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Aims Pulmonary arterial hypertension (PAH) is a progressive condition with high mortality. Quantitative cardiovascular

magnetic resonance (CMR) imaging metrics in PAH target individual cardiac structures and have diagnostic and

prognostic utility but are challenging to acquire. The primary aim of this study was to develop and test a tensor-

based machine learning approach to holistically identify diagnostic features in PAH using CMR, and secondarily,

visualize and interpret key discriminative features associated with PAH.
...................................................................................................................................................................................................

Methods

and results

Consecutive treatment naive patients with PAH or no evidence of pulmonary hypertension (PH), undergoing CMR and

right heart catheterization within 48h, were identified from the ASPIRE registry. A tensor-based machine learning ap-

proach, multilinear subspace learning, was developed and the diagnostic accuracy of this approach was compared with

standard CMR measurements. Two hundred and twenty patients were identified: 150 with PAH and 70 with no PH. The

diagnostic accuracy of the approach was high as assessed by area under the curve at receiver operating characteristic ana-

lysis (P<0.001): 0.92 for PAH, slightly higher than standard CMR metrics. Moreover, establishing the diagnosis using the

approach was less time-consuming, being achieved within 10 s. Learnt features were visualized in feature maps with corres-

pondence to cardiac phases, confirming known and also identifying potentially new diagnostic features in PAH.
...................................................................................................................................................................................................

Conclusion A tensor-based machine learning approach has been developed and applied to CMR. High diagnostic accuracy has

been shown for PAH diagnosis and new learnt features were visualized with diagnostic potential.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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Introduction

Pulmonary arterial hypertension (PAH) is a life-shortening condition,

and if untreated, it leads to right heart failure and death with a median

survival of less than 3 years. The condition has an insidious onset with

disease usually advanced at diagnosis.1 In response to distal vascular

remodelling, the proximal pulmonary vasculature becomes dilated

and stiffened.2–5 As the disease progresses the right ventricular (RV)

*Corresponding author. Tel: þ44 (0) 114 215 9143; Fax: þ44 (0) 114 271 1714. E-mail: a.j.swift@shef.ac.uk
†These authors are joint first authors.
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Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
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dilates, hypertrophies, and deteriorates.6–8 In addition, other features

including changes in interventricular septal configuration,9,10 atrial size

and function,11–13 and pericardial and pleural effusions can occur.14,15

Echocardiography is recommended in suspected pulmonary hyper-

tension (PH) via assessing systolic pulmonary arterial pressure.16,17

Cardiovascular magnetic resonance (CMR) imaging protocols can

assess a large number of characteristics in a single examination. In con-

trast to the 10’s of millions of voxels within an imaging dataset, derived

data used for diagnostic and prognostic purposes is limited. Image ana-

lysis is time-consuming, particularly in PAH where the automatic seg-

mentation algorithms typically fail due to ventricular deformation and

reproducibility is lower for the right ventricle than the left.

Volumetric assessment of the right ventricle with CMR is superior

to that achieved with echocardiography,18 though remains challeng-

ing.19 Machine learning can rapidly and consistently identify relevant

information from vast 3D/4D data usually inaccessible to the report-

ing physician. Multilinear subspace learning20 is an emerging tensor-

based machine learning approach that reduces the dimensionality of

multidimensional data by directly mapping their tensor representa-

tions to a low-dimensional space, with recent application to automat-

ically identify features in registered brain magnetic resonance imaging

images to discriminate between different brain conditions.21

However, this multilinear subspace learning approach to extract,

visualize, and interpret diagnostic features have not previously been

applied to cardiovascular imaging. Success of such a machine learning

diagnostic approach could improve standardization and diagnostic

rates, particularly in less experienced centres. Even in experienced

centres, machine learning may allow a more focused, enhanced, and

standardized assessment by considering computer learnt diagnostic

features alongside expert interpretation of the images.

To our knowledge, no studies have used multilinear subspace

learning to extract, interpret, and visualize the range of diagnostic fea-

tures in suspected PH, not to mention without the necessity for man-

ual segmentation.

The primary aim of this study was to develop and test multilinear

subspace learning for CMR imaging to identify and learn diagnostic

features in patients with suspected PAH without the need for manual

segmentation. The secondary aim was to visualize and interpret key

discriminative features identified by the machine learning method.

