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RESEARCH ARTICLE Open Access

How did Ebola information spread on
twitter: broadcasting or viral spreading?
Hai Liang1,2, Isaac Chun-Hai Fung3,5,7†, Zion Tsz Ho Tse4†, Jingjing Yin3†, Chung-Hong Chan2, Laura E. Pechta6,

Belinda J. Smith8, Rossmary D. Marquez-Lameda6, Martin I. Meltzer5, Keri M. Lubell6 and King-Wa Fu2*

Abstract

Background: Information and emotions towards public health issues could spread widely through online social

networks. Although aggregate metrics on the volume of information diffusion are available, we know little about

how information spreads on online social networks. Health information could be transmitted from one to many (i.e.

broadcasting) or from a chain of individual to individual (i.e. viral spreading). The aim of this study is to examine the

spreading pattern of Ebola information on Twitter and identify influential users regarding Ebola messages.

Methods: Our data was purchased from GNIP. We obtained all Ebola-related tweets posted globally from March 23,

2014 to May 31, 2015. We reconstructed Ebola-related retweeting paths based on Twitter content and the follower-

followee relationships. Social network analysis was performed to investigate retweeting patterns. In addition to

describing the diffusion structures, we classify users in the network into four categories (i.e., influential user, hidden

influential user, disseminator, common user) based on following and retweeting patterns.

Results: On average, 91% of the retweets were directly retweeted from the initial message. Moreover, 47.5% of the

retweeting paths of the original tweets had a depth of 1 (i.e., from the seed user to its immediate followers). These

observations suggested that the broadcasting was more pervasive than viral spreading. We found that influential

users and hidden influential users triggered more retweets than disseminators and common users. Disseminators

and common users relied more on the viral model for spreading information beyond their immediate followers via

influential and hidden influential users.

Conclusions: Broadcasting was the dominant mechanism of information diffusion of a major health event on

Twitter. It suggests that public health communicators can work beneficially with influential and hidden influential

users to get the message across, because influential and hidden influential users can reach more people that are

not following the public health Twitter accounts. Although both influential users and hidden influential users can

trigger many retweets, recognizing and using the hidden influential users as the source of information could

potentially be a cost-effective communication strategy for public health promotion. However, challenges remain

due to uncertain credibility of these hidden influential users.
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Background
The outbreak of Ebola in West Africa in 2014 received a dis-

proportionate amount of media coverage and public atten-

tion relative to the threat it posed to public health in the

United States [1, 2]. Mathematical models at the aggregate

level have been proposed to explain the contagion process of

the spread of information on social media [2]. However, a

more fundamental question remains unknown—how did

Ebola messages diffuse on social media platforms?

An understanding of how health information diffuses on

social media is essential for public health communication. A

central goal of health communication is to devise efficient

and effective ways to disseminate health information [3]. In

the pre-social media age, large-scale distribution of health in-

formation relied on broadcast media, such as newspaper and

television. Mass media or marketing efforts rely on what

might be termed a “broadcast” diffusion model, indicating

that a large number of individuals receive the information

directly from the same source [4].

However, Katz and Lazarsfeld [5] pointed out that inter-

personal communication plays an important role in mediat-

ing information flow between mass media and the public.

Because social media allows for interpersonal communica-

tion, online messages can go “viral” through a chain of

individual-to-individual diffusion process, analogous to the

spread of some infectious diseases. Although this “viral” dif-

fusion model could drive large-scale diffusion to reach a

large population, it is notable that the broadcast model of in-

formation diffusion still operates in social media. For ex-

ample, Goel et al. [4] found that popular tweets usually

spread through the “broadcast” diffusion model.

The primary purpose of this study is to examine whether

the broadcast model or the viral model dominated Ebola in-

formation diffusion on Twitter. Knowing these dynamics

could help public health communicators ensure messages

are reaching at-risk or affected groups. Specifically, if the

broadcast mechanism is dominant on social media, public

health practitioners should solicit support from key opinion

leaders, i.e., the most influential users, to pass on their public

health messages. On the contrary, if the viral mechanism is

dominant, public health practitioners should focus on the

structural characteristics of individuals’ social networks (e.g.

the cohesiveness of network members) [6]. In this sense, it is

important to identify the influential users who can trigger

large-scale information cascades, i.e., the users whose tweets

were frequently retweeted. Therefore, we introduce an estab-

lished method for classifying Twitter users (previously used

to study non-health-related communication [7]) in order to

identify influential users in the diffusion process of Ebola-re-

lated tweets.

Although previous studies have examined Twitter for

its information diffusion models and the identification of

influential users [4, 7], these patterns and users may vary

across topics. Whether the same findings would apply to

tweets related to health-related topics, such as Ebola, re-

mains unknown. Therefore, this study aims to bridge the

study of structural virality [4] and influential user identifica-

tion [7] in health message diffusion. Methodologically, we

propose a normalized structural virality measure as a modi-

fied version of the original measure of structural virality.

