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Abstract Cancer is a complex phenomenon, and the sheer variation in behaviour

across different types renders it difficult to ascertain underlying biological mecha-

nisms. Experimental approaches frequently yield conflicting results for myriad rea-

sons, and mathematical modelling of cancer is a vital tool to explore what we cannot

readily measure, and ultimately improve treatment and prognosis. Like experiments,

models are underpinned by certain biological assumptions, variation of which can

lead to divergent predictions. An outstanding and important question concerns Con-

tact Inhibition of Proliferation (CIP), the observation that proliferation ceases when

cells are spatially confined by their neighbors. CIP is a characteristic of many healthy

adult tissues, but it remains unclear to which extent it holds in solid tumours, which

exhibit regions of hyper-proliferation, and apparent breakdown of CIP. What pre-

cisely occurs in tumour tissue remains an open question, which mathematical mod-

elling can help shed light on. In this perspective piece, we explore the implications

of different hypotheses and available experimental evidence to elucidate the implica-

tions of these scenarios. We also outline how erroneous conclusions about the nature

of tumour growth may be arrived at by looking selectively at biological data in isola-

tion, and how this might be circumvented.
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1 Introduction

Cancer is a deeply complex phenomenon, and mathematical modelling has become a

powerful and increasingly important tool in cancer research (Byrne, 2010; Anderson

and Quaranta, 2008). It provides an in silico laboratory in which to investigate hy-

pothesized mechanisms of cancer progression and predict the response to different in-

terventions. Mathematical models can readily inform in vivo and in vitro experiments

and predict previously unseen behaviour. Equally, they can be informed by biological

data to yield more robust conclusions. Used correctly, modelling can both identify

interesting avenues for future research and streamline the design of new experiments,

thus contributing to the 3Rs principles of animal experimentation (replacement, re-

finement and reduction). Mathematical modelling of solid tumour growth has long

been an area of interest, and a multitude of mathematical models derived to capture

different aspects of tumour growth (Gerlee, 2013), including heterogeneity, treatment

response and interactions with host tissues.

Yet models, like experiments, are underpinned by assumptions. There is emerging

biological data that suggests cells in two-dimensional configurations behave markedly

differently than those in 3D aggregates (Pickl and Ries, 2009; Kunz-Schughart et al.,

2000; Edmondson et al., 2014; Imamura et al., 2015; Riedl et al., 2016; Stock et al.,

2016). Accordingly, model assumptions that are suitable for healthy tissue or a par-

ticular cancer type may not be applicable in other circumstances. It is important also

to distinguish between a phenomenological description, whose parameters may have

no direct physical correlate, and a mechanistic model that seeks to describe the un-

derlying physical processes (Tracqui, 2009; Araujo and McElwain, 2004).

Conflicting experimental findings are common too, and accordingly interpreta-

tion and extrapolation of experimental results is also fraught with difficulty. Solid

tumour growth dynamics illustrate this point well. Historically, tumour growth has

been described by sigmoidal functions, including the von Bertalanffy, Gompertzian

and logistic family of models (Steel, 1977; Wheldon, 1988; Vaidya and Alexandro,

1982). In these models, growth is initially unrestrained, before becoming limited by

depletion of essential nutrients such as oxygen, with approximately sigmoidal func-

tions generally thought of as adequate to describe general avascular growth (Feller,

1940; Gyllenberg and Webb, 1988; Marušić et al., 1994). On the other hand, it has

been suggested based on colony evidence that tumour growth is not limited by nutri-

ent availability, but by spatial constraints (Brú et al., 2003), such that tumour radius

grows linearly with time, and is restricted to the periphery. This claim remains con-

troversial (Buceta and Galeano, 2005), but serves as a prominent example of conflict-

ing claims in the literature. In addition, there is often unavoidable ambiguity in

available biological data, which may be of unclear provenance. This can result

in situations where biological data may be incorrectly interpreted as providing

evidence in support of a modelling prediction when this may not be the case.

