
This is a repository copy of A Unary Semigroup Trace Algebra.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/156604/

Version: Accepted Version

Proceedings Paper:
De Oliveira Salazar Ribeiro, Pedro Fernando orcid.org/0000-0003-4319-4872 (Accepted: 
2019) A Unary Semigroup Trace Algebra. In: 18th International Conference on Relational 
and Algebraic Methods in Computer Science (RAMiCS 2020). 18th International 
Conference on Relational and Algebraic Methods in Computer Science, 08-11 Apr 2020 
Lecture Notes in Computer Science . Springer , FRA (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A Unary Semigroup Trace Algebra

Pedro Ribeiro[0000−0003−4319−4872]

Department of Computer Science, University of York, York, YO10 5GH, UK
pedro.ribeiro@york.ac.uk

Abstract. The Unifying Theories of Programming (UTP) of Hoare and
He promote the unification of semantics catering for different concerns,
such as, termination, data modelling, concurrency and time. Process cal-
culi like Circus and CSP can be given semantics in the UTP using reactive
designs whose traces can be abstractly specified using a monoid trace al-
gebra. The prefix order over traces is defined in terms of the monoid
operator. This order, however, is inadequate to characterise a broader
family of timed process algebras whose traces are preordered instead. To
accommodate these, we propose a unary semigroup trace algebra that
is weaker than the monoid algebra. This structure satisfies some of the
axioms of restriction semigroups and is a right P-Ehresmann semigroup.
Reactive designs specified using it satisfy core laws that have been mech-
anised so far in Isabelle/UTP. More importantly, our results improve the
support for unifying trace models in the UTP.

Keywords: Semantics, process algebra, semigroups, UTP

1 Introduction

The Unifying Theories of Programming (UTP) [1] is a relational framework for
characterising different programming paradigms. It promotes the unification of
semantics, while allowing different aspects, such as data, concurrency, termina-
tion, time, and so on, to be considered individually. Programs are specified via
alphabetised relations in the style of Hehner’s Predicative Programming [2].

Behaviour, and concurrency, in the style of CCS, ACP and CSP [3], can be
defined in the UTP via the theory of reactive processes. At its core is the notion
of traces, that is, sequences of events that record the history of interactions.

The time dimension has been considered in different ways [4,5,6,7]. In [4], for
example, traces are sequences of pairs that encode discrete time units. The first
component of a pair records the sequence of events performed during that time,
and the second component the set of events refused at that point. In [7], which
presents a theory that can be used to give semantics in the UTP to the hardware
programming language Handel-C [8] and other synchronous languages, a more
abstract view is provided by a parametric model. It requires that the operators
for addition and subtraction of pairs, and traces, satisfy a set of axioms.

Semantic models employing traces typically define a prefix relation ≤ that
specifies how a trace can be augmented, encoding some notion of causality. The



2 Pedro Ribeiro

semantics for CSP, for example, is defined using sequences whose prefix relation
is a partial order. In that setting, a trace s is a prefix of t , written s ≤ t , exactly
when s ≤ t ⇔ ∃ u • s a u = t , that is, there exists a trace u, such that (•)
the concatenation (a) of s with u is t . This led Foster et al. [9] to observe that
the prefix order for several trace models can be abstractly defined in terms of a
left-cancellative monoid, henceforth referred to as the “monoid trace algebra”.

In [7], however, a pair (s, r0) is a prefix of (t , r1) exactly when s ≤ t , but the
refusal sets r0 and r1 are not constrained. Anti-symmetry is thus not satisfied
and so the prefix relation on traces is merely a pre-order. The monoid trace
algebra is unsatisfactory for such a theory of synchronous languages. Solving
this problem is not only of theoretical interest to establish the commonality
between different trace structures, but more importantly enables key results to
be reusable in synchronous process algebra, thus promoting unification of models
and results, a key goal of the UTP.

Unification in the UTP can be exploited in various ways, namely via subset
embeddings, weakest completion semantics [10], Galois connections and para-
metric theories. The approach pursued in this paper is a contribution to the
latter by generalising the theory of reactive processes even further. The main
contribution is the definition of a unary left-cancellative semigroup, obtained
by introducing a unary function and weakening of the monoid trace algebra
axioms. The pairs from [7] are shown to satisfy this structure, as are finite se-
quences (traces) of such pairs. There is surprisingly little impact on the proofs
already established for reactive processes as demonstrated by the mechanisation
of our results in Isabelle/UTP [11].

The paper is structured as follows. In Section 2 the theory of reactive pro-
cesses is introduced, as well as the monoid trace algebra. Our unary semigroup
trace algebra is defined in Section 3. Our theory of synchronous algebra is char-
acterised in Section 4. In Section 5 we discuss related work. In Section 6 we
summarize the main results and provide pointers for future work.

2 Preliminaries

In the UTP programs are specified by alphabetised relations. Variables are used
to define computations, with undashed variables (x ) capturing the initial value,
and dashed variables (x ′) capturing the later, or final, value. These can be pro-
gram variables, or auxiliar variables that capture information such as termina-
tion or execution time. A UTP theory is characterised by three components: an
alphabet, a set of healthiness conditions, and a set of operators.

For example, in a theory of discrete time we may have variables t and t ′ of
type N to record time. The relation t ′ = t + 1 describes a computation whereby
time is incremented by one time unit. To define the set of valid time-monotonic
computations, a function HC(P) =̂ P ∧ t ≤ t ′ on predicates can be defined
(=̂), so that the set of healthy predicates are the fixed points of HC. When
the healthiness conditions are idempotent and monotonic, with respect to the



A Unary Semigroup Trace Algebra 3

refinement order ⊑, their image forms a complete lattice, which allows reasoning
about recursion.