Methods

Patients
Consecutive treatment naive patients with PAH or no evidence of PH

(no PH) referred for CMR between December 2014 and February 2017

at a PH referral centre were identified. Diagnosis was made following

multidisciplinary team assessment. Inclusion required CMR and right

heart catheterization to be performed within 48 h. Ethical approval was

granted from the local ethics committee and institutional review board

for this retrospective study and written consent was waived (ref c06/

Q2308/8).

MR acquisition
CMR was performed on a GE HDx (GE Healthcare, Milwaukee, USA)

whole-body scanner at 1.5 T using an eight-channel cardiac coil. Short-

axis cine images were acquired using a cardiac gated multislice balanced

SSFP sequence (20 frames per cardiac cycle, slice thickness 8mm, FOV

48, matrix 512 � 512, BW 125 KHz/pixel, TR/TE 3.7/1.6ms). Mid-

chamber cine images in addition to a stack of images in the short-axis

plane with slice thickness of 8mm (2mm interslice gap) were acquired

fully covering both ventricles from base to apex, end-systole was consid-

ered as the smallest cavity area, and end-diastole was defined as the first

cine cardiac phase of the R-wave triggered acquisition or largest volume.

Patients were scanned in the supine position with a surface coil and retro-

spective electrocardiogram gating.

Image preprocessing
Registration

CMR images from different patients/sequences were registered using

paired landmark points. Three landmarks were manually labelled on the

first frame of each image sequence and reviewed (AJS). The short-axis

image landmarks are inferior and superior hinge points and the inferolat-

eral inflection point of the RV free wall. The four-chamber images land-

marks are left ventricular (LV) apex, mitral, and tricuspid annuli. One

image sequence in a dataset was considered the reference sequence to

register the rest of the sequences against. A geometric transformation

was fit to these three landmark point pairs, including translation, rotation,

scaling, and reflection (flipping). This transformation was then used to

warp a particular sequence against the reference sequence to accomplish

registration. The distances between the warped landmarks and the refer-

ence landmarks were computed and the maximum among the three dis-

tance values was examined for quality assurance.

Masking

We studied two elliptical masks (small and large) to focus the machine

learning approach on the relevant anatomy, i.e. a region including the

whole heart. The two masks were automatically generated from five

boundary landmarks manually drawn (A.J.S.) on the first frame of the ref-

erence sequence, which needs to be done only once for short axis or

four chambers.

Scaling

To reduce the negative effect (e.g. overfitting) of the small training sample

size (�200) on the machine learning model, we rescaled the original spa-

tial resolution of 512 � 512 (0.94mm) to smaller scales 32 � 32

(15mm), 64 � 64 (7.50mm), 128 � 128 (3.75mm), and 256 � 256

(1.89mm) to find a resolution best for prediction.

Machine learning methodology
Machine learning builds models to automatically learn and improve from

data examples rather than being explicitly programmed. The machine

learning system in this article consists of (i) a feature extraction step to

learn a low-dimensional representation from high-dimensional input, (ii) a

feature selection step to focus on a small portion of extracted features,

and (iii) a classifier to learn a decision function from selected features that

distinguish which candidate category a new observation belongs. Due to

the small training sample size (�200) relative to the high input dimension-

ality (32� 32� 20= 20 480 even at the smallest scale 32� 32), complex

machine learning models such as random forests and neural networks are

susceptible to overfitting. Therefore, we choose simple linear methods in

the following, which are also more transparent and interpretable than

complex, non-linear methods. Alternative choices at each step are pos-

sible but not the focus of this article.

