
This is a repository copy of Equatorial magnetosonic waves : do nonlinear interactions 
play a role in their evolution?.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156668/

Version: Published Version

Article:

Walker, S.N. orcid.org/0000-0002-4105-1547, Balikhin, M.A., Yearby, K.H. 
orcid.org/0000-0002-7605-4393 et al. (1 more author) (2020) Equatorial magnetosonic 
waves : do nonlinear interactions play a role in their evolution? Journal of Geophysical 
Research: Space Physics, 125 (1). ISSN 2169-9380 

https://doi.org/10.1029/2019ja027572

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Equatorial Magnetosonic Waves: Do Nonlinear
Interactions Play a Role in Their Evolution?

S. N. Walker1, M. A. Balikhin1, K. H. Yearby1, and H. Aryan1

1Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK

Abstract The occurrence of nonlinear interactions between discrete wave frequencies has been shown

to play a significant role in the propagation and evolution of some plasma wave modes. In this paper we

take advantage of closely spaced Cluster measurements to investigate the possibility nonlinear interactions

occurring between the discrete emissions that are observed in a region of Equatorial Magnetosonic Wave

generation. Based on transfer function analysis, it is shown that the role of nonlinear interactions plays a

negligible role in the wave evolution as the emissions propagate from one satellite to the other. A

bicoherence analysis of the individual signals also fails to find the existence of nonlinear interactions in the

evolution of equatorial magnetosonic waves.

Plain Language Summary In space plasmas, oscillations in the background electric and

magnetic fields grow from energy sources associated with populations of plasma particles that are not

in equilibrium. Once generated, these plasma waves may interact with the background plasma passing

their energy back to the particles. In addition, waves at different frequencies may interact with each other,

passing some of their energy to waves at a third frequency. There interactions may affect the evolution of

these waves as they propagate in space. In this study, we examine a specific type of plasma wave, namely,

equatorial magnetosonic waves, that exist as a set of harmonic frequencies related to the gyration of a

proton in a magnetic field, looking for evidence of so called wave-wave interactions in a region. No

evidence is found for such interactions. Thus, it appears that these waves will evolve by exchanging energy

with plasma particles but not plasma waves.

1. Introduction

Equatorial magnetosonic waves (EMW) (or, simply, equatorial noise; Gurnett, 1976; Russell et al., 1970)

are commonly observed in the terrestrial inner magnetosphere (Boardsen et al., 2016; Laakso et al., 1990;

Perraut et al., 1982; Posch et al., 2015). They usually appear as a regularly spaced series of discrete emissions

at frequencies corresponding to harmonics of the proton gyrofrequency in the region in which they were

generated in the frequency range with an upper limit in the vicinity of the lower hybrid frequency. Outside

of their generation region, the frequencies are unrelated to the local magnetic field magnitude (Santolík

et al., 2016), and under certain conditions the frequency structure may appear washed out (Boardsen et al.,

1992; Posch et al., 2015). In the vast majority of cases, EMWs appear continuous in time; however, instances

of quasiperiodic EMW have also been observed (Boardsen et al., 2014; Fu et al., 2014; Němec et al., 2015).

EMW propagate in a direction almost perpendicular to the external magnetic field, possess a low ellipticity,

and their magnetic field vector is aligned with the external magnetic field. These characteristics essentially

limit the longitudinal extent of these waves to around 10◦ of the magnetic equator, although observations at

higher latitudes have been reported (Tsurutani et al., 2014; Zhima et al., 2015).

The generation of EMW has been strongly linked to the occurrence of proton ring distributions that exhibit

a positive slope (��∕�v
⟂
> 0) (Balikhin et al., 2015; Horne et al., 2000; McClements, 1996; Meredith et al.,

2008; Min & Liu, 2016; Perraut et al., 1982). Such distributions arise due to the injection of plasma sheet par-

ticles from the nightside and their subsequent energy dependant drift around the Earth (Lyons &Williams,

1984). For a sufficiently large gradient, linear dispersion theory leads to the generation of waves in the vicin-

ity of harmonics of the proton gyrofrequency, that is, at intersections between the fast magnetosonic mode

and and harmonics of the various proton Bernstein modes provided that the ratio of the ring speed (Vr) to

Alfvén speed (VA) is large enough. Horne et al. (2000) suggested that the growth of waves at frequencies

� > 30Ωp occurred when Vr > VA while growth at frequencies � < 30Ωp was linked to Vr > 2VA.
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EMWs have been shown to interact with radiation belt electrons and ions through the Doppler shifted

cyclotron resonance condition (1) (Horne et al., 2007).