Biologically, these divergent views can be recast as a question of whether cancers

in general remain subject to contact inhibition of proliferation (CIP). In healthy tis-

sues, cell proliferation is inhibited as a result of cell-cell contact (Nelson and Chen,

2002; Holley and Kiernan, 1968; Harry and Levine, 1967). While precise mecha-

nisms are not yet fully understood, the signaling pathways underlying CIP in adult
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tissues are starting to be elucidated (Küppers et al., 2010), with evidence for the in-

volvement of the rapamycin (Leontieva et al., 2014) and hippo pathways (Zeng and

Hong, 2008). This suggests that only cells on the tissue periphery can undergo mi-

tosis. However, hyper-proliferation is a hallmark of cancer (Hanahan and Weinberg,

2000) and it is important to probe potential reasons for this. There is experimental ev-

idence for failure of normal CIP mechanisms in human cancers (Levine et al., 1965;

Kim et al., 2004; Lloyd et al., 1999; Leontieva and Blagosklonny, 2011; McClatchey

and Yap, 2012), while studies on the naked mole rat have suggested that the animal’s

remarkable apparent immunity to cancer may be related to its hyper-sensitivity to

cell-cell inhibition (Seluanov et al., 2009). This suggests that CIP is greatly reduced

or absent in many solid tumours. In these cases, cells that would normally be unable

to proliferate in healthy tissue due to their spatial location become able to undergo

mitosis.

This is an important consideration, as spatial localization of proliferation affects

our predictions on tumour growth and response to treatment. Precisely what is oc-

curring remains unclear, but here we argue that mathematical models can shed

some light on predicted behaviour, demonstrating that CIP is a good example

of an instance where modelling can help resolve debates in biology. Here, we

probe the predictions and implications of both paradigms in 2D plated cells and 3D

avascular tumours. The impact of these different assumptions are simulated, and com-

pared with experimental data. The biological and modelling implications stemming

from this analysis are discussed, and future avenues to better elucidate the problem

explored.

2 Methods

2.1 Analysis of 2D plated cell growth

Plated cell monolayers remain the simplest way to examine cell growth in vitro, with

no nutrient heterogeneity so that all cells receive ample glucose and oxygen. Under

the assumption of CIP, only cells at the edge of a cell colony proliferate. Assuming

an average cell diameter of L, average doubling time td and initial colony radius of

r0, the area ac of a circular colony under CIP therefore grows quadratically with time

t:

ac(t) = π

(

r0 +
Lt

td

)2

. (1)

Without the constraint of CIP, the area instead grows exponentially:

au(t) = (πr2
o)2t/td . (2)

The growth dynamics predicted for 2D plated cell colonies are not especially use-

ful for gaining insight into three-dimensional tumour growth, given their implicit

assumption of nutrient homogeneity. Even so, it is important to quantify potential

differences that would be expected in growth dynamics with or without CIP.
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2.2 Analysis of 3D avascular tumour growth

Multicellular tumour spheroids are the simplest of 3D cellular aggregates, extensively

employed to study tumour growth dynamics, as their growth dynamics more closely

resemble those of in situ tumours than do monolayer cultures. Such assays have been

widely used in experimental and modelling studies (Hirschhaeuser et al., 2010). As

spheroids grow, central regions become devoid of essential nutrients such as oxygen,

and as a consequence tumour spheroids develop regions of central hypoxia and even-

tually necrosis, just as in avascular tumours. The extent of central necrosis and the

oxygen distribution throughout the spheroid depend upon the oxygen consumption

rate of the cell line in question (Grimes et al., 2014b,a).

Growth dynamics for multicellular tumour spheroids have been well studied (Con-

ger and Ziskin, 1983; Freyer, 1988; Grimes et al., 2016). Evidence suggests that

spheroids exhibit a classical sigmoidal growth profile. Conger and Zisikin(Conger

and Ziskin, 1983) examined spheroid growth over multiple cell lines, finding that

spheroids have an initial exponential growth phase, followed by a quasi-linear phase

where limited nutrient diffusion inhibits growth, and finally a plateau phase. Such dy-

namics are similar to growth curves exhibited by solid tumours in situ (Steel, 1977;

Conger and Ziskin, 1983; Gyllenberg and Webb, 1988; Grimes et al., 2016). The

Gompertzian model captures tumour growth dynamics especially well, but can lead

to unrealistically slow growth in initial phrases. Wheldon (Wheldon, 1988) proposed

a Hybrid ‘Gomp-ex’ model to better capture early growth behaviour, also reflected in

tumour growth dynamics (Benzekry et al., 2014).

Multicellular tumour spheroids present an excellent test-bed for examining CIP

assumptions. Broadly speaking, there are two possible scenarios: if we assume that

CIP is in effect, then for a initial small spheroid only cells on the outermost layer

proliferate, whilst those inside the central mass are inhibited from mitosis. Assuming

spherical symmetry, if cells have an average diameter L and average doubling time

td , then the change in radius over time is given by dr/dt = L/td . Defining the initial

radius to be r0, we find that the spheroid radius is given by r(t) = r0+Lt/td , and thus

its volume Vc(t) is given by

Vc(t) =
4π

3

(

r0 +
Lt

td

)3

. (3)

Thus, under CIP assumptions, a cubic growth rate essentially agnostic to the inter-

nal nutrient distribution is expected, with cells on the external border continuing to

grow (Brú et al., 2003).