Theoretically, this study extends the study of information dif-

fusion at the aggregate level [2] to the investigation of

micro-diffusion processes and the analysis of influential user

types. This will advance our understanding of the differences

between broadcast and viral models.

Methods
Data collection

Our data was purchased from GNIP, the official provider of

Twitter data. We used the query “contains: ebola OR #ebola

OR ébola OR #ébola” to obtain the population of

Ebola-related tweets (including all retweets and replies)

posted globally from March 23, 2014 to May 31, 2015 (inclu-

sive). March 23, 2014 was chosen at the start date because it

was the day when CDC began its Ebola emergency response.

May 31, 2015 was the cut-off point when this data set was

purchased. We obtained 36,931,362 relevant tweets, which

were originated from all around the world and were publicly

available. On Twitter, an original tweet is a status posted dir-

ectly by the author. An original tweet can be retweeted

(shared) by any other users. A retweeted status is called a

retweet. The users who retweet the original tweets are retwe-

eters. Users can follow any other users, which we call follo-

wees. Users can receive all messages posted or retweeted by

their followees.

Of these relevant tweets, 52.3% (18,949,515) were ori-

ginal tweets. We limited our analyses to a subset of

192,209 original tweets and their retweets. Each of these

192,209 original tweets had more than 10 retweets. We

excluded the less popular tweets for two reasons: first,

short-lived tweets might result in isolated tweets that were

not connected to and were irrelevant to the core compo-

nents of a network; second, the complexity of the compu-

tational methods needed would be reduced. The 192,209

original tweets received a combined total of 12,426,623

retweets. Therefore, the combined total number of ori-

ginal tweets and retweets analyzed in this study was

12,618,832. The original tweets were posted by 56,768

unique handles (i.e., seed users), and the whole dataset

contained 4,925,730 unique handles (i.e., users).

Diffusion path and information cascade

A diffusion path is the chain of retweeting that fol-

lows the posting of an original tweet. It starts with a

“seed user” who sends it to their followers. For the

same seed message (i.e., the original tweet), a collec-

tion of all its diffusion paths is called an information

cascade. It can be represented graphically as a
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diffusion tree (Fig. 1). There are three metrics that

describe an information cascade, namely cascade

size, cascade scale and cascade depth (Table 1).

Reconstructing diffusion paths

To determine how Ebola messages spread on Twitter, we

first had to reconstruct the diffusion paths of Ebola-related

messages. Information diffusion on Twitter basically depends

on the “retweet” function. However, it is technically difficult

to trace these paths on Twitter. First, it requires the entire

population of retweets, which can only be obtained via pur-

chase from Twitter. Second, Twitter’s official application pro-

gramming interface (API) only returns the users who

originally posted the tweets rather than the users from whom

the retweeters directly retweeted.

For example, if retweeter B retweeted an original tweet

posted by the seed user via retweeter A whom retweeter B

followed (i.e., seed user to retweeter A to retweeter B), the

Twitter API returns “seed user to retweeter B.” To solve

this problem, we adopted an approach introduced in pre-

vious studies [8, 9] to reconstruct the diffusion paths. See

Fig. 2 for an illustration. We reconstructed the diffusion

paths of the 192,592 original tweets selected for the study.

Measuring broadcast or viral models

The key research question of this study is to quantify the

extent to which Ebola-related messages diffused through

the broadcast or viral model. This was determined by

calculating the structural virality and normalized struc-

tural virality for each information cascade.

Structural virality of a diffusion tree is defined as the

average “distance” between all pairs of retweeters

(known as “nodes” in network science) in the tree [4].

The distance between two nodes is the smallest number

of links connecting them. In Fig. 1, the distance between

A and B is 1, and the distance between B and D is 3 (B

to A, A to C, and C to D). We calculated the distance

between every pair of retweeters and averaged all dis-

tance values to provide a single estimate of structural

virality of each diffusion tree.

The structural virality of a diffusion tree approaches a

value of 2 when all retweets are directly retweeted from

the seed user, which indicates that no subsequent

spreading has occurred after the first generation. Struc-

tural virality reaches the maximum value when the tree

is a single chain. For any information cascade, the mini-

mum structural virality is 2 and the maximum structural

virality is proportional to the cascade size (see Add-

itional file 1). A large structural virality indicates the in-

formation cascade is likely to be a long chain and thus

follows the viral model.

Normalized structural virality. In order to interpret struc-

tural virality more intuitively, we propose a normalized ver-

sion of structural virality. We rescaled structural virality to

be a normalized variable ranging from 0 (purely broadcast)

to 1 (purely viral). In our analyses, we will report both the

raw and normalized measures. We provide the mathematical

details in Additional file 1.

