is not nilpotent.

The main open question in the realm of Engel groups is whether every n-Engel group is locally

nilpotent. Hence, the Engel condition is more general than nilpotency. Recall that a group G is

locally nilpotent if each finitely generated subgroup of G is nilpotent.

For n ≤ 4 every n-Engel group is locally nilpotent. Indeed, 1-Engel groups are abelian. For n = 2,

Levi proved that G is a 2-Engel group if and only if the normal closure of an arbitrary element is

abelian [35]. Moreover 2-Engel groups are nilpotent of class at most 3. For n = 3, Heineken proved

that every 3-Engel is locally nilpotent [28]. Finally, Havas and Vaughan-Lee [26] proved that every

4-Engel groups generated by d elements are nilpotent of class 4d. For n > 4 the question is still open.

In some other classes of groups also being n-Engel implies locally nilpotency. For example, any

residually finite n-Engel group is locally nilpotent [58].

About Engel groups, as pointed out in the introduction, the question whether every Engel group is

locally nilpotent is the analogue of the General Burnside Problem for Engel groups.

It is easy to check that every locally nilpotent group is Engel. The converse is true in some classes of

groups like finite groups (Zorn [59]), soluble groups (Gruenberg [18]), groups with maximal condition

(Baer [3]), linear groups ([55]) and some other classes of groups. Hence, in these cases the condition

to being Engel is equivalent to local nilpotency, but in general it is much weaker. Indeed, the infinite

p-group G = 〈x1 . . . , xr〉 constructed by Golod is a counterexample. This group is Engel and it is such

that every (r − 1)-generated subgroup is nilpotent. So far, in the periodic case, Golod’s group is the

only known example of finitely generated Engel group that is not nilpotent.

2.2. Identities satisfied by n-Engel groups. In this section we present some semigroups identities

satisfied by n-Engel groups for n ≤ 4. We have the following.

(1) In every 2-Engel group yx2y = xy2x.

(2) In every 3-Engel group

xy2xyx2y = yx2yxy2x and xy2xyxyx2y = yx2y2x2y2x.

(3) In every 4-Engel group we have

xy2xyx2y2x2yxy2xyx2yxy2x2y2xyx2y = yx2yxy2x2y2xyx2yxy2xyx2y2x2yxy2x.

For more information one can see [57] and [39].

Notice that, additionally, if a group is Engel and locally nilpotent one can prove the following.



Int. J. Group Theory x no. x (201x) xx-xx D. Kahrobaei and M. Noce 5

Theorem 2.5 ([10]). There exist positive integers m = m(n) and r = r(n) such that any locally

nilpotent n-Engel group satisfies

[xr, x1, . . . , xm] = 1.

2.3. Burnside groups. In this subsection, we present Burnside groups since it seems that their

behaviour is similar to the behaviour of the class of Engel groups. Moreover, in Section 5.5 we present

a protocol that uses Burnside groups of exponent 3 as platform group.

Let Fm be a free group of rank m. The free Burnside group B(m,n) is the group Fm/Fn
m, where

Fn
m is the group generated by all the n-th powers of elements of Fm. Therefore B(m,n) is the group

in which the identity xn = 1 holds and for this reason is the biggest group generated by m elements

of exponent n. The Burnside Problem asks if a finitely generated group of finite exponent is finite,

that is the same as asking whether the free Burnside groups are finite.

It is easy to prove that for any m the 2-group B(m, 2) is elementary abelian and so finite. Burnside

proved that also B(m, 3) is finite for any m. Levi and van der Waerden in 1993 proved that if m ≥ 3

the Burnside group B(m, 3) is finite and nilpotent of class 3. One can also prove that since B(m, 3)

is a group of exponent 3, then is a 2-Engel group because of the following.

Proposition 2.6 (12.3.5 of [49]). A group of exponent 3 is a 2-Engel group.