� − nΩ∕� − k||v|| = 0, (1)

where � is the angular wave frequency, n is the resonance number, Ω is the particle gyrofrequency (either

ions or electrons), k|| is the parallel wave vector component, and v|| the parallel electron velocity, resulting

in both the energisation of particles and their loss through pitch angle scattering via the Landau resonance

(n = 0) since the cyclotron resonances occur at too high an energy to be significant (Horne et al., 2007).

As noted above, EMWsmay be observedwith either a discrete (Balikhin et al., 2015) or continuous (Boardsen

et al., 1992) spectrum. In a pair of papers, Sun, Gao, Chen, et al. (2016) and Sun, Gao, Lu, et al. (2016)

investigated the transition between these two states as a function of the input plasma parameters from the

perspective of both linear theory and 1-D PIC simulations. Their results indicate that smaller values of either

the proton to electron mass ratio, the ratio of the speed of light to the Alfvén velocity, or ratio of the ring

velocity to the Alfvén velocity tended to result in a discrete spectrum. As these parameters increase, both

the frequency and growth rate of the waves increased. When sufficiently high, a continuous, rather than

discrete, spectrum results.

The results of another 1-D PIC simulations by Gao et al. (2018) showed that initial growth of EMWs, driven

by an unstable proton ring distribution, occurred at harmonics in the range 9–12Ωp. Later in the simulation,

emissions at lower harmonicswere observed. Thesewere attributed to the nonlinear interaction between the

higher harmonics, as demonstrated by a bicoherence analysis. However, the maximum bicoherence value

reported is small so any phase relation within the data may not be particularly significant.

In this study, we take advantage of data collectedwithin the Cluster InnerMagnetospheric Campaign (2013)

to investigate the occurrence of nonlinear processes in the evolution of EMW using a systems-based trans-

fer function estimation methodology as well as bicoherence. This paper is structured as follows. Section 2

provides background on the Cluster Inner Magnetospheric Campaign and the data and methodology used

in the analysis. The main results are presented and discussed in section 3.

2. Data andMethodology

At the beginning of July 2013 theClustermission embarked on its InnerMagnetospheric Campaign inwhich

a “100 km formation” was initiated to investigate the role of plasma waves such as equatorial magnetosonic

and chorus waves in the energization of electrons within the radiation belts. The data presented here were

collected by the fluxgate (FGM) (Balogh et al., 1997) and search coil (STAFF) (Cornilleau-Wehrlin et al.,

1997) magnetometers aboard the Cluster 3 and 4 spacecraft (Escoubet et al., 1997) on 6 July 2013 between

18:30:00 and 19:00:00 UT. This period of data has previously been presented in studies by Balikhin et al.

(2015) and Shklyar and Balikhin (2017).

During this period, the satellites traversed the inner magnetosphere at radial distance of 3.8–4.2 RE, local

time 13:30–12:50, and a magnetic latitude of 1.9◦ to −2.3◦, crossing the magnetic equator around 18:44 UT.

Operating in science burst mode the data sets were sampled at 67 Hz (FGM) and 450 Hz (STAFF).

Figure 1 shows a spectrogram of the power spectral density of the equatorial magnetosonic emissions

observed in the Bz (GSE) component of themagnetic field by the STAFF search coil magnetometers onboard

Cluster 3 (Figure 1a) and Cluster 4 (Figure 1b). The maximum wave amplitudes measured for each har-

monic are of the order 2–3 pT. Both spectrograms clearly show an instance of discrete, banded EMW

occurring between the 20th and 30th harmonics of the proton gyrofrequency (indicated by the horizontal

white lines). The actual frequencies of the emissions are observed to fall throughout the period, mirroring

changes observed in the magnitude of the magnetic field. Thus, these observations took place in the gen-

eration region of the emissions. The time of the equatorial crossing is indicated by the vertical white line

around 18:44 UT. Other (colored) vertical lines are the result of interference or spikes in the data.