User classification

In addition to describing the diffusion structures, we

identify the influential users in the information cascades.

To identify influential users, we first have to develop a

user classification scheme. Conventionally, influential

users are measured by their authority. There are two ap-

proaches in the literature to determine authority.

The first approach is to count the number of followers

a user has. In the parlance of network analysis, the au-

thority of a user is calculated by measuring one’s degree

centrality in a follower network [10] (Table 2). The

underlying assumption is that users with more followers

are more likely to be retweeted by others. However, this

approach ignores the impact of retweets. For example,

user A has 10 followers and user B has 100 followers.

All 10 followers of user A retweet user A’s tweets while

no follower of user B retweets user B’s tweets. If we sim-

ply use the number of followers (equivalent to the de-

gree centrality in a follower network) as a measure of

authority, we would have identified user B as more influ-

ential than user A because user B has more followers

than user A. However, user A may happen to be more

influential because user A’s tweets have been retweeted

by all of A’s followers.

Fig. 1 An example of information cascade and the key measures. In

this example, the cascade size is 8, the scale is 4/8 = 50%, and the

depth is 3
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Users with more followers could be considered more influ-

ential in facilitating information diffusion. However, influence

is domain specific. The first approach only accounts for fol-

lower network structure and is not informative enough to

determine who is more influential in the specific context of

Twitter communication pertinent to Ebola. While there is a

lot of potential for information diffusion given a large num-

ber of followers, it is unclear how that potential is realized.

The second approach to determine authority is to ac-

count for the retweeting patterns in addition to the

number of followers of the seed users. This approach

takes into account both the potential for information dif-

fusion offered by a follower network and the realization

of such a potential for information diffusion as observed

in the network pattern of retweets.

In this paper, we adopt the second approach. Follow-

ing this approach, we first classify users based on their

following and retweeting characteristics. Our user classi-

fication follows an established method proposed by

Gonzalez-Bailon, Borge-Hothoefer and Moreno [7]. A

brief explanation of the user classification method is pre-

sented in Table 3.

Disseminators receive fewer retweets than expected

based on their number of followers. Common users re-

ceived as few retweets as one would expect, given their

low number of followers. Influential users received as

many retweets as you would expect given their high

number of followers. Hidden influential users received

more retweets than expected.

In order to further explore the role of media related

accounts and health organization accounts, we followed

the method introduced in Towers et al. [2] to identify

media related accounts. First, we compiled a list of top

media organization accounts as documented in Towers

et al. [2]. Second, we used the keywords such as “media”

and “TV” to match Twitter’s screen names. For health

organizations, we compiled a list of 65 Twitter user

names, including NIH, UNICEF, UNMEER, Red Cross,

WHO, and all CDC affiliated accounts.

Statistical analysis

The unit of analysis in this study is information cascade,

which is composed of retweets, except for some analyses

related to user classification that are at the user level (i.e.,

unique Twitter handle). For the comparison between the

broadcast and viral diffusion models, we plotted the prob-

ability distribution of the normalized structural virality of

information cascades. We also calculated the means, me-

dians, and standard deviations of the cascade size, cascade

scale, cascade depth, and structural virality. If the cascade

scale is large, and cascade depth and structural virality

values are small, we can conclude that the broadcast

model is dominant, vice versa. All analyses in this part

were performed at the information cascade level with the

number of information cascades being 192,209.

In terms of user classification, we calculated the distri-

bution of the four user types over all users involved in

the information cascades in addition to the seed users

who initiated the information cascades. The unit of ana-

lysis is a unique user. That means we combined tweets

and retweets posted by the same user all together.

Table 1 Definition of three metrics that describe an information cascade

Metrics Definitions

Cascade size The number of total retweets received by an original tweet. The cascade size describes the popularity of the seed message

Cascade scale The percentage of all retweets that were retweeted directly from the original tweet. The higher the percentage is, the more likely the
diffusion cascade is dominated by the broadcast model

Cascade
depth

The number of generations in a diffusion path. A large depth value may suggest a long chain of information diffusion and thus
implies viral spreading

Fig. 2 An illustration of the reconstruction of a diffusion path. From

the Twitter API, we know that user A retweeted a message from

user C. User A follows 4 users: B1-B4. Among the followees, users B2

and B3 follow user C and retweeted the same message from user C

at time 1 and time 2 respectively. If time 1 is more recent than time

2, we will say that A retweeted C through B2 and information

diffused from C to A via B2
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To examine the relationships between structural virality

and user types, we calculated the medians, first, and third

quantiles of cascade depth, structural virality, and normal-

ized structural virality according to different user types of

the seed users. In addition, a cross-tab analysis based on

the 12,426,623 retweets was performed to examine the in-

formation flow between different user types (all involved

users). Since the distribution of the user types is not equal,

the expected values, i.e. the number of occurrence gener-

ated purely by chance, were calculated by (column sum ×

row sum)/total number of cases. For example, a large

number of retweets between common users is to be ex-

pected given the large number of common users in the

dataset. Only when the number of retweets larger than

the expected value, it indicates a significant tendency of

information flow between the user types.