A sequence of K CMR images of a standard size I� J is viewed as a sin-

gle sample (example) of data, with size I � J � K, which is a multidimen-

sional array called a tensor in mathematics. There were N training

sequences available for training. We first used multilinear principal com-

ponent analysis (MPCA), a fundamental multilinear subspace learning

2 A.J. Swift et al.
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algorithm that extends principal component analysis (PCA) to tensor in-

put, to reduce the dimensionality of each (tensor) sample from I� J� K

to MPCA features of size P � Q � R typically with P< I, Q< J, and R< K

using three projection matrices of size I � P, J � Q, and K � R22 (see

Figure 1). Each MPCA feature corresponds to an eigentensor that is a

rank-one tensor with (Iþ J þ K) parameters, much less than the number

of parameters (I� J� K) for an eigenvector associated with each feature

if PCA is used, greatly reducing overfitting.20 To further reduce the

dimensionality and improve interpretability, we used Fisher’s discriminant

ratio to sort the P � Q � R features in a descending order and selected

only the first S most discriminative features from these P � Q � R fea-

tures. The hyperparameter S is determined by 10-fold cross-validation on

the training data (i.e. inner cross-validation) using one of the two linear

classifiers, support vector machine (SVM) with a linear kernel and logistic

regression (LR), which are more efficient, more interpretable, and less

prone to overfitting. Finally, we fed these S selected features from all the

training data to the same linear classifier (SVM or LR) to learn a final clas-

sification model. Figure 2 is a flow diagram that illustrates the machine

learning process with example learnt features. In particular, the fourth

row of Figure 2 shows that the learnt factors are highly interpretable,

where the column (size I� 1) and row (size J� 1) factors closely resem-

ble wavelets and the time factor (size K � 1) shows the cardiac phase.

The proposed multilinear subspace learning approach was tested on a

computer with four cores at 2.10GHz and 32 GBmemory. Not including

the time for landmarking, the diagnosis process takes less than 1 s for one

CMR image sequence. In total, the whole approach takes <10 s, where

the landmarking time dominates.

Cardiac volume mass and function image

analysis
Cardiac volume, mass, and function analysis were prospectively acquired

on a GE Advantage Workstation 4.1 (GE Healthcare, Milwaukee, USA).

The observer, a CMR radiographer with 10 years CMR experience was

blinded to the patient clinical information, cardiac catheter parameters,

and machine learning data. Right and left endocardial and epicardial surfa-

ces were traced manually from the stack of short-axis cine images to ob-

tain RV end-diastolic (RVEDV) and end-systolic (RVESV), stroke volume

(RVSV) and ejection fraction (RVEF), LV end-diastolic (LVEDV) and end-

systolic volumes (LVESV), stroke volume (LVSV) and ejection fraction

(LVEF), RV end-diastolic mass (RV mass), and LV end-diastolic mass (LV

mass). For calculation of LVmass, the interventricular septumwas consid-

ered as part of the left ventricle. Ventricular mass index (VMI) was

defined as RV mass divided by LVmass, as previously described.23,24

Right heart catheterization and clinical

assessment
Diagnostic classification of PAH was made using standard criteria following

multi-professional assessment. Right heart catheterization was performed

using a balloon-tipped 7.5-Fr thermodilution catheter (Becton-Dickinson,

USA). Right heart catheterization was performed via the internal jugular

vein using a Swan-Ganz catheter. Right heart catheterization indices

required to define PAH were mean pulmonary artery pressure (mPAP)

>_25mmHg at rest with a pulmonary arterial wedge pressure (PAWP) of

<_15mmHg. Pulmonary vascular resistance (PVR) was determined as fol-

lows: PVR = (mPAP - PAWP)/cardiac output (CO). CO was measured by

thermodilution technique. Cardiac index is calculated by CO/body surface

area. No PH was defined as suspected PH with mean pulmonary arterial

pressure at right heart catheterization less than 25mmHg.

Statistical analysis
Comparisons of CMR between patients with PAH and patients without

PH were analysed using an independent t-test for continuous data, and v2

and Fisher’s exact test for categorical data. Receiver operating character-

istic (ROC) analysis was used to test the diagnostic strength of estab-

lished CMR indices and multilinear subspace learning for the detection of

the presence or absence of PAH. ROC curve analysis results are pre-

sented as area under the curve (AUC). Equal sensitivity and specificity

were chosen from the ROC to report the accuracy

(=sensitivity=specificity), positive predictive value (PPV), and negative

predictive values (NPVs).