In 1940, Sanov proved that also the group B(m, 4) is finite for every m. For n = 5 the problem

is still open. Although for some small values of n the Burnside groups are finite, in 1968, Novikov

and Adian proved that, in general, Burnside groups need not to be finite. Indeed they showed that if

m ≥ 2, and n is odd and greater than 4381, then B(n,m) is infinite. This bound was improved later

by Adian which showed that n can be chosen odd and greater than or equal to 665. With the same

construction used to prove that these Burnside groups are infinite, Novikov and Adian also proved

that the word and the conjugacy problems are decidable in Burnside groups, see [44].

3. Other properties and problems around Engel groups

In this section, we survey additional properties that can help us to the study of Engel groups. In

particular, we present the growth rate, the Discrete Logarithm Problem for finite p-groups, and the

degree of nilpotency.

3.1. Growth rate. Let G be a finitely generated group. The growth function γ is

γ : N → R

n 7→ |{w ∈ G : l(w) ≤ n}|

where l(w) denotes the length of w. Since words are used as keys in group-based cryptography, there

is a natural relationship between the growth rate of a group and the key space, that is the set of all

possible keys. A fast growth rate engenders a large key space, making an exhaustive search of this

space intractable. Notice that by a deep result of Gromov, if G is a finitely generated group, then G
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has polynomial growth if and only if G is virtually nilpotent [17]. Moreover Golod Shafarevich groups

have exponential growth [4].

3.2. The Discrete Logarithm Problem. Let G be a finite group. Given x, y ∈ G, the Discrete

Logarithm Problem (in the reminder DLP for short) is to find a positive integer a such that xa = y

(if it exists). Notice that this is usually defined in the setting of cyclic groups because the Discrete

Logarithm exists for all elements and all nontrivial bases.

Notice that the DLP can be generalized to several components as follows. Let x = (x1, . . . , xn) be

a tuple of elements such that G = 〈x1, . . . , xn〉. Given y ∈ G, the “generalized” DLP of y with respect

to x is to find ai such that y can be written uniquely as xa = (xa11 , . . . , xann ) = y where 0 < ai < |xi|

for every i.

For a survey on the topic see, for example, [45].

3.3. Degree of n-nilpotency. In this subsection we present the definition of degree of n-nilpotency

and some related properties. This is a notion that measures how close is a group to being nilpotent

of nilpotency class n. In particular, this is a way to measure how close Engel groups are to being

nilpotent. This is relevant for us since some protocols work better using Engel (or nilpotent) groups

(see Section 5). In the following we provide two ways to compute the degree of nilpotency of a group.

3.3.1. Degree of n-nilpotency of a finite group. In [41] the degree of n-nilpotency (n ≥ 2) of a finite

group G is defined as follows:

d(n)(G) =
|{(x1, · · · , xn+1) ∈ Gn+1 | [x1, · · · , xn+1] = 1}|

|G|n+1
.

For ease of notation write d(G) = d(1)(G). Clearly d(G) = 1 if and only if the group G is abelian.

In [22] Gustafson proved that if d(1)(G) > 5/8, then G is abelian. Moreover if d(G) > 1/2, then G is

nilpotent [34].

In the following we present two upper bounds for the above definition of n-nilpotency degree [12].

Theorem 3.1. Let G be a finite group which is not nilpotent of class at most n. Then

d(n)(G) ≤
2n+2 − 3

2n+2
.

Theorem 3.2. Let G be a nontrivial finite group with trivial center. Then for every n ≥ 1,

d(n)(G) ≤
2n − 1

2n
.

3.3.2. General definition. We conclude this section by pointing out that there exists a more general

definition of degree of nilpotency which holds also for infinite groups.

Definition 3.3. [1] Let G be a group (not necessarily finite) generated by a finite set X. The degree

of n-nilpotency of G with respect to X is defined as follows:

dn,X(G) = lim sup
m→∞

|{x ∈ BX(m)n+1 | [x1, . . . , xm] = 1}|

|BX(m)|n+1
,

where BX(m) is the ball of radius n centered at 1 on the Cayley graph of G with respect to X.
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Obviously, if the group G is finite then the above definition coincides with the one given in Section

3.3.1. We finally remark that in [1] it has been proved that the positivity of dn,X(G) does not depend

on the generating set X.