In contrast, if we assume CIP is defective in tumour cells, then any cell with

enough nutrients will attempt to undergo mitosis. For spheroids grown in vitro, glu-

cose levels are high throughout and oxygen availability is usually the limiting fac-

tor (Hirschhaeuser et al., 2010; Grimes et al., 2014b). There are various avascular

growth models which can be employed to describe this (Roose et al., 2007); for sim-

plicity, we take a simple recursive model that explicitly relates spheroid growth to

nutrient availability (Grimes et al., 2014a). In this schema, the spheroid volume Vu at
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time-step N +1 is given by

(Vu)N+1 =
4π

3

(

2r3
N − (rp)

3
N − (rn)

3
N

)

, (4)

where rN and (rn)N are the spheroid radius and necrotic radius at time-step N, re-

spectively, and (rp)N is the radius below which the oxygen partial pressure p drops

below the level required for mitosis, pm. In practice, cells can undergo mitosis at even

very low oxygen partial pressures, and typically pm ≈ 0.5 mmHg (Hockel and Vau-

pel, 2001). All these radii can be analytically calculated from first principles knowing

cellular oxygen consumption rate, with details omitted here for brevity(Grimes et al.,

2016). In the case of unlimited nutrient diffusion, rn = rp = 0, and growth is expo-

nential.

2.3 Model comparisons with experimental data

2D monolayers For 2D growth, we simulate a simple cellular automaton model of

tumour growth using Chaste (Osborne et al., 2017), an open-source C++ library for

agent-based simulation of cell populations. Further details of the simulations are pro-

vided below.

In this model, cell movement is driven by division and cell exchange, using a

shoving-based approach (Yates et al., 2015). The spatial domain is discretised into a

regular square lattice with cells occupying the individual lattice sites. The area Ai of

each cell i in this model is given by 1 squared cell diameter (CD2). Cell proliferation

proceeds as follows; A dividing cell selects a random lattice site from its Moore

neighbourhood (the eight cells that surround it), and all cells along the row, column

or diagonal from the dividing cell’s location are instantaneously displaced or ‘shoved’

to make space for the new cell.

A Metropolis-Hastings algorithm is used to make additional updates to the state

of the tissue using asynchronous updating. At each time step ∆ t, after checking for

and implementing any cell divisions, we sample with replacement NC cells, where

NC is the number of cells in the tissue at time t (thus, it may be the case that a

cell is sampled more than once in a time step, while others are not sampled). This

sweeping of the domain is also known as a Monte Carlo Step (MCS). We randomly

select a neighbouring lattice site from each sampled cell’s Moore neighbourhood for

a potential swap. The swapping of cells is intended to model random motility and the

affinity of cells to form and break connections with adjacent cells. Assigning the MCS

to a time step ∆ t allows us to parametrize the timescale of the switching process and

relate this to cell division. A probability per hour is assigned for the cells (or empty

lattice site, which we refer to as a void) to swap locations, pswap, which is calculated

as

pswap =

{

κswap, for ∆H ≤ 0,

κswap exp
(

−
∆H
T

)

, for ∆H > 0.
(5)

where κswap represents the rate of switching and T represents the background level of

cell switching, modelling random cell fluctuations. If T = 0 then only energetically
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favourable swaps happen, and we use this as the default value for our simulations;

as T increases, more energetically unfavourable swaps occur. Finally, ∆H = H1 −H0

denotes the change in adhesive energy due to the swap, with H0 and H1 being the

energy in the original and changed configurations respectively, which is defined to be

the sum of the adhesion energy between lattice sites:

H = ∑
(i, j)∈N

γ(τ(i),τ( j)), (6)

where γ(a,b) is a constant whose value depends on a and b, representing the adhesion

energy between cells (or void) of type a and b, τ(k) is the type of cell k (or void if

there is no cell on the lattice site) and N is the set of all neighbouring lattice sites.

Here τ(k) takes the values ‘A’, ‘B’ and ‘void’, but can in principle be extended to

more cell types.