Ten-fold cross-validation was used to evaluate the proposed machine

learning approach in terms of AUC. The patients were divided into 10

disjoint subsets (folds). We used nine subsets for training (learning the

MPCA projection, determine S, and learning the classifier) and the

remaining one subset for prediction (evaluation). This process was

repeated 10 times so that each subset was used for prediction exactly

once, with the average over 10 repeats reported. In addition, a subgroup

analysis was performed assessing the accuracy for differentiation of

patients with and without idiopathic PAH (IPAH).

A P-value <0.05 was determined to be statistically significant. The

CMR indices were analysed using SPSS 22 (SPSS, Chicago, IL, USA) to ob-

tain the statistics. The proposed machine learning approach was imple-

mented and studied using MATLAB (version R2017b, MathWorks). The

core MATLAB code is available at http://www.mathworks.com/matlab

central/fileexchange/26168.

Results

Patients
Of 1122 patients with suspected PH at their diagnostic visit, 220

patients with PAH or no PH were identified having CMR and

Figure 1 Illustration of multilinear principal component analysis

(MPCA). PCA is a traditional linear dimensionality reduction

method that extracts low-dimensional features from high-dimen-

sional input. MPCA extends PCA to tensor representations of data.

In this article, the input to MPCA is N samples of CMR sequences

with size I� J� K, with a spatial dimension of I� J and a time dimen-

sion of K (frames). MPCA maps each I � J � K tensor to a low-di-

mensional P � Q � R tensor (P< I, Q< J, and R< K) using three

projection matrices of size I � P, J � Q, and K � R. During training,

these three matrices are optimized to maximize the variation cap-

tured in the N mapped P � Q � R tensors and these optimized

matrices are the output of the MPCA learning algorithm. During

testing, the learnt three matrices map a new I � J � K tensor input

of I � J � K into a P � Q � R tensor as its low-dimensional

representation.

Machine learning CMR approach 3
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
h
jc

im
a
g
in

g
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/e

h
jc

i/je
a
a
0
0
1
/5

7
1
7
9
3
1
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 0

6
 M

a
rc

h
 2

0
2
0



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

RHC within 48 h (see Figure 3). One hundred and fifty patients

were identified with PAH and 70 patients were found not to have

PH. Among 150 patients with PAH, 69 patients were diagnosed

with IPAH, 58 with PAH associated with connective tissue dis-

ease, 11 with PAH associated with portal hypertension, 10 with

congenital heart disease, and 2 patients with PAH associated with

drugs and toxins. Table 1 presents the demographics, right heart

catheter, and CMR indices for patients with and without PAH,

and IPAH alone. Patients with PAH had higher mRAP, mPAP,

PVR, and lower cardiac index and mixed venous oxygen satura-

tions, all with P<0.0001 compared to patients with no PH. In add-

ition, higher RV end-diastolic volume and end-systolic volume

and lower RV ejection fraction (all P<0.001) were recorded for

patients with PAH vs. patients without PH.

Figure 2 Proposed machine learning workflow: manual landmarking, pre-processing steps with registration, masking, and rescaling, machine learn-

ing steps, visualization of learnt factors and features, and feature maps. The learnt factors in the fourth row are highly interpretable: the column (size I

� 1) and row (size J� 1) factors capture spatial variations closely resemble wavelets popular in representing fundamental patterns in natural images,

and the time factor (size K� 1) shows the cardiac phase.

4 A.J. Swift et al.
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Learnt features, interpretation, and
discovery
The average number of learnt features identified following MPCA

and feature selection with 10-fold cross-validation on four-chamber

images were 22 (out of 1215 total features on average, after MPCA)

and 49 (out of 1242 total features on average) for no PH vs. PAH and

IPAH, respectively. More features were identified on short-axis

images though the total numbers of features were smaller, 66 (out of

212 total features on average) and 92 (out of 252 total features on

average) for differentiating no PH vs. PAH and IPAH, respectively.

These numbers were determined in a data-driven approach on the

training data. Because this machine learning model is fully linear, these

learnt features can be mapped back to the original images to deter-

mine voxel-wise weights obtained from linear classifiers for diagnosis

and interpretation.

For short-axis imaging, features identified were most frequent-

ly located in the region of the interventricular septum Figure 4A.

The learnt temporal features were most frequently identified and

discriminative at end-systole. Four-chamber analysis also was

highly diagnostic for PAH, where features associated with PAH

(highlighted in red) were identified adjacent to the interventricu-

lar septum (Figure 4B).