4. Algorithmic problems

In this section we survey several decision problems in group theory. In particular, we summarize

the status of the complexity of some algorithmic problems in the context of Engel groups. In Section

5 we present cryptosystems whose security depends on some of these problems.

Notice also that, as pointed out in Section 2.1, every finitely generated n-Engel group with n ≤ 4

is nilpotent. Then every result for nilpotent groups can be applied to n-Engel groups for n ≤ 4.

4.1. Decision problems. From now on we let G be a group given by a presentation 〈X|R〉 and we

understand that when we speak of elements of G these are given as a product of generators in X±1.

The following three decision problems were introduced by Dehn in 1911. They are defined as follows.

• Word Problem: For any g ∈ G, determine if g is the identity element of G.

• Conjugacy Problem: For any x, y ∈ G, determine if x and y are conjugate.

• Isomorphism Problem: Let G and G′ be groups given by finite presentations, determine if G

is isomorphic to G′.

For polycyclic groups all three of the above problems are decidable (see [47], [19], [16], [51], and for

a survey on the topic see [21]).

For finitely generated nilpotent groups the word problem is solvable. Also, finitely generated nilpo-

tent groups are linear ([25]) and for linear groups the word problem is solvable in logspace ([37]). Hence,

the word problem for finitely generated nilpotent groups is is solvable in (deterministic) logspace.

Furthermore, Blackburn in 1965 proved that the conjugacy problem is decidable as well [8].

The isomorphism problem is also known to be solvable for finitely generated nilpotent groups [20].

Notice that, in contrast, the epimorphism problem is undecidable for finitely generated nilpotent

groups [48]. We record that the epimorphism problem asks whether, given two finite presentations R1

and R2 of groups, there exists an algorithm which determines if the group with presentation R1 is a

homomorphic image of the group defined by the presentation R2.

4.1.1. Power decision problem. Let G be a finitely generated group. Given x, y ∈ G, determine

whether there exists n ∈ Z such that y = xn. Notice that this is equivalent to deciding whether y ∈ 〈x〉,

and thus is the analogue of the Discrete Logarithm Problem (see Section 5.6). A generalization of the

power problem is the subgroup membership problem that can be stated as follows.

4.1.2. Subgroup membership decision problem. Let G be a group and H ≤ G. The subgroup member-

ship decision problem (also known as the generalized word problem) asks for any g ∈ G if g ∈ H. The

subgroup membership problem is decidable for finitely generated nilpotent groups [2]. This problem

can be generalized to the rational subset membership problem. Recall that given a group G, the class

of rational subsets of G is the smallest class that contains all finite subsets of G and that it is closed
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with respect to union, product and taking the free monoid generated by a set (i.e. using the Kleene

star operation). The rational subset membership problem asks whether given a rational subset H of

G and an element g ∈ G, whether g ∈ H. In this case, nilpotent groups have undecidable rational

subgroup membership problem [38].

4.1.3. The endomorphism decision problem. Let F be a free group and x ∈ F . The endomorphism

decision problem asks whether there exists an algorithm that given y ∈ F decides if there exists an

endomorphism φ of F sending x to y. In nilpotent groups the endomorphism problem is undecidable

[50].

4.1.4. The n-th root decision problem. For n ∈ N, an element a of a group G is a n-th root if there

exists an element x such that xn = a. Given an element g ∈ G, the n-th root decision problem asks to

determine if g has any n-th root. Note that if the root of every element of G belongs to G, the group

is said to be complete.

We remark that if we take a group H under addition, this is the problem of finding n-th roots is

equivalent to saying that for any n ∈ N and every element h ∈ H, the equation nx = h has at least

one solution in H.

