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Abstraction Refinement for Games with
Incomplete Information∗

Rayna Dimitrova †, Bernd Finkbeiner
Universität des Saarlandes

{dimitrova,finkbeiner}@cs.uni-sb.de

ABSTRACT.Counterexample-guided abstraction refinement (CEGAR) is used in automated soft-
ware analysis to find suitable finite-state abstractions of infinite-state systems. In this paper, we ex-
tend CEGAR to games with incomplete information, as they commonly occur in controller synthesis
and modular verification. The challenge is that, under incomplete information, one must carefully
account for the knowledge available to the player: the strategy must not depend on information the
player cannot see. We propose an abstraction mechanism for games under incomplete information
that incorporates the approximation of the players’ moves into a knowledge-based subset construc-
tion on the abstract state space. This abstraction results in a perfect-information game over a finite
graph. The concretizability of abstract strategies can be encoded as the satisfiability of strategy-tree
formulas. Based on this encoding, we present an interpolation-based approach for selecting new
predicates and provide sufficient conditions for the termination of the resulting refinement loop.

1 Introduction

Infinite games are a natural model of reactive systems as they capture the ongoing interac-

tion between a system and its environment. Many problems in automated software analy-

sis, including controller synthesis and modular verification, can be reduced to finding (or

deciding the existence of) a winning strategy. The design of algorithms for solving such

games is complicated by the following two challenges: First, games derived from software

systems usually have an infinite (or finite, but very large) state space. Second, the games

are usually played under incomplete information: it is unrealistic to assume that a system

has full access to the global state, e.g., that a process can observe the private variables of the

other processes.

The most successful approach to treat infinite state spaces in software verification is

predicate abstraction with counterexample-guided abstraction refinement (CEGAR) [3, 1].

For games with complete information [7, 4], CEGAR builds abstractions that overapprox-

imate the environment’s moves and underapproximate the system’s moves. If the system

wins the abstract game it is guaranteed to also win the concrete game. If the environment

wins the abstract game, one checks if the strategy is spurious in the sense that it contains an

abstract state from which the strategy cannot be concretized. If such a state exists, the state

is split to ensure that the strategy is eliminated from further consideration.

For games with incomplete information, the situation is more complicated, because the

strategic capabilities of a player depend not only on the available moves, but also on the
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knowledge about the state of the game. If the abstract game provides less information to

the system than the concrete game, then the environment may spuriously win the abstract

game, because the abstract system may be unable to distinguish a certain pair of states and

may therefore be forced to apply the samemove in the two states where the concrete system

can select different moves. An abstraction refinement approach for games with incomplete

information must therefore carefully account for the information collected by the system.

A first requirement is that the refinement should avoid predicates that mix variables that

are observable to the system with those that are hidden. Such mixed predicates lead to

the situation that the concrete system has partial information (the values of the observable

variables), while the abstract system does not know the value of the predicate at all. Since

the system may collect information over multiple steps of a play, however, just separating

the variables alone is not enough. Consider, for example, a situation where, in order to win,

the system has to react with output xo ≈ 0 if some hidden variable xh has value xh ≈ 0 and

with output xo ≈ 1 if xh ≈ 1. Now, suppose the system is able to deduce the value of xh
from the prefix that leads to the state, because an observable rational-valued variable xi is

either always positive or always negative if xh ≈ 0 and flips its sign otherwise. To rule out

the spuriously winning strategy for the environment, it is necessary to refine the abstraction

with the new predicate xi > 0, even though the system wins for any value of xi.

Contributions. In this paper, we propose the first CEGAR approach for games with incom-

plete information. We extend the abstraction of the game with a subset construction on the

abstract state space that ensures that the system only uses information it can see. The result

is a perfect-information game over a finite game graph that soundly abstracts the original

game under incomplete information.

The refinement of the abstraction accounts for two cases: we refine the abstract transition

relations by adding new predicates if the environment spuriouslywins because it usesmoves

that are impossible in the concrete game or because moves of the system are impossible in

the abstract game but possible in the concrete game; we refine the observation equivalence

by adding new predicates if the environment spuriously wins because the abstract system

has too little information. To ensure that the new predicates do not mix observable and

unobservable variables, we develop a novel constraint-based interpolation technique which

provides interpolants that meet arbitrary variable partitioning requirements.

The resulting refinement loop terminates for games for which a finite region algebra

(that satisfies certain conditions related to the observation-equivalence) exists. This includes

important infinite-state models such as timed games or games defined by bounded rectan-

gular automata, given that the observation-equivalence meets the requirement.

In the following, due to space constraints, all proofs and some technical details have

been omitted. We refer the reader to the full version of this paper [6].

Related work. The classic solution to games with incomplete information is the transla-

tion to perfect-information games with a knowledge-based subset construction due to Reif [9].