The theory of reactive processes uses the auxiliary variables ok and ok ′ to
capture stability, wait and wait ′ to record information about termination, tr and
tr ′ to record the history of interactions with the environment, and ref and ref ′ to
record the possibility of refusing interaction. The variable ok indicates whether
the previous process is in a stable state, while ok ′ records this information for the
current process. Similarly, wait records termination for the previous process and
wait ′ for the current process. A process only starts executing in a state where
ok and ¬ wait are true. Termination occurs when ok ′ and ¬ wait ′ are true.

The interactions with the environment are captured by sequences of events,
recorded by tr and tr ′. The variable tr records the sequence of events that took
place before the current process started, while tr ′ records all the events that
have been observed so far. Finally, ref and ref ′ record the set of events that may
be refused by the process at the start, and currently.

In the theory of synchronous algebra, as already said, tr and tr ′ are sequences
of pairs, where the first component is a sequence of events, and the second is a
set of events that may be refused. The variables ref and ref ′ are not used.

2.1 Monoid trace algebra

To conciliate different trace structures for reactive processes, Foster et al. [9]
propose a trace algebra, where tr and tr ′ are of an abstract type T . Below we
reproduce its axioms, where ̂ is concatenation, and ε is the empty trace.

Definition 1 (TA). A trace algebra (T ,̂ ,ε) is a monoid satisfying the axioms:

x ̂ (y ̂ z ) = (x ̂ y) ̂ z (TA1)

ε ̂ x = x ̂ ε = x (TA2)

x ̂ y = x ̂ z ⇒ y = z (TA3)

x ̂ y = ε ⇒ x = ε (TA4)

Concatenation is associative (TA1), has the empty trace ε as both a left and
right unit (TA2), and is left-cancellative (TA3). Axiom TA4 eliminates “negative
traces” by requiring that whenever the concatenation of x and y is the empty
trace then x must also be the empty trace. The dual law x ̂ y = ε ⇒ y = ε
can be deduced from axioms TA2 and TA4. We observe that while in [9] right-
cancellation is also proposed as an axiom, the laws of the algebra, as well as
the results established for the theory of reactive processes, as proved so far in
Isabelle/UTP1, do not depend on this axiom, and so we can safely omit it.

Standard finite sequences, for example, (seqA,a, 〈〉) form a trace algebra,
where a is sequence concatenation and 〈〉 is the empty sequence. Using the two
trace algebra operators it is possible to define a trace prefix relation (x ≤ y) and
a trace subtraction operator (x − y) as reproduced below.

Definition 2 (Trace prefix). x ≤ y =̂ (∃ z • x ̂ z = y)

Definition 3 (Subtraction). y − x =̂

{
ιz • y = x ̂ z if x ≤ y
ε otherwise

1 https://github.com/isabelle-utp (definitions and lemmas hyper-linked using ).



4 Pedro Ribeiro

A trace x is a prefix of y (x ≤ y) whenever y can be obtained by concatenating
x with some trace z . When x ≤ y the subtraction y−x is z whose concatenation
with x is y , specified using the definite description operator (ι), as z is unique
by TA3, and otherwise y − x is ε so that subtraction is total. In [9] it is shown
that (T ,≤) is a partial order, and that ε is the least element. As mentioned, this
is unsuitable for the synchronous algebra, so in Section 3 we pursue a preorder.

2.2 Generalised Reactive Processes

Using the trace algebra, it is possible to define the healthiness conditions that
underpin several theories based on reactive processes, reproduced below.

Definition 4 (Generalised Reactive Processes).

R1(P) =̂ tr ≤ tr ′ R2(P) =̂ P [ε, tr ′ − tr/tr , tr ′]

R2c(P) =̂ R2(P)⊳ tr ≤ tr ′ ⊲ P R2a(P) =̂
l

z • P [z , z ̂ (tr ′ − tr)/tr , tr ′]

R3(P) =̂ II⊳ wait ⊲ P R(P) =̂ R1 ◦ R2 ◦ R3(P)

R1 requires that a trace can only be extended. R2 requires processes to be
insensitive to the initial trace and is specified by substituting tr in P with the
empty trace ε and tr ′ with the difference tr ′ − tr . Because this difference is only
well-defined when tr ≤ tr ′, the version R2c proposed by Foster et al. [9] applies
R2 conditionally: P⊳c⊲Q is P if c is true, and otherwise is Q . R2a, defined us-
ing the greatest lower bound

d
, is an alternative for R2 having the same fixed

points. R3 ensures that P may only start if the previous process has termi-
nated (¬ wait), and otherwise behaves as the identity II , which keeps variables
unchanged. This ensures that relational composition is sequential composition.
Finally, the theory is characterised by R, the composition of all conditions.

While these definitions are applicable to several reactive theories, R2 and
R2a, for example, cannot be instantiated for synchronous algebra [7], whose
counterparts to R2 and R2a are reproduced below with subscript S . Concate-
nation (̂S ) and subtraction (−S ) of their traces are also annotated with S .

Definition 5.

R2S (P) = P [〈(〈〉, snd(last(tr)))〉, tr ′ −S tr/tr , tr ′]

R2aS (P) =
l

z • P [z , z ̂S (tr ′ −S tr)/tr , tr ′] ∧ snd(last(tr)) = snd(last(z ))

R2S considers the substitution of tr with a sequence whose only element is a
pair: the first component is the empty sequence, and the second component is
the set of events resulting from taking the second component (snd) of the pair
extracted from the last element of tr , well-defined when R1 is applied first.

Clearly the empty trace (ε) of the monoid trace algebra cannot abstractly en-
code an element that can take several values, such as snd(last(tr)). On the other
hand, an examination of the algebraic laws satisfied by R2S , and counterparts
to R1 and R3 in [7,5], reveals a striking similarity with the laws established for
generalised reactive designs, which indicates a similar unification is feasible as
we demonstrate in Section 4 using the algebra we define next.