For some results about finding n-th roots in nilpotent groups see [57]. It seems that finding square

roots in Engel groups is a difficult problem (see Section 5.2.1 and Section 5.2.2).

4.1.5. Geodesic length decision problem. Let G = 〈X〉 be a group generated by a set X. Denote with

|w| the length of a word in the alphabet X±1, and with ρ the canonical epimorphism of F (X) onto

G, where F (X) denotes the free group over the set X. The geodesic length lX(g) of an element g ∈ G

with respect to X is

lX(g) = min{|w| | w ∈ F (X), ρ(w) = g}.

We say that a word w ∈ F (X) is geodesic if |w| = lX(ρ(w)). Given a word w ∈ F (X), the geodesic

length decision problem consists in, given a word w ∈ F (X), to find lX(ρ(w)).

In [42] it is observed that for nilpotent groups this is a hard problem.

4.2. Search problems. In this section we survey some search problems. Several protocols of non-

commutative cryptography, like Ko-Lee and Anshel-Anshel-Goldfeld, are based in part on the conju-

gacy search problem. For this reason here we present, among others, the conjugacy search problem

and some of its variations.

As before, we let G be a group given by the presentation 〈X|R〉 and we agree that when we refer

to an element of G this is given as a product of generators in X±1.

4.2.1. Word search problem. The word search problem is: given a finitely presented group G and an

element g = 1 in G find a presentation of g as a product of conjugates of defining relators and their

inverses.
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4.2.2. Conjugacy search problem. Let G be a group and a1, . . . an, b1, . . . bn ∈ G where ai is conjugate

to bi for i = 1, . . . , n. The multiple conjugacy search problem is to find c ∈ G such that aci = bi for

1 ≤ i ≤ n. If n = 1 this reduces to the conjugacy search problem.

In some cases, for example for polycyclic groups [11], the multiple conjugacy search problem reduces

to the solvability of single (independent) conjugacy search problem. In general, for finitely generated

polyciclic groups the conjugacy search problem can be solved by recursively enumerating the conjugates

of the elements taken in consideration [54].

4.2.3. Power conjugacy search problem. The power conjugacy search problem asks to find for some

x, y ∈ G, an element g ∈ G, and n ∈ N such that xn = yg. Note that for n = 1 this reduces to the

standard conjugacy search problem, whereas if g is the identity in the group this reduces to the power

(search) problem.

5. Applications to cryptography

In this section we present some applications of Engel groups to cryptography. We first survey some

cryptosystems based on n-Engel groups such as a public key, a digital signature, two secret sharing

schemes and multilinear maps. We present the protocol used, the ideal platform group, and some

security assumptions. We conclude this section presenting the Discrete Logarithm Problem (DLP for

short) in finite p-groups (that are nilpotent groups, so in particular Engel groups) and providing the

actual status of quantum algorithms.

5.1. Multilinear maps. In this subsection we first define multilinear maps and then we provide some

applications. For more information, see [32].

Definition 5.1. Let n be a positive integer and G an arbitrary group. A map e : Gn → G is said to

be a n-linear map (or a multilinear map) if for any g1, . . . , gn,∈ G and any a1, . . . , an ∈ Z we have

e(ga11 , . . . , gann ) = e(g1, . . . , gn)
a1···an .

Moreover, we say that the map e is non-degenerate if there exists g ∈ G such that e(g, . . . g) 6= 1.

Let now G be a nilpotent group of class n > 1 and g1, . . . , gn ∈ G. One can easily prove by induction

on n that for any a1, . . . , an ∈ Z the following identity holds:

(5.1) [ga11 , . . . , gann ] = [g1, . . . , gn]
∏n

i=1
ai .

Hence if G is nilpotent, the map e

e : Gn → G

(g1, . . . , gn) 7→ [g1, . . . , gn]
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is a multilinear map. In addition, if we fix x ∈ G, we can construct another multilinear map f given

by

f : G(n−1) → G

(g1, . . . , gn−1) 7→ [x, g1, . . . , gn−1].