For games over infinite graphs, however, this construction is in general not effective. Our

approach is symbolic and is therefore suited to the analysis of games over infinite state

spaces. For incomplete-information games with finite state spaces, an alternative would

be to first use the knowledge-based subset construction to obtain a perfect-information con-

crete game and then apply the CEGAR technique of [7] in the usual way. However, since the
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subset construction leads to an exponential blow-up of the state space of the game, which

for realistic systems will make the problem practically infeasible, it is imperative to first

use predicate abstraction and obtain a much smaller state space and only then construct

the subsets of observation-equivalent prefixes. Symbolic fixed-point algorithms based on an-

tichains were proposed in [5, 2]. In the case of infinite game graphs, these algorithms are

applied on a given finite region algebra for the infinite-state game. Our approach, on the

other hand, automatically constructs a sufficiently precise finite abstraction. Interpolation

was applied successfully in verification for the generation of refinement predicates. There

one infers from an unconcretizable abstract counterexample-trace predicates, each of which

refers only to variables that describe a single state on that trace. In our case we need to

consider sets of traces each of which is concretizable and that are represented symbolically

using sets of variables whose intersection contains observable variables only. The straight-

forward application of existing interpolation methods ([8, 10]) would produce refinement

predicates that are either guaranteed to be observable or guaranteed not to relate two or

more states. These approaches are incapable of meeting both guarantee requirements. To

this end, we present our extension of the algorithm from [10] which provides interpolants

that meet arbitrary variable partitioning requirements.

2 Preliminaries

Variables, predicates and formulas. We model the communication between a system and

its environment with a finite set X of variables, which is partitioned into four pairwise dis-

joint sets: Xh,Xi,Xo and {t}. The environment updates (and can observe) the variables in

Xh and Xi and the system updates (and can observe) the variables in Xo. The variables in

Xi are the input variables for the system, i.e., it can read their value but not update them.

The variables in Xh are private variables for the environment, i.e., the system cannot even

observe them. The set Xo consists of the output variables of the system which can be only

read by the environment. The value of the auxiliary variable t determines whether it is the

system’s or the environment’s turn to make a transition, i.e., the two players take turns in

making a transition. The set X′ consists of the primed versions of the variables in X.

Sets of concrete and abstract states and transitions are represented as formulas over some

possibly infinite setAP of predicates (atomic formulas) over the variables in X ∪ X′. For a for-

mula ϕ, we denote with Vars(ϕ) and Preds(ϕ) the sets of variables and predicates, respec-

tively, that occur in ϕ. For a set P of predicates, the set Obs(P) consists of the predicates in
P that contain only observable variables, i.e., from Obs(X ∪ X′) = (X ∪ X′) \ (Xh ∪ X′

h).

Game structures. A game structure with perfect information C = (Ss, Se, s0,Rs,Re) consists
of a set of states S = Ss ∪ Se, which is partitioned into a set Ss of system states and a set Se of

environment states, a distinguished initial state s0 ∈ S, and a transition relation R = Rs ∪ Re,

where Rs ⊆ Ss × Se (when the system makes a transition, it always gives back the turn

to the environment) and Re ⊆ Se × S are the transition relations for the system and the

environment respectively. A game structure with incomplete information (Ss, Se, s0,≡,Rs,Re)
additionally defines an observation equivalence ≡ on S. The system has partial knowledge

about the current state, i.e., it knows the equivalence class of the current state, but not the

particular state in this class. We require that the relation ≡meets the following two require-
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ments. The relation ≡ respects the partitioning of S into Ss and Se: If v1 ∈ Ss and v2 ∈ Se
then v1 6≡ v2. The system can distinguish between the different successors of a system state:

For every v ∈ Ss and w1,w2 ∈ Se, if (v,w1) ∈ Rs, (v,w2) ∈ Rs and w1 6= w2, then w1 6≡ w2.

The set of available transitions in a system state is the same for all observation-equivalent

states: For every states v1, v2 ∈ Ss and w1 ∈ Se such that v1 ≡ v2 and (v1,w1) ∈ Rs, there

exists a state w2 ∈ Se such that w1 ≡ w2 and (v2,w2) ∈ Rs. A state v for which there is no

w ∈ S with (v,w) ∈ R is called a dead-end.

We use a symbolic representation of game structures. A symbolic game structure with

incomplete information C = (X, init, Ts, Te) consists of a set of variables X (partitioned into

Xh,Xi,Xo and {t}), a formula init over X and formulas Ts and Te over X ∪X′. For simplicity,

we assume that we have singleton sets Xh = {xh}, Xi = {xi} and Xo = {xo} (the extension

to the general case is trivial). The formulas are required to satisfy the following conditions:

(1) Te implies t ≈ 0 and x′o ≈ xo, (2) Ts implies t ≈ 1, t′ ≈ 0, x′h ≈ xh and x′i ≈ xi, (3) the

formula Ts{xh 7→ x1h} ↔ Ts{xh 7→ x2h} is valid.

Let H, I andO be the domains of xh, xi and xo respectively. We assume that the setO of

possible outputs for the system is finite. We denote with co the constant from the signature

corresponding to an element o ∈ O and with Co the set of all constants for elements of O.

The domain of t is {0, 1}. The setVal(X) consists of all total functions that map each variable

in X to its domain. For a formula ϕ over X, and v ∈ Val(X) we denote with ϕ[v] the truth

value of the formula ϕ for the valuation v of the variables. We write v |= ϕ iff ϕ[v] is true.
For a formula ϕ over X ∪ X′, v ∈ Val(X) and w ∈ Val(X′), ϕ[v,w] is defined analogously.

A symbolic game structure C = (X, init, Ts, Te) together with corresponding variable

domains defines a game structure with incomplete information C = (Ss, Se, s0,≡,Rs,Re) in
the following way. The sets Ss and Se consist of the valuations in Val(X) where t is mapped

to 1 and 0 respectively. Since the variable xh cannot be observed by the system, two states

are observation-equivalent if they agree on the valuation of the variables in Obs(X). We

require that init is satisfied by a single initial state s0. The formulas Ts and Te define the

transition relations, where (v,w) ∈ Rs iff Ts[v,w] is true, and Re is defined analogously.