Results

Broadcast versus viral diffusion

Our analyses were based on the 192,209 information cas-

cades of original tweets selected for the study. Given the na-

ture of highly skewed distributions, we present both mean

and median in the following section. The average cascade

scale percentage in our data is high (Mean, M= 90.7%, Me-

dian, Mdn= 98.4%, Standard Deviation, SD= 15.3%). Of the

12,426,623 retweets, 91% are directly retweeted from the

seed users. On average, the cascade depth of a typical diffu-

sion tree in our data is less than 3 (M= 2.57, Mdn= 2, SD=

3.62, Max = 139). Furthermore, 47.5% of the information cas-

cades have a depth of 1, while 70.7% have a depth of 2 or

less, and 82.5% have a depth of 3 or less.

Ebola information on Twitter spread mainly in a broadcast-

ing pattern, given the values of the scale and depth of informa-

tion cascades that we constructed from our data set. We

measured how information diffused in these information cas-

cades by using the normalized structural virality measure.

Across 192,209 information cascades, the average normalized

structural virality is 0.05 (Mdn=0.0006, SD= 0.12). For the

raw values, the mean is 2.27 (Mdn=1.98, SD= 1.23). Nearly

half (47.5%) of the cascades have a normalized structural viral-

ity of 0 (equivalent of having a raw value of structural virality

≈ 2), indicating a star network of retweets from the original

tweet but without any further retweets. Figure 3 depicts the

probability distribution of the normalized structural virality of

all 192,209 cascades. The highly skewed distribution indicated

that most cascades displayed broadcasting spreading diffusion,

whereas only a few displayed viral spreading diffusion.

The three indicators we measured are highly correlated.

First, the normalized structural virality and cascade scale are

negatively correlated (Spearman’s rho =− 0.98, p < .01). The

more structurally viral a cascade is, the less the tweet is being

retweeted by multiple users at the root of the diffusion tree

(for raw values, Spearman’s rho =− 0.92, p < .01). Second,

normalized structural virality and cascade depth are posi-

tively correlated (Spearman’s rho = 0.92, p < .01). The more

structurally viral a cascade is, the more tweets are being

retweeted for multiple generations in a diffusion tree (for

raw values, Spearman’s rho = 0.92, p < .01). Third, cascade

scale percentage and cascade depth are negatively correlated

(Spearman’s rho =− 0.95, p < .01). The more users retweeted

the tweet at the root of the diffusion tree, the smaller is the

number of generations a tweet is retweeted in a diffusion

tree. Taken together, the three indicators consistently suggest

Table 2 Definitions of degree centrality and authority

Metrics Definitions

Degree
centrality

The total number of links of an individual in a network. In a network of followers, this will be the number of followers a user has

Authority The relative importance of a node in a network. In this paper, we measure the authority of a user by calculating the ratio of the
number of followees to the number of followers, and the ratio of the number of retweets received from others to the number of
retweets the user posted

Table 3 Two dimensions of authority and definitions of four

user types

First, we defined two dimensions of authority to classify users into four
categories (2 × 2):

a. Followee-follower ratio The first dimension is the ratio of
the number of followees to the
number of followers. Users are
classified as either ratio > 1 or ≤ 1.

b. Retweeted-retweeting ratio The second dimension is the ratio
of the number of retweets
received from others to the
number of retweets the user
posted. Users are classified as
either ratio > 1 or ≤ 1.

We expect that users, who have more followers than followees, should
have more retweets by their own followers than they retweeting their
followees’ tweets. Likewise, we expect that users, who have fewer
followers than followees, should have fewer retweets by their own
followers than they retweeting their followees’ tweets.

Therefore, according to the two dimensions, we defined four types of
users:

a. Disseminators (also named as
“Broadcasters” by Gonzalez-Bailon
et al. [7]

followees ≤ followers & being
retweeted ≤ retweeting

b. Common users followees > followers & being
retweeted ≤ retweeting

c. Influential users followees ≤ followers & being
retweeted > retweeting

d. Hidden influential users followees > followers & being
retweeted > retweeting
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that the broadcast model was dominant in the diffusion

process of Ebola messages on Twitter.

Furthermore, both the broadcast model and the viral

model could have generated large information cascades

as the normalized structural virality and cascade size are

only weakly correlated (Spearman’s rho = 0.08, p < .01).