New features were discovered on short-axis imaging, located at

the interventricular septum at end-diastole/early systole which were

indicative of no PH (highlighted in green) (Figure 4C). New features

were also discovered on four-chamber images, green features are

shown at the basal LV lateral wall at end-diastole indicating normality

(Figure 4D), and red features are noted in the same location at end-

systole indicating PAH.

Diagnostic utility
PAH diagnosis

Table 2 presents the ROC analysis results for established indices, as

well as the proposed machine learning approach with scaling factor

of 64 � 64 (7.50mm) for short axis and 128 � 128 (3.75mm) for

four chambers, and with the best performing classifier (SVM/LR). The

table also reports the respective confidence intervals. From 10-fold

cross-validation of the machine learning approach, the average AUC

for differentiation of patients with PAH from patients without PH

was 0.90 for the short-axis cine images and 0.86 for the four-chamber

cine images (Figure 5). This was achieved using the small elliptical

mask for both short-axis and four-chamber images, rescaled to 64�

64 and 128 � 128, respectively. Table 3 shows diagnostic accuracy

using different image scaling factors for short-axis and four-chamber

Figure 3 Patient flow diagram.
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cine images using the small ellipse mask. On short-axis and four-

chamber imaging, the large elliptical mask and using no mask had

weaker diagnostic accuracy (Table 2). SVM and LR both had good ac-

curacy, with small differences only. For differentiation of PAH from

without PAH, SVM had an AUC of 0.90, while LR had 0.87 for the

short-axis cine images, and SVM had an AUC of 0.86, while LR had

0.78 for the four-chamber cine images. Table 4 presents the sensitiv-

ity, specificity, PPV, and NPV of the machine learning approach.

Among existing CMR diagnostic measurements for the diagnosis

of PAH, ventricular mass index, and interventricular septal angle

were the top predictive manually drawn measurements, with similar

high diagnostic utility of AUC=0.84 and 0.88, respectively.

IPAH diagnosis

The AUC values for the machine learning approach were higher for

differentiation of no PH from IPAH, 0.97 for the short-axis cine

images and 0.95 for the four-chamber cine images (Figure 5). This was

again achieved using the small elliptical mask. On short-axis and four-

chamber imaging, the large elliptical mask and using no mask had

weaker diagnostic accuracy (Table 2). For differentiation of no PH

from IPAH, SVM had an AUC of 0.97, while LR had 0.95 for the

short-axis cine images, and both SVM and LR had an AUC of 0.95 for

the four-chamber cine images. Table 4 presents the sensitivity, specifi-

city, PPV, and NPV of the machine learning approach.

The results from existing manually drawn CMR diagnostic meas-

urements were similarly high, where ventricular mass index and sep-

tal angle have AUC of 0.92 and 0.97, respectively.

Preprocessing results
Registration was successful in all cases as judged by visual inspection.

Error distance measured in unit pixel (in an image of 512� 512) was

7.1 (SD 3.7, range 0.32–20.1) for four-chamber images and 4.1 (SD

2.3, range 0.3–10.6) for short axis. The small elliptical mask consist-

ently gave the best classification results for both short-axis and four-

chamber imaging (outperforming large mask and nomask).

Discussion

This study shows for the first time that a machine learning workflow

based on multilinear subspace learning applied to CMR cine images

can provide a rapid diagnostic assessment without manual

....................................................................................................................................................................................................................

Table 1 Demographics, diagnostic, right heart catheter, and magnetic resonance imaging data

No PH (n5 70) PAH (n5 150) P-value IPAH (n5 69) P-value

Demographics

Age (years) 61 (17) 64 (13) 0.26 64 (13) 0.25

Sex female (%) 73 70 0.75 61 0.15

WHO FC I/II/III/IV I (1), II (31), III (36), IV (2) II (7), III (126), IV (17) II (1), III (55), IV (13)