For a formula ϕ and co ∈ Co, Pres(co, ϕ) is a formula such that v |= Pres(co, ϕ) iff there
exists w |= ϕ ∧ xo ≈ co such that (v,w) ∈ Rs, Pres(ϕ) =

∨
co∈Co

Pres(co, ϕ) and Pree(ϕ) is a

formula such that v |= Pree(ϕ) iff there exists w |= ϕ such that (v,w) ∈ Re.

Safety games. We consider safety games defined by a set of error states, which we

assume w.l.o.g. to be a subset of Se. The objective for the system is to avoid the error states.

Clearly, w.l.o.g. we can assume that S does not contain dead-ends and that for every v ∈ Ss
and co ∈ Co, v |= Pres(co, true). A safety game with perfect information (with incomplete

information) G = (C, E) consists of a game structure C with complete information (with

incomplete information) and a set of error states E. A symbolic safety game G = (C, err)
consists of a symbolic game structure C and a formula err denoting the set of error states.

Strategies. Let G be a safety game. A path in G is a finite sequence π = v0v1 . . . vn of

states such that for all 0 ≤ j < n, we have (vj, vj+1) ∈ R. The length |π| of π is n + 1.

For 0 ≤ j < |π|, π[j] is the j-th element of π and π[0, j] = v0 . . . vj. We define last(π) =
π[|π| − 1]. A prefix in G is a path π = v0v1 . . . vn such that v0 = s0. We call π a system

prefix if last(π) ∈ Ss, and an environment prefix otherwise. We denote with Prefs(G) the set of
prefixes in G, and with Prefss(G) and Prefse(G) the sets of system and environment prefixes,
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respectively. A play in G is either an infinite sequence ω = v0v1 . . . vj . . . with v0 = s0 and

for all j ≥ 0, (vj, vj+1) ∈ R or a prefix π such that last(π) is an error state. For an infinite

play ω, |ω| = ∞. The observation-equivalence ≡ can be extended in a natural way to

prefixes and plays. A strategy for the system is a function fs : Prefss(G) → Se such that if

fs(π) = v, then (last(π), v) ∈ Rs. Strategies for the environment are defined analogously.

A strategy fs for the system in an incomplete-information game is called consistent iff for

all π1,π2 ∈ Prefss(G) with π1 ≡ π2, it holds that fs(π1) ≡ fs(π2). The outcome of two

strategies fs and fe is a play ω = Outcome( fs, fe) such that for all 0 ≤ j < |ω| if ω[j] ∈ Ss
then ω[j + 1] = fs(ω[0, j]) and if ω[j] ∈ Se then ω[j + 1] = fe(ω[0, j]). A strategy fs for the

system is winning iff for every strategy fe for the environment, if ω = Outcome( fs, fe) then
for every j ≥ 0, ω[j] is not an error state. A strategy fe for the environment is winning iff for

every strategy fs for the system, if ω = Outcome( fs, fe) then for some j, ω[j] is an error state.

Strategy trees. A winning strategy fe for the environment in a safety game G can be

naturally represented as a finite tree T( fe), called strategy tree. Each node in T( fe) is labeled
by a state in S, such that the following are satisfied: (1) the root is labeled by the initial state

s0, (2) if an internal node is labeled by a state v and a child of that node is labeled by a state

w, then (v,w) ∈ R, (3) if an internal node π is labeled by v ∈ Ss, then for every w ∈ S with

(v,w) ∈ Rs, there exists exactly one child of π which is labeled by w, and Children(π, T( fe))
is the set of all children of π in T( fe), (4) if an internal node π is labeled by v ∈ Se, then

that node has exactly one child, denoted by Child(π, T( fe)), labeled by some w ∈ S with

(v,w) ∈ Re, (5) a node is a leaf iff it is labeled by an error state. Thus, each node corresponds

to a prefix in G, and a prefix in Prefs(G) is represented by at most one node. We identify

each node with the corresponding prefix and define Prefs( fe) as the set of prefixes in T( fe).

Knowledge-based subset construction. The knowledge-based subset construction of an

incomplete-information game G = ((Ss, Se, s0,≡,Rs,Re), E) is a perfect-information game

Gk = ((Sks , S
k
e , s

k
0,R

k
s ,R

k
e), E

k) defined as follows: Sks = {V ∈ 2Ss \ {∅} | ∀v1, v2 ∈ V. v1 ≡ v2};
Ske = {V ∈ 2Se \ {∅} | ∀v1, v2 ∈ V. v1 ≡ v2}; sk0 = {s0}; (V,W) ∈ Rk

s iff V ∈ Sks , W ∈ Ske and

(1) for every v ∈ V there is a w ∈ W such that (v,w) ∈ Rs, (2) for every w ∈ W there is a

v ∈ V such that (v,w) ∈ R and (3) if w1 ≡ w2, w1 ∈ W and there is a v ∈ V with (v,w2) ∈ R

then w2 ∈ W; (V,W) ∈ Rk
e iff V ∈ Ske , W ∈ Sks ∪ Ske and (1′), (2) and (3) are satisfied, where

(1′) there exist v ∈ V and w ∈ W such that (v,w) ∈ Re; E
k = {V ∈ Ske |V ∩ E 6= ∅}.