Among the 10 most retweeted cascades (each with more

than 18,000 retweets), only two have normalized struc-

tural virality values larger than the median of 0.0006. In

fact, the relationship between normalized structural vir-

ality and cascade size is non-linear: Cascades with nor-

malized structural virality values around the median

(50–60%) received the largest number of retweets on

average (M = 170, Mdn = 76). The correlation between

raw structural virality and cascade size is stronger

(Spearman’s rho = 0.51, p < .01) than that between nor-

malized structural virality and cascade size, because the

average distance would be larger when there are more

retweeters solely by chance.

Identifying influential users

Number of followers ≠ influence. In the Ebola Twitter

conversation, the majority of users were simply recipi-

ents and did not retweet the message; only a few users

transmitted it by retweeting the message. In our data,

the number of followers is moderately correlated with

the number of retweets (Spearman’s rho = 0.28, p < .01),

suggesting that equating the number of followers to in-

fluence is questionable. In fact, the most retweeted tweet

in our data was posted by a user who had only 2421 fol-

lowers at the time. Among the top 10 retweeted tweets,

two were posted by users with fewer than 1000 fol-

lowers. The average number of followers the authors of

the original tweets that started the 192,209 information

cascades had was 464,700 (Mdn = 30,910, and 75% of

the users have more than 4077 followers).

To better measure the influence of Twitter users, we

used an established method [7] that combines following

and retweeting characteristics. Users who have more fol-

lowers than followees are expected to have more potential

to be retweeted and they are expected to be retweeted by

their own followers more than they retweet others’ tweets.

However, as shown in Table 4, only a small proportion of

all users involved in the information cascades (2%) were

retweeted as many times as expected (i.e., influential

users), and the rest (38%) were retweeted less often than

expected (i.e., “disseminators” as previously defined).

Users with fewer followers than followees are generally

expected to be less influential and be retweeted less

often than they retweet others’ tweets. Most of such

users (60% of all users) were less retweeted by their own

followers as compared to how many times they retweet

others’ tweets (i.e., common users). Nevertheless, a tiny

proportion of users (< 1% of all users in our data set) re-

ceived more retweets than they retweeted others’ tweets

while they have fewer followers than followees. Thus

they are categorized as “hidden influential users”.

Among the 56,768 seed users who created the information

cascades, 1.7% are disseminators, 1.4% are common users,

13.7% are hidden influential users, and 83.2% are influential

users. Table 5 shows that most information cascades were

initiated by the influential users (91.6%), while only 1% were

from common users and disseminators. The most active

Twitter account was Nigeria Newsdesk (created 1657 cas-

cades with more than 10 retweets), followed by World

Health Organization (created 1309 cascades) and BBC News

Fig. 3 The probability distribution of normalized structural virality of information cascades of 192,209 original tweets with more than 10 retweets

each, selected from a data set of 36,931,362 Ebola-related tweets from March 23, 2014 to May 31, 2015
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Africa (created 1027 cascades). All media related accounts

(e.g., CNN, BBC, and New York Times) created 8.2% (15,709)

information cascades and 94.7% (1068/1128) of these accounts

were influential users. Nevertheless, only 2.4% of influential

seed users were media related accounts. Health organization

accounts created 2.1% (4080) information cascades and all the

18 health organization seed accounts were influential users.

The media and health organization accounts triggered 12.8%

of all retweets in our data set. In summary, although the

media and health organization accounts were influential users,

they accounted for only a small proportion of the cascade dy-

namics directly. Many other Twitter users, who served as in-

fluential users, triggered most information cascades.

Table 5 also presents the cascade size, structural virality

and normalized structural virality of the 192,209 informa-

tion cascades. Influential users and hidden influential

users are more likely to trigger large cascades than dis-

seminators and common users. We observed that both in-

fluential users and hidden influential users were likely to

initiate information cascades that diffused through the

broadcast model, while disseminators and common users

were more likely to initiate information cascades that dif-

fused through the viral model.

Table 6 presents the retweeting patterns among the

four types of users involved in all information cascades

(4,925,730 unique users and 12,426,623 retweets). The

rows of Table 6 are the sources of information, while the

columns are the recipients. The information flows from

the rows to the columns. The values in the cells are the

numbers of retweets. The expected values, indicating the

number of occurrence generated purely by chance (assuming

that rows and columns are independent), were calculated by

(column sum × row sum)/total number of cases. For

example, the value in row 1 and column 4 is 58,203, indicat-

ing that the influential users have retweeted 58,203 times

from the disseminators. The observed value is larger than

the expected value (shown in parentheses, 16,385), indicating

that the probability of information flowing from dissemina-

tors to influential users (13.8%) is larger than the probability

of information flowing at random (3.9%).