A Unary Semigroup Trace Algebra 5

3 Unary semigroup trace algebra

Instead of a fixed empty trace ε, we introduce a total function Φ : T → T to
obtain a unary semigroup (T ,̂ ,Φ). The axioms are defined next in Section 3.1.
In Section 3.2 we classify it according to the literature on semigroups. In Sec-
tion 3.3 we show that the prefix relation is a preorder, and redefine subtraction.

3.1 Axioms

The following axioms can be seen as counterparts to that of the monoid trace
algebra, adapted to consider Φ and the fact that the structure is not a monoid.

Definition 6 (USTA). A unary semigroup trace algebra (T ,̂ ,Φ) is a left-
cancellative unary semigroup satisfying the following axioms:

x ̂ (y ̂ z ) = (x ̂ y) ̂ z (USTA1)

x ̂ Φ(x ) = x (USTA2)

x ̂ y = x ̂ z ⇒ y = z (USTA3)

x ̂ y = Φ(y) ⇒ y = Φ(y) (USTA4)

Concatenation is associative (USTA1) so that we have a semigroup. Similarly to
axiom TA2, we require that Φ(x ) is a right identity with respect to concatenation
with x (USTA2). Concatenation is also left-cancellative (USTA3). From these
three axioms we can establish that Φ(x ) is a left-unit for concatenation.

Lemma 1. Φ(x ) ̂ y = y

Proof.

x ̂ y = x ̂ y [Axiom USTA2]

≡ (x ̂ Φ(x )) ̂ y = x ̂ y [Axioms USTA1 and USTA3]

⇒ Φ(x ) ̂ y = y ⊓⊔

Similarly to axiom TA4 of the monoid trace algebra, axiom USTA4 also elimi-
nates “negative traces”, but when we draw a parallel between ε and Φ, the shape
of USTA4 is different. The requirement on the second operand y of the concate-
nation x ̂ y (rather than the first operand x as in axiom TA4) is sufficiently
weak to ensure the prefix relation ≤, defined in terms of ̂, is not anti-symmetric.

To illustrate that axiom TA4 admits structures whose prefix relation ≤ is
not anti-symmetric, we consider the following example.

Example 1. Consider (S,≫,id), where S contains at least two distinct elements,
x ≫ y =̂ y and id is the identity function. Such structure is a unary semigroup
trace algebra. We show that ∃ a, b : S • a ≤ b ∧ b ≤ a ∧ a 6= b.

Proof.

∃ a, b : S • a ≤ b ∧ b ≤ a ∧ a 6= b [Definition of ≤]

= ∃ a, b : S • (∃ z • a ≫ z = b) ∧ (∃ z • b ≫ z = a) ∧ a 6= b [Definition of ≫]

= ∃ a, b : S • (∃ z • z = b) ∧ (∃ z • z = a) ∧ a 6= b [One point rule]

= ∃ a, b : S • a 6= b [Assumption]

= true ⊓⊔



6 Pedro Ribeiro

An interesting generalisation of (S,≫,id) is that (T ,̂ ,id) satisfies the axioms
of a U -semigroup [12, p.102]. In general, Φ is idempotent as we establish next.

Lemma 2. Φ(Φ(x )) = Φ(x )

Proof. Using Axiom USTA2.

Φ(x ) ̂ Φ(Φ(x )) = Φ(x ) [Lemma 1]

≡ Φ(x ) ̂ Φ(Φ(x )) = Φ(x ) ̂ Φ(x ) [Axiom USTA3]

⇒ Φ(Φ(x )) = Φ(x ) ⊓⊔

Moreover, if Φ is constant we can obtain the original monoid trace algebra by
having ∀ x • Φ(x ) = ε.

Theorem 1. Provided ∀ x • Φ(x ) = ε, and (T ,̂ ,Φ) is a unary semigroup trace
algebra, then (T ,̂ ,ε) is a monoid trace algebra.

Proof. Axioms TA1, TA2 and TA3 are trivially satisfied. Axiom TA4 can be
satisfied by deduction using USTA2 and USTA4. ⊓⊔

Thus, the monoid trace algebra can be seen as a specialisation of the algebraic
structure we propose. This and other results to follow have been mechanised in
Isabelle2. Moreover, we have used Isabelle’s counter-example generator nitpick
to ascertain that axioms USTA1-USTA4 are independent. Next we discuss how
the new structure can be classified according to the literature on semigroups.

3.2 Semigroup properties

To establish key properties of the algebra, we first propose a lemma that is used
in proofs to follow. The application of Φ to a trace obtained by concatenating x
and y is equal to Φ(y) as stated in the lemma below.

Lemma 3. Φ(x ̂ y) = Φ(y)

Proof. Using Axiom USTA2.

(x ̂ y) ̂ Φ(x ̂ y) = x ̂ y [Axioms USTA1 and USTA2]

≡ (x ̂ y) ̂ Φ(x ̂ y) = (x ̂ y) ̂ Φ(y) [Axiom USTA3]

⇒ Φ(x ̂ y) = Φ(y) ⊓⊔

From Lemmas 1 and 3 we can deduce that Φ distributes over ̂, a property
implicitly satisfied by left-cancellative restriction semigroups [13].

The structure is neither a left nor a right-restriction semigroup, as it satisfies
only two (LR1 and LR2) out of four axioms [13] of left restriction semigroups,
and three (RR1 to RR3) out of four axioms of right-restriction semigroups.

2 https://github.com/isabelle-utp/utp-main/tree/ramics2020s



A Unary Semigroup Trace Algebra 7

Theorem 2 (Laws of restriction semigroups).

Φ(x ) ̂ x = x (LR1)

Φ(Φ(x ) ̂ y) = Φ(x ) ̂ Φ(y) (LR2)

x ̂ Φ(x ) = x (RR1)

Φ(x ̂ Φ(y)) = Φ(x ) ̂ Φ(y) (RR2)

Φ(x ) ̂ y = y ̂ Φ(x ̂ y) (RR3)

Proof. (LR1) Using Lemma 1; (RR1) using Axiom USTA2.