3. Results

As mentioned in section 1 above, in this particular case, the EMWs were shown to be generated by a ring

instability consisting of protons with energies of the order of 20–30 keV, and resulting in the generation of
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Figure 1. An overview of the magnetosonic wave emissions observed by the STAFF search coil instruments onboard
Cluster Satellite 3 (panel a) and 4 (panel b) on 6 July 2013. The horizontal, sloping white lines represent the 20th
and 30th harmonics of the proton gyrofrequency while the vertical white line indicated the approximate equatorial
crossing time.

waves at frequencies corresponding to proton gyroharmonics in the range 16–32 (Balikhin et al., 2015). In

the current study, the possibility of nonlinear interactions between these emissions is investigated.

Within a plasma, nonlinear interactions between waves at different frequencies are limited to either

three-wave (decay instability) or four-wave interactions (modulational instability).Wave-wave couplingmay

only occur between waves that satisfy the certain conditions on both their frequencies (�) and wave vectors

(k⃗) (Sagdeev & Galeev, 1969). In the case of a three-wave interaction, the waves must satisfy the resonance

conditions

� = �1 ± �2, (2)

k⃗ = k⃗1 ± k⃗2. (3)

The latter condition also implies that the phases (�) of thewaves are also related such that�1+�2−� = const.

In this study twomethods are employed to look for the possible occurrence of nonlinear wave-wave interac-

tions, namely, the transfer function and bicoherence. Transfer functions are used to model the evolution of

waves as they propagate between two points. In essence themeasurements can be considered to be the input

and output of a black box representation of the plasma between them, that is, a causal system. Knowledge

of the transfer function may yield a deeper insight into the underlying physics of the system.

The dynamics of a stationary wavefield, sampled at two spatial locations, may be considered as an

input-output system for which the relationship between �(t) (the output) and u(t) (the input) may be

expressed in terms of a linear combination of the lagged input signals, using a nonlinear, continuous

function F as shown in (4):

�(x, t) = F(�(x, t − 1), �(x, t − 2), … ,u(x, t),u(x, t − 1),u(x, t − 2), … , �), (4)

where � represents the output on the system measured at various times (t-1), (t-2), and so forth; u its input;

and � is an error term. The function F may be expanded in terms of a Volterra series that consists of a set of
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Figure 2.Waveform and spectra of data used in the analysis. Panel a shows
the 10-s snapshot of the Bz magnetic field component measured by Cluster
3 (blue) and 4 (red). Panels b and c show wavelet spectrograms of the
Cluster 3 and 4 waveforms in the frequency range 100–200 Hz.

kernals h that are directly related to the linear and higher-order spectral

processes (5) (Billings, 2013).

�(t) = h0+

M∑

m1=0

h1(m1)u(t−m1)+

M∑

m1=0

M∑

m2=0

h2(m1,m2)u(m1)u(m2)+… (5)

In the time domain, the terms hl correspond to the lth-order impulse

response functions of the systemwhile the frequency domain equivalents

are the lth-order transfer functions.

The use of real data (i.e., finite, noisy measurements) can affect the

robustness of estimations of the Volterra kernals, even if we assume a

Gaussian distribution. To increase the robustness of our estimations, we

adopt amore generalized procedure based on themethodology developed

by Ritz and Powers (1986) and further improved upon byKim and Powers

(1988) and Nam and Powers (1994). In the frequency domain methodol-

ogy developed by these authors, the output signal Y (�)may be expressed

as a function of the input signal U(�) and the linear L�, quadratic Q�,

and higher-order spectral transfer functions as shown in (6).