Notice that we want the multilinear map to be non-degenerate. This is the case if we assume that

G is not (n − 1)-Engel. Indeed, in this condition, there exists g ∈ G such that [x,(n−1) g] 6= 1, which

implies that f is non-degenerate.

5.1.1. Protocol. Let G be a nilpotent group of class n + 1 which is not n-Engel (n ≥ 1). Then there

exist elements x, g ∈ G such that [x,n g] 6= 1. The group G is public. We have n+1 users A1, . . . An+1

that wish to agree on a shared secret key. Each user Aj selects a private integer aj 6= 0, computes gaj ,

and sends it to the other users. Then we are in the following situation:

• The user A1 computes [xa1 , ga2 , . . . gan+1 ].

• For j = 2, . . . , n, the user Aj computes [xaj , ga1 , . . . , gaj−1 , gaj+1 , . . . , gan+1 ].

• The user An+1 computes [xan+1 , ga1 , . . . gan ].

Since (5.1) holds in all nilpotent groups, all elements computed by the users are equal to k =

[x,n g]
∏n+1

j=1
aj . This is the shared key.

5.2. Two cryptosystems based on n-th root problem in n-Engel groups. In this section we

present two cryptosystems in n-Engel groups proposed in [57].

5.2.1. A public key based on 2-Engel groups. A satellite generates some data from a 2-Engel group.

Alice and Bob choose two elements x and y as their secret keys, respectively. Then Alice sends x2

to Bob and Bob sends y2 to Alice. As pointed out in Section 2.2, in any 2-Engel group it holds the

semigroup identity xy2x = yx2y. Then Alice and Bob agree on a key. One could extend this scheme

to other n-Engel groups, since there are similar relations in them as well (see, for example Equation

2.5).

5.2.2. A digital signature based on 4-Engel groups. Consider a 4-Engel group, which is nilpotent and

satisfies the following semigroup law (see the last part of Section 2 and Section 2.2):

xy2xyx2y2x2yxy2xyx2yxy2x2y2xyx2y = yx2yxy2x2y2xyx2yxy2xyx2y2x2yxy2x.

The idea to make a digital signature is as follows. Suppose x and y are private and x2, y2, xy2x, and

xy2x2y2x are public. The public key is x2 and the signature is xy2x and xy2x2y2x. The verifier knows

y, so he has to to verify both the semigroup identity.

5.2.3. Platfrom group and security. The underlying group could be combined by a finite group in

which square root is hard, for example Z
∗
pq, with p, q prime numbers.

The security of these digital signatures lies on the fact that the complexity of finding square root

in 2-Engel and 4-Engel groups. It seems that this is a hard problem [43].
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5.3. Secret sharing based on the word problem in Engel groups. In this section we present

two secret sharing schemes based on the word problem proposed by Habeeb-Kahrobaei-Shpilrain [24].

Both of them are based on the efficiency of the word problem and we will use them with (n-)Engel

nilpotent groups.

We recall that a (t, n)-threshold secret sharing is a scheme in which a secret is distributed among

n participants in a way that the secret can be recovered only if at least t of them combine their

shares. We present two secret sharing schemes. The first one (Scheme 1) is a (n, n)-threshold scheme

and so the participants must get together to recover the secret. The second one (Scheme 2) is a

(t, n)-threshold scheme that is a combination of Shamirs scheme [52] and the group-theoretic scheme

proposed in Section 3 of [24] and presented below. In both of them we denote a generic participant

of the protocol with Pi, with 1 ≤ i ≤ n. We also suppose that the dealer and the participants at

the beginning are able to communicate over secure channels and then they communicate over open

channels.

5.3.1. Scheme 1. The following is an (n, n)-threshold scheme. The dealer:

• Distributes a k-column of bits C = (c1, c2, . . . , ck)
T.

• Distributes C among n participants in such a way that the column can be reconstructed only

if all participants combine their information.