In the 2D monolayer case, cell growth was simulated with and without CIP. To

capture CIP failure, the cell-pushing was enabled, whereby cells to push their neigh-

bors during mitosis. Resultant growth curves were obtained, and compared to the

analytic growth curves given by equations (1)–(2) and to the literature. Outputs of

these models were then compared with data from the experimental literature to

ascertain which model most faithfully reproduced observed dynamics.

3D avascular tumour spheroids We can readily investigate predictions for 3D tumour

growth dynamics with and without CIP by analyzing spheroid growth curves. Growth

curves were generated analytically through the forms outlined in equations (3)–(4),

and these simulated spheroid growth curves was compared to previously published

long-range data (over 60 days) (Freyer, 1988; Marušić et al., 1994; Grimes et al.,

2016) to ascertain model best fits under both assumptions. These growth dynamics

are useful but they do not strictly answer the question of where proliferating cells are

located in situ. To probe this directly, we interrogated histological specimens stained

with Ki-67, a proliferative marker (Scholzen and Gerdes, 2000). We looked at stained

sections from tumour spheroid cross-sections, which are broadly radially symmetric

and relatively easy to interpret.

3 Results

3.1 2D monolayers

As illustrated in Figure 1, Chaste simulations without pushing (corresponding to a

CIP assumption) produced quadratic polynomial fits in strong agreement with an-

alytical form in equation (3). By contrast, allowing pushing produced solutions in

agreement with the no CIP analytical model, which yields exponential growth as pre-

dicted by equation (4). This latter scenario agrees with the bulk of published literature

of 2D monolayers, where exponential growth is typically observed (Demicheli et al.,

1989; Sutherland et al., 1983; Erlichman and Vidgen, 1984; Wheldon, 1988; Steel,

1977).
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Fig. 1 Chaste data (average and standard deviations obtained from 500 runs) with pushing (CIP-failure)

and without (CIP). In for former case, the exponential form in equation (4) fits perfectly with R2 = 1. In

the latter, the polynomial expression in equation (3) fits with R2 > 0.99.
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Fig. 2 Best-fit growth curves for analytical models relative to tumour spheroid data (Freyer, 1988) as-

suming either CIP (space-limited) or no CIP (nutrient limited) scenarios. The assumption of CIP yielded

a best-fit with a negative coefficient of determination (L/td = 2.314× 10−5 m/day), indicating this does

not describe the data at all. By contrast the mechanistic model assuming no CIP yielded excellent fit

(R2 = 0.9939) with parameters that were biologically realistic.

3.2 3D avascular tumour spheroids

For the available long-range spheroid data, best-fit parameters were found for both

CIP and no CIP assumptions. Best fit parameter values are given in Figure 2, illus-

trated with results. Assuming CIP in this instance yields a negative coefficient of

determination, which means the fit was worse than merely fitting the mean. This

strongly suggests such a model in inadequate to describe the growth data. By con-

trast, the no CIP assumption fitted the data well (R2 = 0.9939) and yielded biolog-

ically realistic values for oxygen consumption rate (a = 6.87 mmHg) and cellular

doubling time td = 2.18 days. As similar patterns of growth are seen throughout
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spheroid derived from many different cell-lines (Conger and Ziskin, 1983; Wheldon,

1988; Marušić et al., 1994; Grimes et al., 2016), this suggests that CIP in inhibited

in these cell lines, and that growth is not restricted to the outermost extremities. Pre-

viously published data-sets from sectioned and stained tumour DLD-1(Grimes et al.,

2014b) and HCT-116 (Grimes et al., 2016) tumour spheroids were analyzed to deter-

mine the extent of Ki-67 staining. Figure 3 depicts sectioned some of these tumour

spheroids stained with Ki-67 proliferation marker - in all cases, evidence of mitosis

is seen throughout the spheroids, and not solely at the boundaries. This strongly sug-

gests that CIP is absent from these spheroids. In principle, the model outlined in

equation (4) could serve to model both CIP and no CIP assumptions, where the

proliferation radius rp would be markedly reduced. This would then produce

curves with similarly implausible biological parameter values. Equation (3) has

been presented to explicitly depict the CIP scenario. Strictly speaking, this is al-

ways a simplification, as there will always been some diffusion limit where the

growth will be ultimately saturated (Bodnar and Foryś, 2007), and thus infinite

growth would never be observed.

Fig. 3 (A) HCT-116 tumour spheroid stained with Ki-67 (green), a marker of proliferation grown for

4 days (B) The same spheroid co-stained with the hypoxia marker EF5 (red). Proliferation is apparent

throughout the entirety of the spheroid, while there is no central region of anoxia. Images reproduced with

permission (Grimes et al., 2016). (C) Dual-stained DLD-1 tumour spheroid with central necrosis showing

Ki-67 (green) and EF5 (red) grown for 12 days. Proliferation occurs throughout the viable rim. Reproduced

with permission (Grimes et al., 2014b).