The game solving problem. The game solving problem is to determine whether there

exists a consistent winning strategy for the system player in a given safety game with in-

complete information. The strategy synthesis problem is to find such a strategy if one exists.

3 Abstraction

We use two subset constructions to abstract infinite-state games with incomplete informa-

tion into finite-state gameswith perfect information: first, we overapproximate themoves of

the environment and underapproximate the moves of the system in the abstract domain de-

fined by the predicate valuations. Then, we overapproximate the observation-equivalence

based on the observable predicates to obtain a sound abstraction.

Let G = (S , err) be a symbolic safety game. For a finite set of predicates P over X,

Vals(P) is the set of all valuations of the elements of P . For a ∈ Vals(P), and p ∈ P , [a] is
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the corresponding formula over P andwewrite a |= p iff the value of p in a is true. Similarly

for a formula ϕ over P . The concretization γP (a) of a ∈ Vals(P) is the set of concrete states
{s ∈ S | ∀p ∈ P : s |= p iff a |= p}. For A ⊆ Vals(P), we define γP (A) =

⋃
a∈A γP (a). For

a1 and a2 in Vals(P), we define a1 ≡
a
P a2 iff for every p ∈ Obs(P), a1 |= p iff a2 |= p.

We abstract a concrete game w.r.t. a pair P = (Pse,Ps) of finite sets of predicates such

that Preds(init)∪ Preds(err)∪ {t ≈ 0} ⊆ Pse. The states in Se are abstracted w.r.t. Pse and the

states in Ss are abstracted w.r.t. the full set P = Pse ∪ Ps. We require that PredsSyst(Pse) ⊆
Ps, where PredsSyst(Q) =

⋃
a∈Vals(Obs(Q)) Preds(Pres([a])), to ensure the absence of dead-

ends in the abstract game. By refining Ps with predicates that are used to split only abstract

system states, we ensure the monotonicity of the abstraction of Rs. In the following, γ(a)
means γPse

(a) if a ∈ Vals(Pse) and γP (a) if a ∈ Vals(P). Similarly for ≡a.

For two pairs of sets of predicates P = (Pse,Ps) and Q = (Qse,Qs), we write P ⊆ Q
iff Pse ⊆ Qse and Ps ⊆ Qs, and define P ∪Q = (Pse ∪Qse,Ps ∪Qs).

The abstraction α(G,P) of G = (S , err) w.r.t. a pair P = (Pse,Ps) of finite sets of predi-

cates is the perfect-information safety game Ga = ((Sa
s , S

a
e , s

a
0,R

a
s ,R

a
e), E

a) defined below.

States. The set Sa of abstract states is the union of Sa
s ⊆ 2Vals(P) \ {∅} and Sa

e ⊆ 2Vals(Pse) \
{∅} which are defined as follows. An element A of 2Vals(P) \ {∅} belongs to Sa

s iff (1) for

every a ∈ A, a 6|= t ≈ 0 and γ(a) 6= ∅ and (2) for every a1, a2 ∈ A, a1 ≡a a2. Similarly, an

element A of 2Vals(Pse) \ {∅} belongs to Sa
e iff (1) for every a ∈ A, a |= t ≈ 0 and γ(a) 6= ∅

and (2) for every a1, a2 ∈ A, a1 ≡a a2. The initial abstract state sa0 consists of the single

element a0 of S
a such that a0 |= init and γ(a0) 6= ∅.

May transitions. The abstract transition relation Ra
e ⊆ Sa

e × Sa for the environment is de-

fined as: (A, A′) ∈ Ra
e iff the following are satisfied: (1 may) there exist a ∈ A, v ∈ γ(a),

a′ ∈ A′ and v′ ∈ γ(a′) with (v, v′) ∈ Re, (2) for every a′ ∈ A′ there exist a ∈ A, v ∈ γ(a) and
v′ ∈ γ(a′) such that (v, v′) ∈ R and (3) for every a′1 ∈ Vals(P) and a′2 ∈ Vals(P), if a′1 ∈ A′,

a′1 ≡
a a′2 and there exist a ∈ A, v ∈ γ(a) and v′ ∈ γ(a′2) with (v, v′) ∈ R, then a′2 ∈ A′.

Must transitions. The abstract transition relation Ra
s ⊆ Sa

s × Sa
e for the system is defined as:

(A, A′) ∈ Ra
s iff the conditions (1 must), (2) and (3) are satisfied, where: (1 must) for every

a ∈ A and every v ∈ γ(a) there exist a′ ∈ A′ and v′ ∈ γ(a′) with (v, v′) ∈ Rs.

Error states. An abstract state A is an element of Ea iff there exists an a ∈ A with a |= err.

Concretization. The concretization γk( fe) of a winning strategy fe for the environment in

Ga is a set of winning environment strategies in the knowledge-based game Gk. For π ∈
Prefs(Ga), we define γk(π) = {πk ∈ Prefs(Gk) | |πk| = |π|, ∀j : 0 ≤ j < |π| ⇒ πk[j] ⊆
γ(π[j])} and γ(π) = {πc ∈ Prefs(G) | |πc| = |π|, ∀j : 0 ≤ j < |π| ⇒ πc[j] ∈ γ(π[j])}
(similarly for paths). Then γk( fe) is the set of all winning environment strategies f ke in Gk

such that for every πk ∈ Prefs( f ke ) there exists π ∈ Prefs( fe) with πk ∈ γk(π). Let P and Q
be pairs of sets of predicates with P ⊆ Q. If π and π′ are prefixes in α(G,P) and α(G,Q),
respectively, we write π′ ≤ π iff |π| = |π′| and for every 0 ≤ j < |π|, γ(π′[j]) ⊆ γ(π[j]).
If fe and f ′e are winning strategies for the environment in α(G,P) and α(G,Q) respectively,
then f ′e ≤ fe iff for every π′ ∈ T( f ′e) there exists π ∈ T( fe) such that π′ ≤ π.