The data in Table 6 suggest that Ebola-related messages

generally spread from the influential users to common users

and disseminators, accounting for 86.2% (10,709,045/

12,426,623) of all retweets. However, comparing to the ex-

pected values, the frequencies are somehow as expected. An-

other more significant route is messages flowing from

common users and disseminators to influential users and

hidden influential users, and then spread to the rest of the

common users. This explains why the information cascades

initiated by disseminators and common users have higher

structural virality values (see Table 2). This is also consistent

with the two-step flow theory as proposed by Katz and

Lazarsfeld [5]: common users rely on the opinion leaders

(i.e., the influential users or hidden influential users) to

spread information widely.

Discussion
Principal results

Our study investigated how Ebola-related information dif-

fused on Twitter using concepts from network analysis. We

demonstrated the coexistence of two diffusion models of

Ebola-related information on Twitter. The broadcast model

represents one-to-many diffusion, while the viral model rep-

resents a chain of individual-to-individual diffusion. We

found that the broadcast model was dominant in

Ebola-related Twitter communication. Like the viral model,

Table 4 Number of Twitter users (percentage of all users, n = 4,925,730) in four categories defined according to the following and

retweeting characteristics of the users who tweeted about Ebola from March 23, 2014 to May 31, 2015

One’s tweets being retweeted ≤ Retweeting others’ tweets One’s tweets being retweeted > Retweeting others’ tweets

Followees ≤
Followers

Disseminators
1,864,885 (38%)

Influential Users
88,286 (2%)

Followees >
Followers

Common Users
2,952,331 (60%)

Hidden Influential Users
20,228 (< 1%)

Note: “Followees” refers to the number of Twitter accounts that a Twitter user followed. “Followers” refers to the number of Twitter users who followed a Twitter

user’s account. “One’s tweets being retweeted” refers to the number of times a Twitter user’s tweet was retweeted by others. “Retweeting others’ tweets” refers to

the number of times a Twitter user retweeted another users’ tweets

Table 5 Cascade size, structural virality and normalized structural virality of information cascades created by four different categories

of users who tweeted about Ebola from March 23, 2014 to May 31, 2015

Categories of users who created the
information cascades

Percentage of total
cascades

Cascade size (Q1,
median, Q3)

Structural virality (Q1,
median, Q3)

Normalized structural virality (Q1,
median, Q3)

Influential users 91.6% (14, 21, 42) (1.89, 1.98, 2.15) (0.00, 0.00, 0.04)

Hidden influential users 7.1% (13, 17, 26) (1.93, 2.09, 2.61) (0.01, 0.04, 0.15)

Disseminators 0.6% (12, 13, 16) (1.92, 2.15, 2.64) (0.01, 0.09, 0.23)

Common users 0.7% (12, 14, 18) (1.98, 2.28, 2.86) (0.04, 0.13, 0.27)

Note: Q1: First quartile (25%); Q3: Third quartile (75%). See the User classification section in the Methods for the definition of disseminators, common users,

hidden influential users, and influential users
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the broadcast model could also generate large information

cascades. Furthermore, we found that influential users and

hidden influential users could trigger more retweets than dis-

seminators and common users. Disseminators and common

users primarily spread information via the broadcast model.

The disseminators’/common users’ tweets reached their fol-

lowers, but only a small fraction of their followers retweeted

them. If disseminators and common users were going to

spread information beyond their immediate followers, they

relied on influential and hidden influential users to retweet

their tweets. If many of a disseminator’s /common user’s fol-

lowers were influential or hidden influential users, then viral

spreading might occur. The influential users retweeted the

disseminator’s/common user’s tweets and then reached all of

their followers. In this sense, it starts as a broadcast model

(one-to-many) and then turns into a viral model (a chain of

individual-to-individual).

Our study contributes to the existing literature in several

ways. First, a previous study found that news media coverage,

instead of individual-to-individual communication, domi-

nated the dynamic patterns of Ebola-related Twitter activity

in the US [2]. Our finding is consistent with their mathemat-

ical model in general – broadcast model is pervasive. How-

ever, our analysis at the micro diffusion level suggests that

viral spreading still has its unique roles. Even though main-

stream media and health organization accounts (such as

BBC, CDC, and WHO) were very influential in terms of trig-

gering information cascades, most influential users were not

media or health organizations. They could be celebrities (e.g.,

Barack Obama, Bill Gates) or sports organizations (e.g., FC

Barcelona). In fact, the media accounts could only account

for a small proportion of all retweets in our data set. The dis-

crepancy could be caused by the units of analysis. Towers et

al.’s analyses [2] were at the aggregate level and the impact of

media coverage was estimated including indirect effects. It is

plausible that most of the celebrities or sports organizations

in our data set actually were led by media coverage; however,

the effect was not visible on Twitter. Second, our analysis

was not limited to the differentiation of broadcast or viral

diffusion models on Twitter. We introduced the

identification of influential users [7] to extend previous stud-

ies on Ebola-related Twitter data. We found that broadcast

and viral models were effective for different user types. Influ-

ential users and hidden influential users were more likely to

create broadcast diffusion, whereas common users and dis-

seminators were more likely to create viral diffusion. Finally,

extending the concept of structural virality introduced by

Goel et al. [4], we developed a normalized version of struc-

tural virality. The normalized structural virality will not de-

pend on the cascade size intrinsically and can be used to

analyze information cascades of all types of information

across different social media platforms.