Diagnosis

IPAH 69

CTD 58

Portal 11

CHD 10

Drugs and toxins 2

Right heart catheter

mRAP (mmHg) 6 (3) 11 (6) <0.0001 12 (6) <0.0001

sPAP (mmHg) 33 (5) 74 (23) <0.0001 85 (17) <0.0001

dPAP (mmHg) 11 (3) 28 (10) <0.0001 32 (9) <0.0001

mPAP (mmHg) 20 (3) 46 (14) <0.0001 53 (10) <0.0001

PAWP (mmHg) 10 (3) 11 (3) 0.023 11 (3) 0.03

CI (L/min/m2) 3.0 (0.8) 2.5 (0.8) <0.0001 2.2 (0.8) <0.0001

PVR (dyns) 158 (67) 750 (450) <0.0001 917 (429) <0.0001

SvO2 (%) 71.1 (5.8) 64.5 (9.8) <0.0001 60.1 (8.4) <0.0001

CMR

RVEDVi (mL/m2) 68 (21) 93 (38) <0.0001 105 (38) <0.0001

RVESVi (mL/m2) 32 (12) 60 (33) <0.0001 72 (35) <0.0001

RVEF (%) 53 (9) 38 (13) <0.0001 33 (12) <0.0001

RVSVi (mL/m2) 35 (13) 33 (14) 0.32 33 (12) 0.27

VMi (%) 0.26 (0.15) 0.47 (0.21) <0.0001 0.57 (0.20) <0.0001

Septal angle (degrees) 139 (10) 170 (23) <0.0001 182 (19) <0.0001

CI, cardiac index; CTD, connective tissue disease; dPAP, diastolic pulmonary arterial pressure; IPAH, idiopathic pulmonary arterial hypertension; mPAP, mean pulmonary arterial

pressure; mRAP, mean right atrial pressure; PAH, pulmonary arterial hypertension; PAWP, pulmonary arterial wedge pressure; PVR, pulmonary vascular resistance; RVEDVi,

right ventricular end-diastolic volume index; RVEF, right ventricular ejection fraction; RVESVi, right ventricular end-systolic volume index; RVSVi, right ventricular stroke volume

index; sPAP, systolic pulmonary arterial pressure; SvO2, mixed venous oxygen saturations; VMI, ventricular mass index; WHO, World health organization.
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segmentation of images and can differentiate patients with and with-

out PAH with high accuracy. The diagnostic utility of the machine

learnt image and temporal features was marginally higher than that of

time-consuming, manually drawn diagnostic CMR measurements

used in PAH, with comparable variations in confidence intervals.

However, the proposed machine learning workflow has much lower

cost and much less variability than the manual segmentation-based in-

dices produced by PH imaging experts at a specialist centre. Learnt

features were visualized in feature maps corresponding to cardiac

phases, confirming known and also identifying potentially new diag-

nostic features in PAH.

Identified features were most frequently located in the region of

the interventricular septum for short-axis imaging. We postulate that

‘the diagnostic value of interventricular septal deviation has been

learnt automatically by the machine’. We know that septal deviation

is a feature with added diagnostic value, particularly when measured

at end-systole.9,25 In keeping with higher accuracy of septal position

at end-systole, the learnt temporal features were most frequently

identified at end-systole as providing the highest discriminative

power. New features were discovered on short-axis imaging, e.g.

green features located at the interventricular septum at end-diastole/

early systole are indicative of normality (Figure 4C).

Four-chamber analysis also was highly diagnostic for PAH, with red

features identified adjacent to the interventricular septum as

expected, Figure 4B but also in the RV free wall, particularly the tricus-

pid annulus at end-diastole likely relating to abnormal free wall con-

traction. New features were also discovered on four-chamber

images. Green features were shown at the basal LV lateral wall at

end-diastole indicating normality (Figure 4C and D), and PAH features

were noted in the same location at end-systole indicating PAH.

These features may reflect impact of PAH on LV function.

Blood pool disease features in the right ventricle were identified.