4 Discussion

The assumption that only cells on the periphery undergo mitosis seems to be con-

tradicted by experimentally derived growth curves, with histological data suggesting

that mitotic activity occurring in the tumour mass itself too. Even so, we must be

careful not to overstate the generality of these conclusions, as it is entirely possible

that different cell-lines have varying extents of CIP. In some immortalized cell lines,

for example, CIP may still occur despite these cells having the ability to proliferate

indefinitely (Abercrombie, 1979). As the precise mechanisms for CIP are not fully

understood, further experimental evidence will be vital in illuminating this area.

In addition, there are some important caveats to this conclusion, and avenues for

further research. Whilst the evidence presented here suggests cellular proliferation is
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not solely limited to the edge of a tumour or colony, one thing not considered thus

far is the mechanical constraints on a neoplasm. In general, tumours are physically

constrained to a position inside the body. A tumour growing in situ might not have

contact inhibition, but instead might be eventually be physically limited due to hard

boundaries in the form of tissue or organs. This would manifest especially in tissue

resilient to deformation, including bone (Araujo et al., 2014).

More importantly perhaps, even with CIP-inhibition cells cannot ‘infinitely push’

- while all cells with sufficient nutrients and clonogenic capacity might be able to

undergo mitosis, there is likely a point where the surrounding density of cells is so

high that mechanical pressures alone arrest the cell’s mitotic phase and force it into

quiescence. In healthy animal cells, forces > 100nN were sufficient to impinge on

microtubule spindle function and thereby inhibit mitotic progression (Cattin et al.,

2015), with similar trends seen in mechanically compressed spheroids (Desmaison

et al., 2013).When tumour growth is limited by mechanical forces acting on the cells

and effectively constrained, then a phenomenological treatment of this as equivalent

to CIP to capture the behaviour of the system seems an appropriate assumption. The

interpretation of such models will then depend on whether the parameters within are

considered biologically realistic or are intended to explore specific phenomena.

In real settings of course, tumours do not simply grow into empty space, but

within a tissue. As a result, a form of CIP likely takes place at the tumour pe-

riphery, the effects of which are not considered in the simple models discussed

in this work. There are other potentially obscuring factors in real tumours; for

example, some tumours might exhibit high cellular turnover rates, and even if

tumours did display relatively high levels of CIP, the density would still on aver-

age be lower, and proliferation less inhibited. Conversely, if cell death was high,

then proliferation might still be seen in stained sections even if CIP was intact.

These are certainly worthwhile questions beyond the scope of this work, and

ones that require combined clinical/experimental and theoretical investigation

to adequately probe.
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Fig. 4 (a) Long-range growth data for V-79 hamster cells taken from Freyer et al (Freyer, 1988), depicted

with a linear fit through the quasi-linear growth phase with R2 > 0.96 (b) Simulated growth of a DLD-1

tumour spheroid using a mechanistic growth model (Grimes et al., 2016), with a linear fit of R2 > 0.99

through the quasi-linear phase.
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It is worth noting the conflict between Brú’s paradigm (Brú et al., 2003) for linear

’universal’ tumour growth versus the sigmoidal growth more typically reported by

investigators. There are many reasons why these results may be in conflict - firstly, it

is a reality that experimental data is notoriously difficult to replicate. Cancer research

is complicated by the sheer number of confounding factors possible, and similar ex-

periments done in different labs can yield entirely different results for reasons not

entirely understood. It’s worth noting that most of the experimental results in this

work were derived from 2D culture, and thus may not extrapolate to 3D, although

in general 2D culture growth curves are not linear. Whilst growth curves in 3D are

not generally linear, there might be a further way to explain the discrepancy. There

is a substantial region where growth is effectively linear, known as the quasi-linear

growth phase (Conger and Ziskin, 1983). Measurements taken in this regime will

suggest an effectively linear rate of growth, and occur in all sigmoidal models. This

is illustrated in Figure 4 for both biological data and simulated mechanistic growth.