(LR2) Using Lemmas 1 and 3; (RR2) using, in addition, Lemma 2.

(RR3)

y ̂ Φ(x ̂ y) [Lemma 3]

= y ̂ Φ(y) [Axiom USTA2 and Lemma 1]

= Φ(x ) ̂ y ⊓⊔

A fourth axiom of restriction semigroups requires commutativity on the applica-
tion of Φ with respect to ̂ as Φ(x ) ̂ Φ(y) = Φ(y) ̂ Φ(x ). It is clear from Lemma 1
that this equality cannot hold. We have, however, that the structure satisfies the
axioms of right P-Ehresmann semigroups [14], as established next.

Theorem 3. (T ,̂ ,Φ) is a right P-Ehresmann semigroup.

x ̂ Φ(x ) = x (PE1)

Φ(x ̂ y) = Φ(Φ(x ) ̂ y) (PE2)

Φ(Φ(x ) ̂ Φ(y)) = Φ(y) ̂ Φ(x ) ̂ Φ(y) (PE3)

Φ(x ) ̂ Φ(x ) = Φ(x ) (PE4)

Proof. (PE1) Using Axiom USTA2; (PE2) using Lemmas 1 and 3.

(PE3)

Φ(y) ̂ Φ(x ) ̂ Φ(y) [Lemma 1]

= Φ(x ) ̂ Φ(y) [Lemma 2]

= Φ(Φ(x )) ̂ Φ(Φ(y)) [Lemmas 1 and 3]

= Φ(Φ(x ) ̂ Φ(y))

(PE4) Follows from Lemma 1. ⊓⊔

Despite proposing axioms based on a generalisation of those of the monoid trace
algebra, it is pleasing to find that such a construction satisfies the axioms of a
known class of semigroups. Next we study the induced prefix relation ≤ of the
algebra, defined in terms of ̂, and its subtraction operator −.

3.3 Prefix and subtraction

The prefix relation can be characterised exactly as in Definition 2. In what follows
we study its key algebraic properties, starting by showing that it is a preorder.

Theorem 4. Provided (T ,̂ ,Φ) is a USTA then (T ,≤) is a preorder. (TP1)



8 Pedro Ribeiro

Proof. (Reflexivity) Using Definition 2 and Axiom USTA2; (Transitivity) Using
Definition 2, Axiom USTA1 and predicate calculus.

Moreover, we have that ≤ satisfies the following laws, numbered to mirror the
laws TP1-TP4 of the monoid trace algebra [9].

Theorem 5 (Trace Prefix Laws).

Φ(x ) ≤ y (TP2) x ≤ x ̂ y (TP3) x ̂ y ≤ x ̂ z ⇔ y ≤ z (TP4)

Trace Φ(x ) is smaller than any other trace (TP2). Law TP3 states that con-
catenation constructs larger traces, and Law TP4 states that concatenation is
monotonic in its right argument. Next, we introduce the subtraction operator.

Definition 7 (Subtraction). y − x =̂

{
ιz • y = x ̂ z if x ≤ y
Φ(x ) otherwise

Subtraction is defined like in Definition 3 when x ≤ y , and otherwise is defined
as Φ(x ). This deliberate choice of Φ(x ) is essential to ensure that the following
laws TS1-TS10 (numbered after the laws TS1-TS8 in [9] as counterparts) hold.
Notably absent from the following list is the counterpart to TS2 of the monoid
trace algebra, which we discuss in the sequel. It does not hold in this setting,
but this bears no impact on the results established for the reactive theory.

Theorem 6 (Trace Subtraction Laws).

x − Φ(y) = x (TS1)

x − x = Φ(x ) (TS3)

(x ̂ y)− x = y (TS4)

(x − y)− z = x − (y ̂ z ) (TS5)

(x ̂ y)− (x ̂ z ) = y − z (TS6)

y ≤ x ∧ x − y = Φ(y) ⇔ x = y (TS7)

x ≤ y ⇒ x ̂ (y − x ) = y (TS8)

x ≤ y ∧ x ≤ z ⇒ (y − x = z − x ⇔ y = z ) (TS9)

x ≤ y ∧ x ≤ z ∧ z ≤ y ⇒ (y − x )− (z − x ) = y − z (TS10)

Law TS1 states that the subtraction of a trace Φ(y) from another trace is ineffec-
tive. Law TS3 states that subtracting a trace from itself is equal to applying Φ.
Laws TS4-TS6 and TS8 capture expected properties of concatenation and sub-
traction, also satisfied by the monoid trace algebra. The implication in Law TS7
states that if the subtraction x − y is Φ(y), and y is a prefix of x , then x
and y are the same. The reverse implication follows from Law TS3. The novel
laws TS9-TS10 correspond to axioms SSub:same and SSub:subsub in [7, p.95-96].

The counterpart to Law TS2 (ε−x = ε) of the monoid trace algebra [9] could
be stated in this setting as Φ(y) − x = Φ(y). However, this equality does not
hold in general. In particular, for example, if x ≤ Φ(y) holds it is not necessarily
the case that (ιz • Φ(y) = x ̂ z ) = Φ(y). Existing proofs for reactive processes
do not depend on Law TS2, so the fact that it does not hold in our trace algebra
has no practical impact. Next, we focus on instances of the algebra.



A Unary Semigroup Trace Algebra 9

4 Trace models

In this section we focus on instances of our trace algebra, and show that it can be
instantiated to yield the traces of [7]. To that end, we consider pairs in Section 4.1
whose first component is a USTA. Then in Section 4.2 we consider these pairs as
elements of finite non-empty sequences and show the lifted structure is a USTA.