RV blood pool features indicating PAH diagnosis (red, Figure 4A and

B) have been found during systole and those indicating normality

Figure 4 Representative feature map images: (i) short-axis (A) and four-chamber (B) CMR images in a patient with PAH, taken from Phase 11, early

diastole. Notably, features are identified at the level of the interventricular septum and close to the right ventricular outflow tract within the blood

pool. (ii) Short-axis (C) and four-chamber (D) CMR images in a patient without PAH, taken from Phase 1, end-diastole. Features are noted at the level

of the mid chamber/apex septum and basal LV lateral wall. Red features are more indicative of PAH and green indicative of no PAH. The colour bars

show the amplitude of the features detected, with a higher absolution value indicating a higher importance.
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(green, Figure 4D) have been found during diastole, likely relating to

systolic and diastolic RV function. Evaluation of flow sequences using

the proposed machine learning workflow is a next step to better

understand the diagnostic value of intracardiac flow patterns.

A major advantage of the proposed tensor-based machine learning

approach is the removal of the requirement for manual segmenta-

tion. Typically regions of interest, lines, or angles are drawn by expe-

rienced observers directly on the images to derive cardiac and

pulmonary measurements. Such measurements are affected by inter-

observer variability even in expert hands, particularly for RV meas-

urements.19 Furthermore, it is known that the reproducibility of RV

measurements is inferior to those of the left ventricle. The manual

landmarking of only three points in our machine learning approach is

easier and faster to perform (a few seconds) and would require little

training to undertake.

Automatic detection and segmentation of the ventricles using ma-

chine learning is also showing promise.26 The data derived from these

approaches may reduce the need for manual adjustments that are

currently labour intensive, especially for the right ventricle. Such

approaches are however limited by the accuracy of manual segmen-

tation used to train the algorithms. The approach proposed in the

present paper has the great advantage of assessing all pixels within a

mask in each image of a sequence and has the potential to pick up

diagnostic features from within or outside of the ventricles, e.g. atrial

size and function, and pericardial and pleural effusions. This allows

the computer to identify discriminative features in an unbiased fash-

ion. A small number of diagnostic features were identified outside of

the heart (e.g. Figure 4C), which indicates the need of further work to

investigate their pathophysiological significance and potential

diagnosis value. Other applications include treatment response as-

sessment, subtyping, severeness assessment, and pressure/PVR pre-

diction. In particular, the range of prognostic features from the right

and left ventricles,4,27–29 the atria,30 and features of decompensation

such as pericardial effusion31 may be identified using the proposed

approach.

It is known that PH is underdiagnosed and machine learning may

help to improve diagnostic rates and ultimately improve out-

comes.32,33 A prior study using machine learning to measure RV tis-

sue motion has shown good prognostic value in PH,26 and

association with metabolic profiles.34 In the development of the pro-

posed machine learning approach, we aim to gain insights into the fea-

tures identified for further analyses (e.g. biomarker identification/

treatment). Therefore, we favour relatively simple, yet interpretable

machine learning methods, such as linear methods, over highly com-

plex, but opaque black-box methods, such as the popular deep neur-

al networks.35 In particular, linear methods allow direct visualization

of the importance of individual features to assist interpretation.21

The length of time to manually analyse a CMR study is typically 10–

15min, depending on the complexity of the analysis. There can be

variability between observers in their approach to the analysis and

there are also subtle differences in the software provided by vendors.

The machine learning approach proposed here, if used to test an indi-

vidual short-axis sequence, would take less than 10 s, including man-

ual landmarking (dominating the time cost), and automated

preprocessing and diagnostic output. The automated process after

landmarking would take less than 1 s.

Masks of different sizes were studied with best results obtained

using smaller more focused elliptical masks around the heart. This

finding was expected given the effect of PH on the heart and the char-

acteristic imaging features of high pulmonary arterial pressure. For

both IPAH and PAH diagnosis, high accuracy was found even when

short-axis images were rescaled to 64� 64 and four-chamber images

Figure 5 Receiver operating characteristic curve analysis showing

diagnostic accuracy of the proposed machine learning approach in

identification of PAH and IPAH, using short-axis (scale: 64 � 64)

and four-chamber images (scale: 128� 128) and small ellipse mask.

.................................................................................................

Table 2 Receiver operating characteristic analysis
results in AUC, with 95% confidence interval (CI) in
parentheses for established indices and machine learn-
ing on short axis (scale: 64 3 64) and four chambers
(scale: 1283 128).