Our findings are important as they may inform how we

may formulate public health communication strategy during

outbreak emergency responses. If a certain type of informa-

tion is more likely to diffuse via the broadcast model, it could

be strategically advantageous to work with influential users

and hidden influential users who can attract a large number

of retweeters directly. However, if the information is more

likely to spread virally, developing a successful strategy gets

more complicated because viral diffusion depends on the

structure of the underlying social networks. For example, in-

formation in a cohesive network – where users are

well-connected with each other – spreads relatively fast [11].

One strategy for health communication would then be to

identify cohesive sub-communities within a network and

then spread the information in each sub-community. How-

ever, we usually do not know the whole network structure

on social media platforms and therefore, the identification of

sub-communities within a network may not be feasible.

Through a retrospective observational study of Ebola-re-

lated Twitter data, our analysis showed that the broadcasting

model was dominant on Twitter for tweets pertinent to an

emerging infectious disease outbreak, and that the broadcast-

ing model could generate large information cascades. This

finding suggests that public health practitioners may be able

to rely on the broadcasting model for large-scale dissemin-

ation of public health information during outbreak emer-

gency responses. Although it is widely believed that the viral

spreading model is popular on Twitter, it is not empirically

Table 6 Information flow, as represented by frequencies of retweets and the expected numbers in bracket, among four categories

of Twitter users who tweeted about Ebola from March 23, 2014 to May 31, 2015

From-To Disseminators Common users Hidden influential users Influential users

Disseminators 199,167

(166,838)

146,719
(233,779)

19,182

(6269)

58,203

(16,385)

Common users 82,712
(115,082)

143,088
(161,257)

29,119

(4324)

37,046

(11,302)

Hidden influential users 174,208
(214,220)

306,596

(300,172)

28,480

(8049)

34,196

(21,039)

Influential users 4,442,035

(4,401,982)

6,267,010

(6,168,205)

107,264
(165,403)

351,598
(432,317)

Note: The numbers in parentheses are the expected values. The cells where empirical values are larger than the expected values are written in italics. The

expected numbers were calculated by cross-tabulation analysis by assuming columns and rows are independent. The analysis was based on the

12,426,623 retweets
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supported in our analysis of Ebola-related tweets. Viral infor-

mation cascades on Twitter are rare events that public health

agencies would not build communication strategies around

them.

Given that the Twitter handles of many established pub-

lic health agencies have more followers than followees,

these Twitter handles are either “disseminators” or “influ-

ential users.” The practical question raised by health com-

munication practitioners is how they can turn their

Twitter handles from “disseminators” to “influential users”

by attracting more retweets. Given the pervasiveness of

the broadcasting model as observed in the retweeting pat-

terns of Ebola-related tweets, establishing a large follower

base (as did many CDC Twitter handles) appears to the

most straight forward answer.

However, an outstanding question remains: how can we

communicate our health messages to Twitter users who

have no interest to follow public health agencies’ handles?

If the broadcast model of information diffusion prevails,

public health agencies’ messages would hardly ever reach

these Twitter users. Our results suggest that future efforts

would need to be able to identify seed users who have the

ability to trigger large-scale information cascades. Our

findings suggest that influential users and hidden influen-

tial users are likely to be the most important seeds. How-

ever, to collaborate with the influential users with many

followers (such as celebrities) to support the cause of a

specific health communication campaign may not always

be the public health agencies’ priorities.

Hidden influential users would be the alternatives, as

they can induce large-scale cascades beyond our expect-

ation. However, another set of questions emerge: (a)

How can we identify these hidden influential users? Can

they be identified prospectively? (b) What make these

Twitter users “hidden influential”? Are these users ne-

cessarily individuals or organizations with whom public

health agencies should engage?

Classification of Twitter users in Table 4 is retrospective in

general; however, knowledge gained from a previous out-

break may be applied to any current outbreak emergencies.

However, further validations are required in future studies to

ascertain user classification. The prospective identification of

hidden influential users at the early stage of the communica-

tion process and the subsequent collaboration with them to

propagate health messages are possible in theory but challen-

ging in practice given the amount of work that is required to

perform such analysis. The nature of the “hidden influential

users” also requires our attention. Did they simply by chance

write an Ebola-related tweet that became viral? Or are they

individuals who are masters of online communication and

can write tweets in a way that health organizations cannot?