4.1 Parametric pairs

We introduce pairs P : H×R parametrised by types H and R, whose H must be
a USTA (H,+H, ΦH) where +H : H×H → H is concatenation, and ΦH : H → H
is the unary function of the USTA. To construct a USTA for parametric pairs
(P,+P , ΦP), we define concatenation of pairs (+P) and ΦP as follows.

Definition 8. (h1, r1) +P (h2, r2) = (h1 +H h2, r2)

ΦP(h1, r1) = (ΦH(h1), r1)

Concatenation of (h1, r1) and (h2, r2) is a pair where: the first component is
the result of applying +H to h1 and h2, and the second component is r2. ΦP is
defined as the application of ΦH to the first component. The definition of +P

closely follows the concatenation specified in [7]. However, unlike [7] we do not
need to specify subtraction, as instead it can be derived as a lemma below.

Lemma 4. Provided h2 ≤ h1, (h1, r1)− (h2, r2) = (h1 − h2, r1).

With the above construction we can establish that (P,+P , ΦP) is a USTA.

Theorem 7. Provided (H,+H, ΦH) is a USTA then (P,+P , ΦP) is a USTA.

Thus, the pairs of [7] form a USTA. Next, we consider a model for traces con-
structed from finite non-empty sequences whose elements are pairs of type P.

4.2 Synchronous traces

As already mentioned, the traces of synchronous process algebra consist of non-
empty sequences of pairs [7]. In this section we construct this abstract trace
structure stepwise, starting by defining a specialised model of finite non-empty
sequences that is a USTA. This is then used to lift pairs of type P to traces.

Traces A trace in this setting is a finite non-empty sequence defined via a recur-
sive data type fs below, specified using the Z [15] notation for type constructors.

Definition 9. fs ::= One 〈〈σ〉〉 | Cons 〈〈σ × fs〉〉

One constructs a sequence with a single element of type σ, and Cons constructs
a sequence where an element is followed by a sequence of type fs. We use angled
brackets 〈a0, ..., an〉fs to represent consecutive applications of Cons, ending in



10 Pedro Ribeiro

One an , and 〈a0〉fs for a single constructionOne a0. The subscript fs distinguishes
finite non-empty sequences from standard finite sequences (that may be empty).

To construct a USTA for an fs parametrised by a given type σ that is a
USTA (σ,̂σ, Φσ), we need to instantiate the respective structure (fs,̂fs , Φfs) in
terms of ̂σ and Φσ. We define concatenation (̂fs) next, and Φfs in the sequel.

Definition 10 (Concatenation of non-empty sequences).

̂fs : fs × fs → fs

∀ x , y : σ; f , g : fs •

One x ̂fs One y = One (x +σ y)

One x ̂fs Cons (y , f ) = Cons (x +σ y , f )

Cons (x , f ) ̂fs g = Cons (x , f ̂fs g)

The concatenation of two sequences 〈x 〉fs and 〈y〉fs , with one element each, is
a sequence whose only element is the result of the sum (+σ) of x and y . A
sequence 〈x 〉fs concatenated with 〈a0, ..., an〉fs is defined as 〈x +σ a0, ..., an〉fs ,
that is, the first element is the sum (+σ) of x and the first element a0 of the
second sequence. Finally, a sequence 〈a0, ..., an〉fs concatenated with g has a0 as
first element followed by the concatenation of the tail of that sequence with g .

We observe that ̂fs is distinctive from standard sequence concatenation, so
as to induce an appropriate definition for prefixing and subtraction (Definitions 2
and 7). For example, the subtraction of 〈a〉fs from itself is the sequence z whose
concatenation with 〈a〉fs yields 〈a〉fs (ιz • 〈a〉fs = 〈a〉fs ̂fs z ). Because fs
sequences are non-empty, z is the sequence 〈Φσ(a)〉fs so that 〈a +σ Φσ(a)〉fs =
〈a〉fs , as required. This in contrast to subtraction of standard sequences, where
〈a〉 − 〈a〉 = 〈〉. Similar reasoning applies to ensure ≤ is reflexive.

Indeed to show that (fs,̂fs , Φfs) is a USTA given a type σ that is a USTA
(σ,+σ, Φσ), we define Φfs in terms of Φσ as follows.

Definition 11. Φfs(x ) = 〈Φσ(last(x ))〉fs

It is defined as the sequence whose only element is obtained by applying Φσ to
its last element. By construction x is non-empty, so last and head are always
well-defined. Thus, provided σ is a USTA, a sequence s of type fs can be split
into concatenations involving its front and last element, and its head and tail .

Lemma 5. front(s) ̂fs 〈last(s)〉fs = s, and 〈head(s)〉fs ̂fs tail(s) = s.

The functions front and tail are tailored to non-empty sequences. For example,
front(〈a〉fs) is 〈Φσ(a)〉fs , while front(〈a, b〉fs) is 〈a, Φσ(b)〉fs , and tail(〈a〉fs) is
〈Φσ(a)〉fs , while tail(〈a, b〉fs) is 〈Φσ(a), b〉fs , so that the decomposition holds.

Next we use this structure to instantiate the USTA for fs sequences, which
corresponds to the trace structure underlying synchronous process algebra.

Theorem 8. Provided (σ,+σ, Φσ) is a USTA, then (fs,̂fs , Φfs) is a USTA.

As a corollary to this theorem we have that a parametric pair P whose type
parameter H is a USTA (H,+H, ΦH) induces a (fs,̂fs , Φfs) USTA.



A Unary Semigroup Trace Algebra 11

Corollary 1. If (H,+H, ΦH) is a USTA, then (fs,̂fs , Φfs) is a USTA.

This demonstrates that to construct such a USTA it is sufficient to show that
H is a USTA. This is a much more general, and concise, construction, than that
proposed in [7], which instead requires satisfying nearly 26 axioms. Moreover,
our results do not rely on any assumptions about the type R, thus allowing the
second component of such pairs in a trace to record arbitrary information, not
only refusal sets as proposed in [7]. Next we focus on key properties of traces
leading to a demonstration that we can derive core laws of [7], and the healthiness
conditions of the corresponding UTP theory.