A set X = {x1, . . . , xm} of generators is public. Then the protocol is as follows.

(1) The dealer uses a secure channel to assign to each participant Pj a set of words Rj in the

alphabet X±1 such that each group Gj = 〈x1, . . . , xm | Rj〉 has word problem solvable in

polynomial time.

(2) The dealer splits the column C in
∑n

j=1Cj mod 2. These are secret shares to be distributed

to the n participants.

(3) The dealer distributes words w1j , . . . wkj in the generators x1, . . . xm over an open channel to

each participant Pj , with 1 ≤ j ≤ n. The choice of the words is such that wij 6= 1 in Gj if

cij = 0 and wij = 1 in Gj if cij = 1, where cij is the i-th entry of Cj .

(4) Each participant Pj check for any i if wij = 1 in the group Gj or not.

(5) Now each participant constructs Cj = (c1j , c2j , . . . , ckj)
T of 0’s and 1’s (cij = 1 if wij = 1 in

Gj , and 0 otherwise).

(6) The secret is built by putting together the vector sum
∑n

j=1Cj mod 2.

5.3.2. Scheme 2. In this case we present a (t, n)-threshold scheme in which the secret is an element

x ∈ Zp, for p a prime number. The dealer:

• Chooses a polynomial f of degree t− 1 such that f(0) = x.

• Determines integers yi = f(i) mod p for 1 ≤ i ≤ n.

• Distributes every yi to the correspondent participant Pi.
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We now consider a set X = {x1, . . . , xm} of generators, which is public. In addition, we assume that

the integer x and every yi can be written as k-bit columns. Now we are ready to present the scheme,

that reads as follows.

(1) The dealer distributes over a secure channel to each participant Pj a set of relators Rj such

that each group Gj = 〈x1, . . . , xm | Rj〉 has efficiently solvable word problem.

(2) The dealer then distributes over open channels k-columns of the form bj = (b1j , b2j , . . . , bkj)
T,

(where 1 ≤ j ≤ n) of words in x1, . . . , xm to each participant. The bij are chosen such that if

we replace them by bits, the resulting bit column represents the integer yj . Note that we use

“1” if bij = 1 in the group Gj and “0” otherwise.

(3) For any word bij , the participant Pj checks whether or not bij = 1 in the group Gj . Then Pj

obtains a binary representation of the number yj , and therefore Pj recovers yj .

(4) Each participant now has a point f(i) = yi of the polynomial. Using polynomial interpolation,

any t participants can now recover the polynomial f . Whence they obtain the secret x = f(0).

If t ≥ 3, Step 4 can be changed in a way that the participants do not have to reveal their individual

shares to each other if they do not want to. For more details about how to arrange this, an interested

reader can see [24].

5.3.3. Platform group. For Scheme 1 and Scheme 2, we propose finitely presented nilpotent Engel

groups that, being nilpotent, have efficiently solvable word problem (see the discussion in Section 4.1).

For example, one can use n-Engel groups with n = 2, 3, 4 or an Engel group that is linear, solvable or

finite (and hence nilpotent).

5.4. A key protocol based on semidirect products of groups. In this section we present a

key protocol based on semidirect products of groups (or semigroups). This protocol can be based on

any group, but we present an application using free nilpotent p-groups where p is a sufficiently large

prime p proposed by Kahrobaei and Shpilrain in [31]. Note that there are several protocols based on

semidirect products of groups, such as a public key exchange [23].

5.4.1. Protocol. Let G be a group (or a semigroup) and choose public g ∈ G and ϕ ∈ Aut(G) (or

End(G)). Alice chooses a private m ∈ N while Bob chooses a private n ∈ N. Alice and Bob are going

to work with elements of the form (g, ϕr), where g ∈ G and r ∈ N. Recall that the multiplication of

two elements of this form is as follows:

(g, ϕr)(h, ϕs) = (ϕs(g)h, ϕr+s).

Now we present a key exchange protocol similar to the Diffie-Hellman key exchange.