THEOREM 1.[Soundness of the abstraction] If fs is a winning strategy for the system in the
perfect-information game α(G,P), then there exists a consistent winning strategy f cs for the
system in the symbolic game G with incomplete information.
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4 Abstract Counterexample Analysis

Awinning strategy fe for the environment in the game α(G,P) is a genuine counterexample

if it has a winning concretization in Gk. Otherwise it is called spurious. The analysis of the

strategy-tree T( fe) constructs a strategy-tree formula F( fe) that is satisfiable iff fe is genuine.

The key idea is to symbolically simulate a perfect-information game over the equivalence

classes of the prefixes of the concrete game structure G with incomplete information.

Traces and error paths. With each node π in T( fe), we associate a set Traces(π) of traces,

where a trace is a finite sequence τ ∈ C∗
o of system outputs, and define Traces( fe) = Traces(sa0).

Each trace induces a set of concrete error paths in G. If the strategy fe is genuine, then for

each τ ∈ Traces( fe), the concrete strategy in Gk should provide an error path ξτ in G. If π

is a leaf node (i.e., an error node), then Traces(π) = {ǫ}, otherwise, if π is a system node,

then Traces(π) = {coτ | co ∈ Co, ρ ∈ Children(π, T( fe)), τ ∈ Traces(ρ)}, and, if π is an en-

vironment node, then Traces(π) = Traces(Child(π, T( fe))). A path ξ in the concrete game

structure G is an error path of a trace τ if one of the following three conditions is satisfied: (i)

ξ[0] |= err, (ii) ξ[0] ∈ Se and ξ[1, |ξ|] is an error path for τ or (iii) ξ[0] ∈ Ss, τ = coσ, ξ[1] is a
co-successor of ξ[0] and ξ[1, |ξ|] is an error path for σ.

Trace formulas. For each τ ∈ Traces( fe) we define a formula F( fe, τ) which is satisfiable

iff there is a node ρ ∈ T( fe) such that there is an error path for τ in γ(ρ). Here, unlike

in the perfect-information case, in the concrete strategy the error paths ξτ1 and ξτ2 for two

different traces τ1, τ2 ∈ Traces( fe) may differ even before the first position in which τ1 and

τ2 are different, as long as their prefixes up to that position are equivalent. We encode this

constraint by indexing the variables in the trace formulas as explained below.

Consider a node π and a trace τ ∈ Traces( fe) such that τ = σ1σ2, σ1 corresponds to

the outputs on the prefix π and σ2 ∈ Traces(π). The variables in F( fe, τ) are indexed as

follows. The variables that represent a concrete state in γ(last(π)) are indexed with the

node π, so that there are different variables in the formula for different nodes. They are

indexed also with the part σ1 of τ, so that there are different variables in different trace

formulas after the first difference in the outputs. The unobservable variables have to be

indexed additionally with the remaining part σ2 of τ, in order to have different unobservable

variables for corresponding states in different trace formulas even before the first difference

in the outputs. To this end, with each node π ∈ T( fe) and σ1, σ2 ∈ C∗
o we associate a set

X(π,σ1,σ2) = {x
(π,σ1,σ2)
h , x

(π,σ1)
i , x

(π,σ1)
o , t(π,σ1)} of variables and define substitutions which map

variables from the original set X ∪ X′ to variables in the sets X(π,σ1,σ2) and vice versa.

We define recursively a trace formula F(π, τ) for every node π ∈ T( fe) and trace τ ∈
Traces(π). We consider three cases that correspond to the three cases in the definition of

error paths: the auxiliary formulas ErrorState, EnvTrans and SystTrans account for cases (i),

(ii) and (iii) respectively. If π is a leaf node, then τ = ǫ and F(π, ǫ) = ErrorState(π). If

π is an internal environment node we define F(π, τ) = EnvTrans(π,π′, τ), where π′ =
Child(π, T( fe)). If π is an internal system node, then τ = coσ for some co and σ and we de-

fine F(π, coσ) =
∨

π′∈Children(π,T( fe)) SystTrans(π,π′, coσ). By the definition, the trace formula

F(π, τ) is satisfied by a sequence ξ of concrete states iff ξ is an error path for τ and there

exists a node ρ in the subtree of T( fe) below π such that ξ ∈ γ(ρ).

Strategy-tree formula. We define F( fe, τ) = F(sa0, τ) for every τ ∈ Traces( fe) and finally, the
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strategy-tree formula is F( fe) =
∧

τ∈Traces( fe) F( fe, τ). It can be constructed by annotating in

a bottom-up manner the nodes in T( fe) with the corresponding sets of traces and formulas.

THEOREM 2. Let fe be a winning strategy for the environment in the game α(G,P). The
formula F( fe) is satisfiable iff the strategy fe is genuine, i.e., iff γk( fe) 6= ∅.

5 Counterexample-Guided Refinement

If fe is a spuriouswinning strategy for the environment in α(G,P), we enhanceP = (Pse,Ps)
with sets of refinement predicates Rse( fe) and Rs( fe), such that in the refined game α(G, (Pse∪
Rse( fe),Ps ∪ Rs( fe))) the environment has no winning strategy f ′e with f ′e ≤ fe.