Properties Below we establish key results on the difference of fs sequences.

Theorem 9. Provided (σ,+σ, Φσ) is a USTA and s ≤ t, where s , t : fs,

tail(t − s) = tail(t − front(s)) (S1)

head(t − s) = head(t − front(s))− last(s) (S2)

last(s) ≤ head(t − front(s)) (S3)

The tail of the difference t−s is the tail of the difference between t and the front
of s (S1). Likewise, the head of the difference t − s is equal to the last element
of s subtracted from the head of the difference t − front(s) (S2). Related, (S3)
establishes that last(s) is a prefix of head(t − front(s)).

To illustrate the role of S1, we consider, as an example the subtraction of a fs
sequence whose elements are standard sequences. The subtraction of 〈〈a〉, 〈b〉〉fs
from 〈〈a〉, 〈b, c〉, 〈d〉〉fs is 〈〈c〉, 〈d〉〉fs , indicating that the first element where the
sequences differ is the inner sequence 〈b, c〉. The front of 〈〈a〉, 〈b〉〉fs is 〈〈a〉, 〈〉〉fs ,
and so the difference 〈〈a〉, 〈b, c〉, 〈d〉〉fs − 〈〈a〉, 〈〉〉fs is 〈〈b, c〉, 〈d〉〉fs . Finally, the
tail(〈〈b, c〉, 〈d〉〉fs) = 〈〈〉, 〈d〉〉fs coincides with that of 〈〈c〉, 〈d〉〉fs .

Moreover, we show below that Eq. 3 in [7] also holds in our setting of fs
sequences of parametric pairs P, provided (H,+H, ΦH) is a USTA.

Lemma 6. s ̂fs t = front(s) ̂fs 〈last(s) +P head(t)〉fs ̂fs tail(t).

The concatenation of traces s and t can be decomposed into the concatenation
of the front of s with a singleton sequence, whose only element is the result of
concatenating (+P) the last pair of s and the head pair of t , and the tail of t .

Reactive processes Besides the definition of an abstract trace structure that
can be instantiated to yield the trace structure in [7], we discuss next how it can
be used to define a generalised theory of reactive processes. Here we focus on
the instantiation of the healthiness conditions.

Healthiness conditions The functions R1 and R3 are stated like in Section 2,
but in the context of a USTA (T ,̂, Φ), with tr and tr ′ of type T . R2, on the
other hand, must be adapted to accommodate the function Φ.



12 Pedro Ribeiro

Definition 12. R2(P) = P [Φ(tr), tr ′ − tr/tr , tr ′]

R2a(P) =
l

z • P [z , z ̂ (tr ′ − tr)/tr , tr ′] ∧ Φ(tr) = Φ(z )

Our definition forR2 is stated by replacing ε with Φ(tr). Moreover, the definition
forR2a, when compared to Definition 4, requires that, in addition z and tr agree
on the application of Φ. This closely follows a solution proposed in [7, p. 83].

Despite employing a weaker trace algebra, the core properties of R1, R2 and
R3, namely idempotency and monotonicity with respect to refinement, continue
to hold. Similarly, all laws of reactive processes, and those for other theories built
upon reactive processes, namely CSP, continue to hold as demonstrated by the
mechanisation in Isabelle/UTP, which features several hundreds of theorems.

Because the existing theories are mechanised we have been able to quickly es-
tablish that all relevant properties hold when using our algebra. Proofs of closure
for sequential and parallel composition under R2 required small adjustments to
take into account Φ, but were structurally kept unchanged. Next, we illustrate
a concrete instantiation of the algebra to accommodate the trace model of [4].

Concrete instantiation for Circus Time In what follows we show how our alge-
bra can be instantiated to yield the theory of Circus Time, that encompasses
behaviour and data modelling in a discrete-time setting.

The parametric pair type P is instantiated with H as seq Σ, where Σ is
a given type of events, which is a USTA (seq Σ,a, 〈〉). Concatenation (a) is
associative (USTA1), left-cancellative (USTA3) and satisfies USTA4. The empty
sequence 〈〉 is a right-unit (USTA2). The parameter R is instantiated as PΣ,
a set of events. Thus, the first component of such a pair is a sequence and the
second a set of events. For example, the pair (〈a, b〉, {a}) records that having
performed events a, and then b, the system can refuse to engage in event a.

Therefore, the lifted structure of finite non-empty sequences fs parametrised
by the concrete pair structure above, gives rise to a USTA (Corollary 1). For
example, in Circus Time the sequence 〈(〈a, b〉, {a}), (〈〉, Σ)〉fs encodes a situation
where: during the first time unit a and b are performed, with a then being
refused, and during the following time unit no events are performed (〈〉) with
the system refusing to engage in any event (Σ).

Compared with the approach in [4], we have that both concatenation and
subtraction of fs sequences (using the lifted structure) is total and closed un-
der the correct type. This provides for a precise encoding of the healthiness
conditions proposed in [4] using our abstract algebra. Furthermore, this makes
mechanisation of the model in Isabelle/UTP an easier endeavour by eliminating
the need to reprove a substantial base of existing theorems of reactive processes.

In the remainder of this section we show two key results that demonstrate R1
and R2 can be instantiated to yield the counterpart definitions for Circus Time.

Lemma 7. s ≤ t ⇒ front(s) ≤ t ∧ fst(last(s)) ≤ fst(head(t − front(s))).

This corresponds to the conjunct in the definition of R1 for Circus Time as
defined in [16], for example, with the understanding that here front is total,
whereas in [16,7] it is a partial function over standard sequences.



A Unary Semigroup Trace Algebra 13

The definition of R2S for Circus Time is derived next. First we establish a
result for the subtraction of fs traces that depends on the following lemma.