• Alice computes

(g, ϕ)m = (ϕm−1(g) · · ·ϕ2(g)ϕ(g)g, ϕm)

and sends the first component a = φm−1(g) · · ·ϕ2(g)ϕ(g)g of the pair to Bob.



Int. J. Group Theory x no. x (201x) xx-xx D. Kahrobaei and M. Noce 13

• Bob computes

(g, ϕ)n = (ϕn−1(g) · · ·ϕ2(g)ϕ(g)g, ϕn)

and sends the first component b = ϕn−1(g) · · ·ϕ2(g)ϕ(g)g of the pair to Alice.

• Alice computes

(b, x)(a, ϕm) = (ϕm(b)a, xϕm).

Her key is KA = ϕm(b)a.

• Bob computes

(a, y)(b, ϕn) = (ϕn(a)b, yϕn).

His key is KB = ϕn(a)b.

The shared secret key is K = KA = KB = since

(b, x)(a, ϕm) = (a, y)(b, ϕn) = (g, ϕ)m+n.

5.4.2. Platform groups. We denote with γc(G) the normal subgroup of G generated by all the elements

of the form [y1, . . . , yc]. Consider now Fm the free group on x1, . . . , xm. The factor group Fm/γc+1(Fm)

is the free nilpotent group of nilpotency class c.

The group suggested as platform group for the protocol described above is

G = Fm/F p2

m γc+1(Fm)

that is a nilpotent p-group and hence a finite group whose order depends on c,m and p. The suggested

values of c and m are small numbers, for example c = 2 or c = 3 to make the computation efficient.

Conversely, the value of p should be sufficiently large to make it secure to a linear algebra attack.

5.5. Burnside groups of exponent 3 and the learning homomorphism problem. The learning

with errors (LWE) problem was introduced by Regev in [46], and has become one of the most known

problems in lattice-based cryptography. It has been used to construct several cryptosystems, and it

is believed to be hard even for quantum computers.

Informally speaking, the problem of learning with error is to deduce a particular function by sam-

pling the input/output behavior if some of the outputs are incorrect. For more information one can

see [6].

In the following, we define the Learning Homomorphim Problem with Noise (LHN, for short) that

is a generalization of the LWE. We will denote the set of homomorphisms from a group G to a group

H with Hom(G,H).

Definition 5.2. Let ϕ ∈ Hom(G,H), where G and H are finitely generated groups, and let g1, . . . gm ∈

G. Also, let α and β be probability distributions over G and H, respectively. Let Ψ be the probability

distribution over G×H which assigns to each tuple of the form (g, ϕ(g)h) the probability Prob(g ∼ α)

and Prob(h ∼ β) and the rest of tuples from G×H are assigned a probability of 0.

We say that an algorithm solves the LHN with noise if for any ϕ : G → H, the algorithm is able to

learn ϕ given a set of samples from the distribution Ψ with high probability. For the purpose of this
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paper we omit the definition of “learning with high probability given a set of samples”. For a detailed

reference on this, see [6] and [13].

5.5.1. Protocol, platform groups and security assumptions. In [13] the authors employed for the first

time properties of Burnside groups in cryptography. In particular, they introduced the Learning

Burnside Homomorphisms with Noise (B-LHN), which uses for computational purposes only surjective

homomorphisms in contrast to the general definition of LHN [6].

To avoid technicality, we omit the description of the protocol used for this problem. We address

the reader to pp. 10-11 of [6].

We want to underline that as platform group for the B-LHN problem, the authors employed the

Burnside groups of exponent 3, that are, in particular, 2-Engel groups. The security of this protocol

is based on the computational hardness of B-LHN (see Theorem 2 of [13]).

5.6. The Discrete Logarithm Problem in finite p-groups. Sutherland studied the DLP in some

finite abelian p-groups [56], and in a series of papers by Mahalanobis, the DLP has been studied for

finite p-groups of nilpotency class 2 [40]. Solving the DLP in finite p-groups of larger class is an

interesting question. One, for example, can consider semidirect product of cyclic p-groups of well-

defined orders, to make a nilpotent group and then computing the Discrete Logarithm in each factor.