5.1 Refining the Abstract Transition Relations

If for some τ ∈ Traces( fe) the formula F( fe, τ) is unsatisfiable, then the occurrence of the

spurious abstract strategy is due to the approximations of the transition relations. There-

fore we compute refinement predicates for eliminating the approximations that cause the

existence of fe. Such predicates can be determined by a bottom-up analysis of the strat-

egy tree T( fe) that annotates each node π in the tree with a formula F̃(π, τ) for each trace

τ ∈ Traces(π). The formula F̃(π, τ) denotes the subset of γ(π) that consist of those con-

crete states from which there exists a concrete path that satisfies F( fe, τ). We denote with

RPGG( fe) (Refinement Predicates for the Game Graph) the pair (RPGGse( fe), RPGGs( fe)) of sets
of predicates computed at this step and used to enhance Pse and Ps, respectively.

State formulas. For π ∈ T( fe) and τ ∈ Traces(π), we define F̃(π, τ) as follows. If π

is a leaf node, then τ = ǫ and F̃(π, ǫ) =
∨

a∈last(π),a|=err[a]. Otherwise, τ = coσ and

F̃(π, τ) = [last(π)]∧Pres(co,
∨

π′∈Children(π,T( fe)) F̃(π′, σ)) if π is a system node, and F̃(π, τ) =

[last(π)] ∧ Pree(F̃(Child(π, T( fe)), τ)) otherwise. If τ 6∈ Traces(π), then F̃(π, τ) is F̃(π, σ),
where σ is the maximal prefix of τ such that σ ∈ Traces(π) if such exists, and false otherwise.

Refinement predicates. The set RPGGse( fe) of predicates withwhichwe enhancePse contains

all predicates that occur in the annotation formulas F̃(π, τ). We ensure that the refined

abstraction is precise w.r.t. the outputs from some trace τ ∈ Traces( fe) for which F̃( fe, τ) is
unsatisfiable, by adding the elements of OutPreds({τ}) for one such τ to RPGGse( fe), where

for a set T of traces, we have defined OutPreds(T) = {xo ≈ τ[j] | τ ∈ T, 0 ≤ j < |τ|}. The
set RPGGs( fe) is equal to the set PredsSyst(Pse ∪ RPGGse( fe)). By refining with these predicates

we ensure the monotonicity of the abstraction of the system’s transition relation.

5.2 Refining the Abstract Observation Equivalence

If for every τ ∈ Traces( fe) the formula F( fe, τ) is satisfiable, the predicates from RPGG( fe)
might not suffice to eliminate the counterexample, because the reason for its existence is the

coarseness of the abstract observation-equivalence. We propose an algorithm RPOE (Refine-

ment Predicates for the Observation Equivalence) for computing a set of observable refine-

ment predicates that allow us to distinguish the concrete error paths for different traces. The

predicates are obtained from interpolants for unsatisfiable conjunctions of trace formulas.
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According to the construction of these formulas, they share only observable variables and

hence the computed interpolants contain only observable predicates. The key challenge for

the interpolation computation in our case is to ensure that these predicates are localized, i.e.,

that the variables which occur in an atom correspond to a single concrete state and not to

a sequence of concrete states. We extend the algorithm from [10], which reduces the com-

putation of interpolants for linear arithmetic to linear programming problems, in order to

handle this additional condition on the variable occurrences. Our more general algorithm

LILA (Linear Interpolation with Localized Atoms) receives in addition a partitioning of the

variables which occur in the input systems of inequalities and as a result, each atom in the

generated interpolant is guaranteed to contain variables from exactly one partition. We first

present the algorithm RPOE and then describe the procedure LILA.

Algorithm:RPOE

Input: symbolic game G = (S , err), pair P = (Pse,Ps) of finite sets of predicates,
strategy tree T( fe) of an abstract winning environment strategy in α(G,P)

Output: pair of sets of refinement predicates (Rse,Rs)
Φ := {F( fe, τ) | τ ∈ Traces( fe)}; Rse := ∅;
while all elements of Φ are satisfiable do

pick Ψ ⊆ Φ, ϕ ∈ Φ \ Ψ such that ψ :=
∧

φ∈Ψ φ is satisfiable and ϕ ∧ ψ is unsatisfiable;

n := max(MaxIx(ϕ),MaxIx(ψ));
if Rse = ∅ then Rse := OutPreds({τ | F( fe, τ) ∈ {ϕ} ∪ Ψ});
θ := LILA(ϕ,ψ, (Vars0(ϕ) ∪Vars0(ψ), . . . ,Varsn(ϕ) ∪Varsn(ψ)));
Rse := Rse ∪ (Preds(θ)) substX; Φ := {θ ∧ φ | φ ∈ Ψ};

return (Rse,PredsSyst(Pse ∪ Rse));

Distinguishing abstract prefixes. Let Φ = {F( fe, τ) | τ ∈ Traces( fe)}. As all formulas

F( fe, τ) are satisfiable and the formula F( fe) is not, there exists a subset Ψ of Φ such that ψ =
∧

φ∈Ψ φ is satisfiable and there exists a formula ϕ ∈ Φ \ Ψ such that ϕ ∧ ψ is unsatisfiable.