Lemma 8. s ≤ t ⇒ snd(head(t−front(s))− last(s)) = snd(head(t−front(s))).

This lemma states that the second component of the difference, between the
head of the difference t and the front of s, and last(s), does not depend on
last(s), a result that follows from Lemma 4. For example, the subtraction of
〈(〈a〉, r2)〉fs from 〈(〈a, b〉, r1)〉fs yields the sequence 〈(〈b〉, r1)〉fs as the second
component only depends on r1, but not r2. Next, we establish a general result
for subtraction of fs traces.

Theorem 10. Provided s ≤ t, where s , t : fs,

t − s = 〈

(
fst(head(t − front(s)))− fst(last(s)),
snd(head(t − front(s)))

)
〉fs ̂fs tail(t − front(s))

Proof.

t − s [Lemma 5]

= 〈head(t − s)〉fs ̂fs tail(t − s) [S2 in Theorem 9]

= 〈head(t − front(s))− last(s)〉fs ̂fs tail(t − s) [S1 in Theorem 9]

= 〈head(t − front(s))− last(s)〉fs ̂fs tail(t − front(s)) [Pair structure]

=


 〈

(
fst(head(t − front(s))− last(s)),
snd(head(t − front(s))− last(s))

)
〉fs

̂fs tail(t − front(s))


 [Lemma 4]

=


 〈

(
fst(head(t − front(s)))− fst(last(s)),
snd(head(t − front(s))− last(s))

)
〉fs

̂fs tail(t − front(s))


 [Lemma 8]

=


 〈

(
fst(head(t − front(s)))− fst(last(s)),
snd(head(t − front(s)))

)
〉fs

̂fs tail(t − front(s))


 ⊓⊔

The subtraction t−s can be expressed in terms of the difference t−front(s), and
last(s). The head of t− front(s) contains the observations up until the end of the
current time unit [16, p.13]. Together with the pair instantiation as before we
can derive the concrete definition of R2 for Circus Time, similarly to Definition 5
where Φ(tr) becomes 〈(〈〉, snd(last(tr)))〉fs following Definitions 8 and 11, and
tr ′ −S tr is as given by Theorem 10.

5 Related work

Traces are at the core of semantic models for reasoning about causality. Already
in Hoare’s CSP book [17] we can find a rich collection of operators and laws for
manipulating traces. In the standard semantics [3] of CSP traces are sequences



14 Pedro Ribeiro

of events ordered by sequence prefixing. Richer semantic models for CSP, such
as refusal testing [18,19] and the finite-linear models [3, p.256], also record in
traces the set of events refused, or accepted, in the latter, before each event.

The modelling of time in semantics for process algebra is often achieved
by associating events or state observations with time. Hayes’ reactive timed
designs [20], comparable to action systems and TLA, define traces as mappings
from time (discrete or continuous) to the values of program variables.

Sherif et al. [4] defined a semantics for Circus Time where traces are sequences
whose elements are pairs, recording the events performed, and subsequently re-
fused, during a time unit. Wei et al. [5] considered an equivalent model, where
events and refusals are recorded separately in two distinct traces of equal length.
Woodcock et al. [6] in their semantics for CML define sequences whose elements
are events or refusal sets, that implicitly mark the passage of time, a structure
pioneered by Lowe and Ouaknine [21] in their timed traces.

Butterfield et al. [7] proposed a parametric theory, which is the inspiration
for the work presented in this paper. It generalises the model of Circus Time [4] to
account for different observation models within a time unit. A similar approach
is pursued by Zhu et al. [22], in their semantics for SystemC, who define a trace
as a three dimensional sequence structure to account for macro and micro time.

Trace models for true concurrency in process algebra include the works of
Barnes [23] and Smith [24]. The latter [24] defines traces whose elements are
sequences, with the prefix relation allowing permutations of the inner sequences.
This model can likely be instantiated as a trace algebra with elements as sets.
Barnes’ SCSP, on the other hand, cannot be instantiated within the setting of [7].

More recently, Foster et al. [9] proposed a left-cancellative monoid trace al-
gebra which is at the core of the mechanisation of several reactive theories in
Isabelle/UTP [11]. This enabled Foster et al. [25] to define reactive contracts, as
well as a theory for hybrid relations [26]. Their prefix relation over traces, how-
ever, is an order, which is inadequate to characterise traces where the relation is
not anti-symmetric. Our results are complementary and support the unification
of further trace models under the Isabelle/UTP framework.

6 Conclusions

Originally motivated by the goal of mechanising Circus Time [4] in the theo-
rem prover Isabelle/UTP [11], we have pursued an ambitious generalisation of
the monoid trace algebra [9] to account for a broader family of timed process
algebras. We have weakened the monoid axioms, inspired by the observations
in [7], to construct a novel unary semigroup trace algebra that is also a right
P-Ehresmann semigroup. Compared to the large set of axioms in [7], we have a
much smaller set that closely mirrors the axioms of the monoid trace algebra.

Our results support the definition of a parametric UTP theory of reactive
processes that abstractly characterises several trace-based semantics. Besides
the trace models discussed in [9] our algebra can be instantiated to account for
the models discussed in [7,8], including Circus Time [4]. In the future, we hope



A Unary Semigroup Trace Algebra 15

to accommodate the semantics for the system-level language SystemC [22], and
perhaps even other synchronous languages such as Esterel [27].

Besides providing a foundation for the unification of further trace models
in the UTP, we have also shown that our work has practical impact via its
mechanisation in Isabelle/UTP [11]. It promotes the reuse of a large collection
of theorems already established for the theories of reactive processes and reactive
designs. It would be interesting, for example, to revisit our mechanisation of a
stepwise construction for Circus Time [16] in this setting. Another avenue for
future work is the mechanisation of the Galois connection in [4] that enables
timed models to be verified using untimed tools.