Y� = L�U� +
1

2

∑

�=�1+�2

Q�
�1�2

U�1
U�2

+ · · · (6)

To solve (6), it is necessary to convert the time domain measurements

in to a frequency domain representation. There are two commonly used

methods to perform this task, the Fourier transform or the wavelet trans-

form. The main difference between the two is the trade-off between the

low time-resolution, high-frequency resolution results using the Fourier

transform and the high time-resolution, lower-frequency resolution pro-

vided by the wavelet transform. In this study transfer to the frequency

domain representation is performed using a wavelet transform since it

was felt that this proved the best compromise between frequency and time

resolutions.

The continuous wavelet transform is defined as

�(a, �) = ∫ �(t)
1√
a
h
(
t − �

a

)
dt, (7)

where a is the scale of the analyzing wavelet h(t). In order to optimize the time/frequency resolution

trade-off, as well as to preserve phase information, the Gaussian or Morlet analyzing wavelet (8) was

employed:

h(t) =
1

�1∕4�1∕2
exp(2�it) exp(−t2∕2�2), (8)

where the scale and angular frequency are related by � = 2�∕a. The parameter � controls the width of the

wavelet. The frequency resolution of the Morlet wavelet is defined asΔ�∕� = 1∕4�, and so the width of the

wavelet may be adjusted to ensure there is no or minimal spectral overlap between adjacent channels. If � is

kept constant, the bandwidth of the wavelet transform becomes increasingly wider as the central frequency

increases and structure in the datamay bewiped out. The use of awavelet transform also enables statistically

robust results to be obtained based on the analysis of shorter time series.

As can clearly be seen from Figure 1, the frequencies of the proton gyroharmonics decrease throughout the

period of data being studied. As a result, the duration of the period used in the following analysis is limited

10 s, between 18:40:15 and 18:40:25 UT, during which the frequency spectra show no significant change in

frequency.

Figure 2 shows the 10-s snap shot of data used in the current study. Figure 2a shows waveform of the GSE

Bz component measured by the STAFF search coil magnetometers onboard Cluster 3 (blue) and Cluster 4

(red). These waveforms have been detrended by removing their mean values. Typical amplitudes are of the
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Figure 3. Results of the transfer function analysis for the period
184015–184025. Panel a shows the linear transfer function. Panel b shows
quadratic transfer function for the frequency combinations �1 + �2 = �3
(region �1 > 0) and �1 − �2 = �3 (region �1 < 0).

order of 0.02–0.04 nT at frequencies below those of interest. At the fre-

quencies of interest, that is, the frequency range in which the harmonics

are observed, the amplitudes are around 2–3 pT. A comparison of the

waveforms shows that there is some similarity between the two sets of

measurements with features observed on Cluster 4 typically 0.15 s before

Cluster 3. Thus, for the purposes of the transfer function estimation the

measurements fromCluster 4may be considered as the input, andCluster

3 the output.

Figures 2b and 2c show the wavelet spectrograms of the Cluster 3 and

4 waveforms. These panels show typically ∼10 bands of EMW occur-

ring in the frequency range 130–180 Hz. The resolution of the individual

wave frequencies also implies that the scales/frequencies used in the

wavelet transform are sufficient to resolve the waves of interest. The

amplitude of the waves at a particular frequency is not constant, vary-

ing by up to 2 orders of magnitude between limits of approximately 1 ×

10−7 and 5 × 10−6 nT2/Hz, independently for each of the observed proton

gyrofrequency harmonics.

3.1. Transfer Function

As mentioned previously, from the comparison of the waveforms it

appears that Cluster 4 sees changes in the signal slightly before Custer 3.

Therefore, for the purposes of this study, the signal from Cluster 4 was

taken as the input signal, Cluster 3 the output. In the original method-

ology of Ritz and Powers (1986) a Fourier Transform was to transfer the

signal from the time to the frequency domain. The transfer function (6)

was then solved using an iterative scheme, beginning by estimating the

value of the linear transfer function, using it to calculate the quadratic

transfer function, followed by reestimating the linear transfer function

coefficient and so on until the changes in the linear/quadratic transfer

function coefficients is less than a predefined threshold level. The solu-

tion was later improved (Kim & Powers, 1988; Nam & Powers, 1994) by

expanding (6) into a system of linear equations, rewriting them in matrix

formusing amethod similar to a least squares fit for their solution. A sim-

ilar least squares fit solution was also used by Dudok de Wit et al. (1999)

and McCaffrey et al. (2000) for studies of turbulence at the terrestrial

bow shock. These latter studies also used employed a continuous wavelet

transform to transform the data into the frequency domain. The solution

methodology used in this study has previously been used in studies of

shock turbulence (Giagkiozis et al., 2011).