The variables in
⋃

π∈T( fe),σ1,σ2∈C∗
o
X(π,σ1,σ2) (and hence the variables in ϕ and in ψ) are

partitioned according to the length of π: For j ∈ N, X j is the union of all sets X(π,σ1,σ2) with

|π| = j. For a formula φ,MaxIx(φ) is the maximal j with Varsj(φ) = Vars(φ) ∩ X j 6= ∅.

When ϕ and ψ are (disjunctions of) mixed systems of linear inequalities, we apply al-

gorithm LILA described in the next paragraph to compute an interpolant θ such that each

literal which occurs in θ is of the form ix ⊳ δ where ⊳ ∈ {≤,<} and the only variables

which occur in such an inequality are in the set {x
(π,σ)
i , x

(π,σ)
o , t(π,σ)} for some π ∈ T( fe) and

σ ∈ C∗
o , i.e. the coefficients in front of all other variables are 0. By applying the substitution

substX to the atoms in θ, we obtain a set of predicates over observable variables from the

original set of variables X. Then, the set Φ is updated to be the set of conjunctions θ ∧ φ,

where φ ∈ Ψ and the process is repeated while all elements of the current set Φ are satisfi-

able. The predicates in RPOEse( fe) are the atoms from all computed interpolants, plus the set

of output predicates for the traces corresponding to the formulas in the initial set Ψ ∪ {ϕ}.
The predicates in RPOEs( fe) ensure the monotonicity of the abstraction.

Computing interpolants with localized atoms. We now present the algorithm LILA for

computing localized interpolants. A mixed system, denoted Ax 6 a, consists of strict and

non-strict linear inequalities. The input of algorithm LI from [10] consists of two mixed
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systems of inequalities Ax 6 a and Bx 6 b such that the conjunction Ax 6 a ∧ Bx 6 b

is not satisfiable. The output is a linear interpolant ix ⊳ δ where ⊳ ∈ {≤,<}. Algorithm

LILA receives in addition a partitioning (V0,V1, . . . ,Vn) of the variables in the vector x. The

output is an interpolant for Ax 6 a and Bx 6 b which is of the form
∧n

j=0 ijx ⊳j δj, where

⊳j ∈ {≤,<} and for each 0 ≤ j ≤ n, only variables from V j occur in ijx ⊳j δj. If such inter-

polant is not found, the element⊥ is returned. The variables λ,λ0,λ1, . . . ,λn denote vectors

which define linear combinations of inequalities in Ax 6 a. The subvectors λlt,λle,λlt

j ,λ
le

j

for j = 0, 1, . . . , n define linear combinations of strict and non-strict inequalities in Ax 6 a,

respectively. Similarly for µ, µlt, µle. For each 0 ≤ j ≤ n, the set of variables V j defines a set

Ix(j) of indices: Ix(j) = {k | k ∈ {1, . . . ,mA}, xk ∈ V j}, where mA is the number of columns

in A. Its complement {1, . . . ,mA} \ Ix(j) is denoted with Ix(j). For 1 ≤ k ≤ mA, the k-th

column of the matrix A is denoted with A|k. For disjunctions of mixed systems, i.e., for for-

mulas
∨

k Akx 6 ak and
∨

l Blx 6 bl in DNF, we proceed as in [10]: compute an interpolant

θkl for each pair of disjuncts and then take
∨

k

∧
l θkl .

THEOREM 3. Algorithm LILA is sound: If it returns a conjunction θ =
∧n

j=0 θj, then θ

is an interpolant for the pair of mixed systems Ax 6 a and Bx 6 b with the following
properties: (1) for each j, θj is of the form ijx ⊳j δj where ⊳j ∈ {≤,<}; (2) there exist row
vectors λ0, . . . ,λn such that for every 0 ≤ j ≤ n, λj ≥ 0, ij = λjA and δj = λja; (3) for each
0 ≤ j ≤ n, only variables from V j occur in θj. Algorithm LILA is complete: if an interpolant
θ =

∧n
j=0 θj with the properties (1),(2) and (3) exists, then the algorithm will find one.

Algorithm:LILA

Input: Ax 6 a and Bx 6 b: mixed systems, Ax 6 a ∧ Bx 6 b is unsatisfiable,
partitioning (V0,V1, . . . ,Vn) of the variables in x

Output: interpolant
∧n

j=0 ijx ⊳j δj where ⊳j ∈ {≤,<} and

only variables from V j occur in ijx ⊳j δj
χ1 := λ ≥ 0∧ µ ≥ 0∧ λA + µB = 0;
χ2 := λ = ∑

n
j=0 λj ∧

∧n
j=0(λj ≥ 0∧ ij = λjA ∧ δj = λja ∧

∧
k∈Ix(j)

λjA|k = 0);

if exist λ, µ,λj, ij, δj, for 0 ≤ j ≤ n satisfying χ1 ∧ χ2 ∧ λa + µb ≤ −1
then return

∧n
j=0 ijx ≤ δj;

elif exist λ, µ,λj, ij, δj, for 0 ≤ j ≤ n satisfying χ1 ∧ χ2 ∧ λa + µb ≤ 0∧ λlt 6= 0
then return

∧
0≤j≤n,λlt

j 6=0 ijx < δj ∧
∧

0≤j≤n,λlt

j =0 ijx ≤ δj;

elif exist λ, µ,λj, ij, δj, for 0 ≤ j ≤ n satisfying χ1 ∧ χ2 ∧ λa + µb ≤ 0∧ µlt 6= 0
then return

∧n
j=0 ijx ≤ δj;

else return ⊥

5.3 Refinement Loop

In each iteration of the refinement loop, an abstract perfect-information game is solved.