5.7. Quantum algorithms. We conclude this section of applications by presenting the status of

quantum algorithms in cryptography. In 2015 the National Security Agency announced plans to

replace all deployed cryptographic protocols with quantum secure protocols. A quantum computer is

able to perform integer factorization and solve the DLP in finite cyclic groups in polynomial time.

In [5] it has been explored the application of quantum algorithms to group theory. In particular,

from a group theoretic point of view, Shor’s algorithm can be seen as the hidden subgroup problem

in finite cyclic groups. We recall that a subgroup H of a group G is hidden by a function f from G

to a set X if it is constant over all cosets of H, and takes distinct values on distinct cosets. In other

words, for any g1, g2 ∈ G, f(g1) = f(g2) if and only if g1H = g2H. Given a hidden subgroup H, the

hidden subgroup problem asks to find a generating set for H using information from evaluations of f

via an oracle (for a survey on the topic, see [29]). In [30] the complexity of quantum algorithms for

the HSP for certain semidirect product of certain finite p-groups, for p a prime has been considered.

6. Conclusion and open questions

In this paper we have presented the current state of Engel group-based cryptography. We have

begun with a study of algorithmic properties of Engel groups, and we have also seen that there are a

variety of key exchanges, digital signature systems, and secret sharing schemes for which an Engel (or

nilpotent) group is an appropriate choice of platform group. As we have seen throughout the paper,

if on the one hand there has been some results about Engel groups and their attendant cryptosystems

over the last decade, on the other hand the majority of computational complexity and algorithmic

questions remain unanswered.
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We collect some open problems below with the hope of stimulating interest in their solutions.

We start by pointing out that since Engel groups are a generalization of nilpotent groups, in the

case in which the algorithmic problems presented in in Section 4 are decidable for nilpotent groups,

we ask whether the same holds specially if the group is n-Engel. Also, since some problems are

undecidable for nilpotent groups (take, for example, the rational subgroup membership problem and

the endomorphism problem) we ask:

(1) Is the rational subgroup membership problem undecidable for Engel groups?

(2) Is the endomorphism problem undecidable for Engel groups?

In addition, we propose the following questions related also to the complexity of some algorithmic

problems presented in Section 4.

(3) Determine if the following algorithmic problems are decidable and if yes, find the complexity:

• The word problem.

• The (power) conjugacy problem.

• The geodesic length problem.

(4) What about the search problems proposed in Section 4.2? For example, if G is an Engel group,

and a1, . . . an, b1, . . . bn ∈ G where ai is conjugate to bi for i = 1, . . . , n. Can we find c ∈ G

such that aci = bi (for 1 ≤ i ≤ n)? As a starting point, one can study the single conjugacy

search problem (i.e. the case n = 1).

In Section 5 we present several ideas of Engel-group based cryptography.

In particular, in Section 5.1, we present a protocol based on multilinear maps. It is an open question

the ideal platform of this scheme. Thus we ask the following.

(5) What is an ideal platform group for the protocol proposed in Section 5.1?

In Section 5.2 we present some specific cryptosystems based on n-Engel groups. It seems they are

secure because they are based on the difficulty to find square roots in n-Engel groups. Moreover, no

platform groups are suggested. Whence, we propose the following.

(6) What is an ideal platform group for the protocol proposed in Section 5.2.1 and Section 5.2.2,

respectively?

(7) What is the complexity of the square root problem in n-Engel groups? And for the n-root

problem?

In view of Section 5.7, we conclude the paper with the following questions.

(8) Is the HSP solvable for Engel groups?

(9) Are there some Engel group-based cryptosystems resistant to quantum algorithms? Note that

this could be done either by analyzing the HSP for Engel groups or showing the underlying

security problem is NP-complete or NP-hard.
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