The mechanisation of the timed operators of timed process calculi is likely
to benefit from the definition of a timed trace algebra, consisting of an addi-
tional function from traces to time, with continuous and discrete versions. Basic
processes, such as event prefixing and delay, may also be defined parametrically.

We envision it may be feasible to weaken the unary semigroup trace algebra
even further to characterise additional trace structures, such as those of refusal-
testing, the finite-linear model, and those of SCSP. However, it is likely that such
weakenings may reveal certain laws of reactive processes no longer hold. An open
question is the treatment of infinite traces, for example, which seem necessary
to give a full account of the hiding operator of CSP. The Isabelle/UTP [11]
mechanisation will facilitate the design space exploration of such weakenings,
with immediate feedback provided to the proof engineer, a facility we used ex-
tensively during the course of developing the algebra presented in this paper.

Acknowledgements This work is funded by the EPSRC grant EP/M025756/1.
No new primary data was created as part of the study reported here. We are
grateful to Ana Cavalcanti for comments on an earlier draft of this paper, and
to the anonymous reviewers for their helpful and constructive feedback.

References

1. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall (1998)
2. Hehner, E.C.R.: Predicative programming part I. Commun. ACM 27(2) (February

1984) 134–143
3. Roscoe, A.W.: Understanding concurrent systems. Springer (2010)
4. Sherif, A., Cavalcanti, A.L.C., He, J., Sampaio, A.C.A.: A process algebraic frame-

work for specification and validation of real-time systems. Formal Aspects of Com-
puting 22(2) (2010) 153–191

5. Wei, K., Woodcock, J.C.P., Cavalcanti, A.L.C.: Circus Time with Reactive Designs.
In Wolff, B., Gaudel, M.C., Feliachi, A., eds.: Unifying Theories of Programming.
Volume 7681 of Lecture Notes in Computer Science., Springer (2013)

6. Woodcock, J., Bryans, J., Canham, S., Foster, S.: The COMPASS modelling lan-
guage: Timed semantics in UTP. Communicating Process Architectures. Open
Channel Publishing (2014)

7. Butterfield, A., Sherif, A., Woodcock, J.C.P.: Slotted Circus: A UTP-family of
reactive theories. In: Integrated Formal Methods. Volume 4591 of LNCS., Springer-
Verlag (2007) 75–97



16 Pedro Ribeiro

8. Butterfield, A.: A denotational semantics for Handel-C. Formal Aspects of Com-
puting 23(2) (Mar 2011) 153–170

9. Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying theories of time with
generalised reactive processes. Information Processing Letters 135 (2018) 47 – 52

10. Woodcock, J., Cavalcanti, A., Foster, S., Mota, A., Ye, K.: Probabilistic semantics
for robochart. In Ribeiro, P., Sampaio, A., eds.: Unifying Theories of Programming,
Cham, Springer International Publishing (2019) 80–105

11. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engineer-
ing framework. In Naumann, D., ed.: Unifying Theories of Programming, Cham,
Springer International Publishing (2015) 21–41

12. Howie, J.M.: Fundamentals of semigroup theory. Volume 12. Clarendon Oxford
(1995)

13. Cornock, C., Gould, V.: Proper two-sided restriction semigroups and partial ac-
tions. Journal of Pure and Applied Algebra 216(4) (2012) 935 – 949

14. Jones, P.R.: A common framework for restriction semigroups and regular *-
semigroups. Journal of Pure and Applied Algebra 216(3) (2012) 618 – 632

15. Woodcock, J.C.P., Davies, J.: Using Z – Specification, Refinement, and Proof.
Prentice-Hall (1996)

16. Ribeiro, P., Cavalcanti, A., Woodcock, J.: A stepwise approach to linking theories.
In Bowen, J.P., Zhu, H., eds.: Unifying Theories of Programming, Cham, Springer
International Publishing (2017) 134–154

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

18. Mukarram, A.: A refusal testing model for CSP. PhD thesis, University of Oxford
(1993)

19. Phillips, I.: Refusal testing. Theoretical Computer Science 50(3) (1987) 241–284
20. Hayes, I.J., Dunne, S.E., Meinicke, L.: Unifying theories of programming that

distinguish nontermination and abort. In Bolduc, C., Desharnais, J., Ktari, B.,
eds.: Mathematics of Program Construction, Berlin, Heidelberg, Springer Berlin
Heidelberg (2010) 178–194

21. Lowe, G., Ouaknine, J.: On timed models and full abstraction. Electronic Notes
in Theoretical Computer Science 155 (2006) 497–519

22. Zhu, H., He, J., Qin, S., Brooke, P.J.: Denotational semantics and its algebraic
derivation for an event-driven system-level language. Formal Aspects of Computing
27(1) (Jan 2015) 133–166

23. Barnes, J.E.: A mathematical theory of synchronous communication. University
of Oxford (1993)

24. Smith, M.L.: A unifying theory of true concurrency based on CSP and lazy obser-
vation. In: Communicating Process Architectures 2005: WoTUG-28: Proceedings
of the 28th WoTUG Technical Meeting, 18-21 September 2005, Technische Uni-
versiteit Eindhoven, the Netherlands. Volume 63., IOS Press (2005) 177

25. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. Theoretical Computer Science (2019)

26. Foster, S.: Hybrid relations in Isabelle/UTP. In Ribeiro, P., Sampaio, A., eds.: Uni-
fying Theories of Programming, Cham, Springer International Publishing (2019)
130–153

27. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Science of Computer Programming 19(2) (1992) 87 –
152


	A Unary Semigroup Trace Algebra
	Introduction
	Preliminaries
	Monoid trace algebra
	Generalised Reactive Processes

	Unary semigroup trace algebra
	Axioms
	Semigroup properties
	Prefix and subtraction

	Trace models
	Parametric pairs
	Synchronous traces
	Traces
	Reactive processes


	Related work
	Conclusions