Figure 3 shows the results of the transfer function calculations. Figure 3a shows the linear transfer function.

Values below unity indicate the decay of waves from the input measurements to the output; values above

unity indicate growth. Typical values for the frequency range being investigated are 0.6–0.8. This indicates

that the waves are damped slightly as they propagate from Cluster 4 to 3.

Figure 3b shows the variations in the quadratic transfer function. The section above the frequency �1 = 0

represents interactions involving the summation of frequency components�1 and�2where as below this line

interactions are characterized by the difference of the frequency components. The results displayed indicate

that the typical magnitude of the quadratic transfer function for waves in the frequency range 125–190 Hz is

around 10 nT−1 Hz1∕2. This would imply that three-wave interaction would generate wave amplitudes of the

order 5 × 10−5 nT, a value that is negligible in comparison with the size of the measured signal. Therefore,

the low values of the quadratic components of the transfer function indicate that there are no significant

nonlinear interactions occurring within the system considered.

3.2. Bicoherence

To further investigate the significance of the role of wave-wave interactions in the growth/decay of the EMW

observed, a bicoherence analysis was performed on the 10-s snapshot of data. As a tool for investigating the
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Figure 4. Results of the bicoherence analysis for the period 18:40:15–18:40:25. Panels a and b show bicoherence results for Cluster 3 and 4, respectively.

occurrence of nonlinear interactions, bicoherence has previously been applied to waves in the front of the

terrestrial bow shock (Walker et al., 1999; Wilson III et al., 2017), transmitter signals (Němec et al., 2017),

and chorus waves (Gao et al., 2017). The bicoherence (normalized bispectrum), defined by (9), analyzes the

phases of the triad of waves to determine the degree of correlation. Values of the order unity indicate strong

correlation; zero indicates no correlation. A correlation of the phases implies a correlation between thewave

numbers of the waves at frequencies �, �1, and �2, so satisfying the resonance condition (3).

B(�1, �2) =
|⟨X(�1)X(�2)X

∗(�1 + �2)⟩|2

⟨|X(�1)X(�2)|2⟩⟨|X∗(�1 + �2)|2⟩
(9)

Figures 4a and 4b show the results of the bicoherence analysis using 10-s data snapshots from Cluster 3 and

4, respectively. The color scale represents values on the bicoherence in the range zero to unity. Examina-

tion of these plots shows that the bicoherence values are less than 0.1. This is interpreted as signifying that

there is no correlation between the phases of the individual triads of waves analyzed and hence no corre-

lation between the wave numbers of these waves. Thus, it appears that there are no nonlinear, three-wave

interactions occurring within the data snapshot analyzed.

3.3. Other Periods

In total, eight 10-s snapshots centered on times between 18:40:15 and 18:47:45 UT were analyzed. Each

snapshot showed very similar results to that presented above, namely, a transfer function whose quadratic

interaction coefficients resulted in a negligible contribution to the overall waveform together with a bico-

herence analysis that did not show any evidence for the occurrence of nonlinear, three-wave interactions.

4. Conclusions

This paper has presented the results of an analysis to determine the occurrence and role of nonlinear,

three-wave interactions in the evolution of EMWs observed by the Cluster satellites. The main findings may

be summarized as follows.

• Analysis of the blackbox transfer function, using Cluster 4 measurements as the input and Cluster 3 as

output, showed that the quadratic terms within the transfer function resulted in a negligible contribution

to the overall amplitude of the magnetic waveform.

• A bicoherence analysis yielded no evidence for the occurrence of nonlinear, three-wave interactions.

The analysis presented in this paper has shown no evidence for the occurrence of nonlinear interac-

tions between the individual, discrete EMW emissions. These results lead to the conclusion that nonlinear

interactions do not play a role in the generation and evolution of EMWs.
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