Published scholarly literature on Ebola-related Twitter data

provides some insights into these highly viral tweets and

who these “hidden influential users” are. Vorovchenko and

colleagues [12] found that “humorous accounts” had a lot of

engagement during the Ebola crisis, especially during

October 2014 when Ebola cases were diagnosed in the

United States. Our team’s own qualitative analysis also found

that about one in four Ebola-related tweets in our dataset

was either a joke or irrelevant to public health (unpublished

data). Prior research on Twitter data pertinent to the 2009

H1N1 pandemic also identified humorous tweets in 8% of

their sample [13]. The “hidden influential users” identified

in our current study might be individuals who wrote jokes

about Ebola on Twitter. These humorous tweets reso-

nated with the emotions of many Twitter users at a junc-

ture when many Americans were anxious about their own

perceived risk of being infected with Ebola, and these

tweets became viral. However, whether public health

agencies should use humor in their Twitter communica-

tion to enable their tweets having a viral effect is a matter

subject to debate. Given that the reputation of the govern-

ment and the public health sector at large is at stake,

health communicators are likely to exercise extreme cau-

tion as they approach this suggestion.

It is worth noting that the time frame of 435 days of

our data surpasses many published analyses of

Ebola-related tweets. As highlighted in a 2016 review,

the vast majority of published Ebola-related social media

studies were analyses of data from a very short time

frame [14]. As described by Fung et al. and Towers et al.

[1, 2], Twitter users’ attention to the West African Ebola

outbreak were minimal prior to Ebola cases in the U.S.

and their interest in this topic dropped off afterwards.

While the cut-off point of May 31, 2015 was arbitrary

(as the data was purchased in early June, 2015), our ana-

lysis encompassed the Ebola-related Twitter activities

before, during and after the waves of attention to this

topic that was prominent in October 2014.

Limitations and future directions

First, the present study found that there is little differ-

ence between broadcasting and viral spreading models

in terms of the number of retweets received. However, it

remains unknown whether there are differences in terms

of “reach” (the potential number of individuals exposed

to the message), attitudes, and behavioral change. For

example, some scholars claimed that interpersonal com-

munication is more effective for behavioral change [6].

In addition, the “homophily” mechanism makes similar

users gather together [15]; for example, users who follow

CDC official account on Twitter (@CDCgov) may be

more similar to each other than those who do not. In

this way, broadcasting may reach similar users, whereas

viral spreading may reach heterogeneous users across

different communities on social media platforms [8]. In

this sense, although broadcast model is predominant,

viral spreading may be more beneficial for reaching
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diverse users. However, the lack of demographic data

pertinent to Twitter users prevent us from further

knowing the user diversity, and thereby limits the

generalizability and interpretability of the findings.

Second, this is a case study of Twitter information specific

to Ebola. Our findings are consistent with previous studies

using general tweets [4]. However, it is unknown whether

the patterns will hold across different topics. For example,

does Zika-related information diffuse on Twitter differently

than that of Ebola-related information [16]? Following a

similar line of thought, while prior cross-sectional studies

categorized contents Ebola-related tweets and manually

identified Ebola misinformation [17], future research may

study whether Ebola-related misinformation spreads differ-

ently on Twitter networks compared with correct scientific

information. Prior study has identified a difference between

the response ratio of Twitter users (the number of individ-

uals exposed to a piece of information divided by the num-

ber of individuals taking the action to retweet it or choosing

not to retweet it) for 3 news stories and 10 rumors related to

Ebola [18]. In terms of prevalence, structural virality, spread,

retweets, and other quantitative measures, are there any sig-

nificant differences between misinformation and scientific in-

formation? A study of publicly available Facebook data

found that scientific information differed from conspiracy

theories in terms of cascade dynamics [19]. Addressing these

issues will allow public health communicators to identify and

address misinformation.

Third, even though identifying the hidden influential

users to assist in the diffusion of public health messages

on Twitter could potentially be more effective than en-

couraging influential users to share critical public health

information, we employed an ad-hoc approach to identify

them in the current study. Can we identify hidden influen-

tial users on Twitter (or other social media) prior to or

during an emergency response? In this study, we identified

many media and health organizations that were influential

users. However, we also found that most of influential

users were not media or health organizations. Future stud-

ies are required to find a more convenient and efficient

way to identify hidden influential users.

Finally, the present study found that the broadcast-

ing model was dominant among Ebola-related tweets.

However, we do not know whether the combination

of broadcasting and viral spreading strategies can fa-

cilitate the diffusion of health information beyond the

additive effect.

Conclusions
Through an analysis of a comprehensive Twitter data

set, we explicitly reconstructed and described the dif-

fusion paths of Ebola-related messages. We demon-

strated that the broadcast model of one-to-many

dissemination dominated the Ebola discussion on

Twitter. Furthermore, we discussed the role of differ-

ent user types in the diffusion process. A few influen-

tial and hidden influential users played the key role

in successful diffusion of Ebola-related messages.
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