The data and analysis presented here suggests that CIP is in general a casualty of

oncogenesis, and potentially a target for future therapy. The extent to which this is

generalizable remains unanswered, and to truly discover the underlying physical

mechanisms shaping growth dynamics will demand a much more comprehen-

sive synthesis of experimental data with modelling approaches. We believe that

combined clinical/experimental and theoretical approaches (Anderson and Quaranta,

2008) hold the greatest chance of unravelling this mystery. Answering this question

will improving our understanding of how cancer perpetuates,and potentially yield

new insights into how we combat it.
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Cattin C, Düggelin M, Martinez-Martin D, Gerber C, Müller D, Stewart M (2015)

Mechanical control of mitotic progression in single animal cells. Proc Natl Acad

Sci USA 112:1502029112, DOI 10.1073/pnas.1502029112

Conger A, Ziskin M (1983) Growth of mammalian multicellular tumor spheroids.

Cancer Res 43:556–560

Demicheli R, Foroni R, Ingrosso A, Pratesi G, Soranzo C, Tortoreto M (1989) An

exponential-gompertzian description of lovo cell tumor growth from in vivo and in

vitro data. Cancer Res 49:6543–6546

Desmaison A, Frongia C, Grenier K, Ducommun B, Lobjois V (2013) Mechanical

stress impairs mitosis progression in multi-cellular tumor spheroids. PLOS ONE

8:4–13, DOI 10.1371/journal.pone.0080447

Edmondson R, Broglie J, Adcock A, Yang L (2014) Three-dimensional cell culture

systems and their applications in drug discovery and cell-based biosensors. Assay

Drug Dev Technol 12:207–18, DOI 10.1089/adt.2014.573

Erlichman C, Vidgen D (1984) Cytotoxicity of adriamycin in MGH-U1 cells grown

as monolayer cultures, spheroids, and xenografts in immune-deprived mice. Can-

cer Res 44:5369–5375

Feller W (1940) On the logistic law of growth and its empirical verifications in biol-

ogy. Acta Biotheor 5:51–66, DOI 10.1007/BF01602862

Freyer J (1988) Role of necrosis in regulating the growth saturation of multicellular

spheroids. Cancer Res 48:2432–2439

Gerlee P (2013) The model muddle: In search of tumor growth laws. Cancer Res

73:2407–2411, DOI 10.1158/0008-5472.CAN-12-4355

Grimes D, Fletcher A, Partridge M (2014a) Oxygen consumption dynamics in steady-

state tumour models. R Soc Open Sci 1:140080, DOI 10.1098/rsos.140080

Grimes D, Kelly C, Bloch K, Partridge M (2014b) A method for estimating the

oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface

11:20131124, DOI 10.1098/rsif.2013.1124

Grimes D, Kannan P, McIntyre A, Kavanagh A, Siddiky A, Wigfield S, Harris A,

Partridge M (2016) The role of oxygen in avascular tumor growth. PLOS ONE

11:e0153692, DOI 10.1371/journal.pone.0153692

Gyllenberg M, Webb G (1988) Quiescence as an explanation of Gompertzian tumor

growth. Growth Dev Aging 53:25–33, DOI 10.1016/j.mbs.2014.06.009



12 David Robert Grimes, Alexander G. Fletcher

Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70, DOI 10.

1016/S0092-8674(00)81683-9

Harry E, Levine E (1967) Growth regulatory effects of cellular interaction. Nature

213:1102–1106, DOI 10.1038/2131102a0

Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart L

(2010) Multicellular tumor spheroids: an underestimated tool is catching up again.

J Biotechnol 148:3–15, DOI 10.1016/j.jbiotec.2010.01.012

Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic,

and molecular aspects. J Natl Cancer Inst 93:266–276, DOI 10.1093/jnci/93.4.266

Holley R, Kiernan J (1968) “Contact inhibition” of cell division in 3T3 cells. Proc

Natl Acad Sci USA 60:300–4, DOI 10.1073/pnas.60.1.300

Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota

N, Takao S, Kono S, Nakatsura T, Minami H (2015) Comparison of 2D- and 3D-

culture models as drug-testing platforms in breast cancer. Oncol Rep 33:1837–

1843, DOI 10.3892/or.2015.3767

Kim S, Chin K, Gray J, Bishop J (2004) A screen for genes that suppress loss of

contact inhibition: identification of ING4 as a candidate tumor suppressor gene

in human cancer. Proc Natl Acad Sci USA 101:16251–6, DOI 10.1073/pnas.

0407158101

Kunz-Schughart L, Doetsch J, Mueller-Klieser W, Groebe K (2000) Proliferative ac-

tivity and tumorigenic conversion: impact on cellular metabolism in 3-D culture.

Am J Physiol - Cell Physiol 278:C765–C780
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