PAH vs. no PH IPAH vs. no PH

AUC (95% CI) AUC (95% CI)

Established indices

RVEDVi 0.71 (0.64–0.78) 0.3 (0.77–0.90)

RVESVi 0.78 (0.72–0.84) 0.91 (0.86–0.96)

RVEF 0.79 (0.73–0.85) 0.89 (0.83–0.97)

RVSVi 0.54 (0.46–0.63) 0.54 (0.44–0.64)

VMi 0.84 (0.78–0.90) 0.92 (0.87–0.97)

Systolic septal angle 0.88 (0.84–0.93) 0.97 (0.94–0.99)

Proposed machine learning approach

Short-axis: small ellipse 0.90 (0.85–0.93) 0.97 (0.89–1.0)

Short-axis: large ellipse 0.69 (0.62–0.76) 0.90 (0.83–0.97)

Short-axis: no mask 0.70 (0.61–0.79) 0.79 (0.70–0.88)

Four chambers: small ellipse 0.86 (0.80–0.92) 0.95 (0.89–1.0)

Four chambers: large ellipse 0.77 (0.72–0.81) 0.85 (0.78–0.92)

Four chambers: no mask 0.69 (0.63–0.75) 0.79 (0.73–0.85)

RVEDVi, right ventricular end-diastolic volume index; RVEF, right ventricular

ejection fraction; RVESVi, right ventricular end-systolic volume index; RVSVi, right

ventricular stroke volume index; VMI, ventricular mass index.
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were rescaled to 128� 128, compared with the original scale 512�

512 (see Table 3). At these lower resolutions, the structural informa-

tion may play a smaller role and it is the functional information that is

driving the differentiation of health from disease, likely lower RV func-

tion, abnormal RV and LV flow patterns, and abnormal septal motion.

Studying larger cohorts may allow higher accuracy with input of high-

quality data.

Limitations
Landmarks were manually drawn to register the patient sequences to

one another. Fully automated registration of sequences, e.g. via auto-

mated landmark detection using deep learning, is an area for future

work that can further reduce manual user input to just a visual check

to ensure accurate landmark detection and make corrections if ne-

cessary for quality assurance.

Whilst typical interobserver variability is removed using our auto-

matic machine learning method, quantification of the impact of scan-

to-scan variability is an area for future research. Only four-chamber

images and mid-chamber short-axis cine images were used for this

study. Further work includes taking as input multislice cardiac volu-

metric data and 4D flow data, in addition to flow imaging, which may

improve diagnostic accuracy. Further works also include testing this

approach in unselected patients with suspected PH and validating the

approach in a second cohort, in addition to validation in a multivend-

or multicentre setting. In addition, trialling such an approach in other

challenging diagnostic and prognostic cardiac scenarios would be of

value. Factoring image quality score into the approach is also an im-

portant area for further research to explore the potential of machine

learning in low-quality cases that are particularly challenging for

humans.

Conclusion

A tensor-based machine learning approach has been developed to

analyse CMR images without manual image segmentation. It has holis-

tically identified predictive and interpretable temporal and image fea-

tures and allows rapid and accurate diagnosis of PAH.
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Table 3 Comparison of diagnostic accuracy using different image scaling factors for short-axis (SA) and four-chamber
cine images using the small ellipse mask

PAH vs. no PH IPAH vs. no PH

SA Four chambers SA Four chambers

Scaling factor Resolution (mm) AUC AUC AUC AUC

32 � 32 15.0 0.92 0.84 0.94 0.91

64 � 64 7.50 0.90 0.85 0.97 0.94

128 � 128 3.75 0.89 0.86 0.96 0.95

256 � 256 1.89 0.88 0.87 0.94 0.95

512 � 512 (original scale) 0.94 0.86 0.87 0.95 0.91

.................................................................................................

Table 4 Sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) of the
proposed machine learning approach in identification of
PAH and IPAH, using short-axis (scale: 643 64) and
four-chamber images (scale: 1283 128).

Sensitivity Specificity PPV NPV Accuracy

No PH vs. PAH

Short axis 0.89 0.81 0.91 0.78 0.87

Four chambers 0.86 0.81 0.91 0.73 0.85

No PH vs. IPAH

Short axis 0.96 0.87 0.89 0.95 0.92

Four chambers 0.93 0.90 0.90 0.93 0.91
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