If it is won by the system player, the algorithm terminates returning an abstract winning

strategy for the system. Otherwise, the abstraction is refined with the predicates R( fe),
computed for some abstract winning strategy fe for the environment. There are two cases.

If refining the transition relations suffices to eliminate fe, the abstraction is refined with the

predicates in RPGG( fe). Otherwise, the predicates in RPOE( fe) are used for refinement. In
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the second case, it is possible that in the game α(G,P ∪ RPOE( fe)), the environment has a

winning strategy f ′e with f ′e ≤ fe. Then, we also refine with the predicates in RPGG( f ′e) for

every such f ′e . The set Refine( fe,P
′) consists of all winning strategies for the environment in

α(G,P ′) subsumed by fe. It can be computed from the strategy fe and the predicates in P ′.

Algorithm:ARGII

Input: symbolic safety game G = (S , err) Output: pair (winner, abstract strategy)
P := (Pse,Ps),where Pse := Preds(init) ∪ Preds(err) ∪ {t ≈ 0} and Ps := PredsSyst(Pse);
solve α(G,P) and determine: winner and strategy;
while winner = env do

if F(strategy) is satisfiable then return (winner, strategy);
fe := strategy;
if ∃τ ∈ Traces( fe) : F( fe, τ) is unsatisfiable then compute R := RPGG( fe);
else

R := RPOE( fe); compute S := Refine( fe,R);
forall f ′e ∈ S do R := R ∪ RPGG( f ′e);

P := P ∪ R; solve α(G,P) and determine winner and strategy;

return (winner, strategy)

THEOREM 4.[Soundness of algorithm ARGII] The algorithm ARGII is sound: if it returns
(sys, f as ), then the concrete symbolic game (S , err) is won by the system and f as is a con-
cretizable abstract winning strategy for the system; if it returns (env, f ae ) then (S , err) is won
by the environment and f ae is a concretizable abstract winning strategy for the environment.

THEOREM 5.[Progress property of the refinement] Let fe be a spurious wining strategy for
the environment in the game α((S , err),P). In α((S , err),P ∪ R( fe)), the environment does
not have a winning strategy f ′e with f ′e ≤ fe.

6 Termination of the Abstraction Refinement Loop

In this section we provide sufficient conditions for termination of the refinement loop. In

order to guarantee that only finitely many different abstract states are generated during the

execution of the algorithm, we make standard assumptions about the concrete game graph,

which we extend with conditions related to the presence of incomplete information. As we

also have to account for the refinement predicates obtained from interpolants, we apply the

standard technique (e.g, [8]) of restricting the interpolants computed at each step to some

finite language Lb and maintaining completeness by gradually enlarging the restriction lan-

guage when this is needed. We make use of the fact that our algorithm reduces interpolant

computation to constraint solving, in order to achieve the restriction of the language by

imposing additional constraints on the generated inequalities.

Computing restricted linear interpolants. We restrict the language of the computed in-

terpolants to the set of rectangular predicates over the variables in Obs(X). A rectangular

predicate over Obs(X) is a conjunction of rectangular inequalities of the form ax ⊳ c, where

x ∈ Obs(X), a ∈ {−1, 1}, ⊳ ∈ {<,≤} and c is an integer constant. For m ∈ N, a rectangular

predicate ϕ is called m-bounded if for each conjunct ax ⊳ c of ϕ, |c| ≤ m. Let Lm be the set

of all m-bounded rectangular predicates over Obs(X). The modified algorithm LILAr gets
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as input also a bound b ∈ N and ensures that every conjunct in the computed interpolant

is in Lb. If such an interpolant does not exist, then the bound b is increased. The modified

algorithm partitions the variables into singleton sets and uses in conjunction with χ1 and χ2

the additional constraints: (1) χ3 defined as χ3 =
∧n

j=0(ij ≤ 1 ∧ ij ≥ −1 ∧ δj ≤ b ∧ δj ≥ −b)
and (2) the variables δj and the variables in the vector ij assume integer values.

Region algebra for an incomplete-information game. A region algebra for a symbolic safety

game (S , err) is a pair (R,Obs) of possibly infinite sets R ⊆ 2S and Obs ⊆ R of regions

with the following properties: (1) for every r1, r2 ∈ R, we have r1 ∪ r2, r1 ∩ r2, S \ r1 ∈ R;

(2) for every r1, r2 ∈ Obs, we have r1 ∪ r2, r1 ∩ r2, S \ r1 ∈ Obs; (3) the sets {v ∈ S | v |=
t ≈ 0} and {v ∈ S | v |= t ≈ 1} are in R; (4) for every r ∈ R and co ∈ Co, and every

p ∈ Preds(Pree(r)) ∪ Preds(Pres(co, r)) it holds that for every r′ ∈ R, either for every v ∈ r′,

v |= p or for every v ∈ r′, v |= ¬p; (5) for every co ∈ Co, the set {v ∈ S | v |= xo ≈ co} is in

Obs; (6) for every π1,π2 ∈ Prefs(G), if each of last(π1) and last(π2) is an error state and there

exists an index j such that π1[j] and π2[j] are system states and π1[j] 6≡ π2[j], then there exist

0 ≤ k ≤ j and r ∈ Obs such that π1[k] ∈ r and π2[k] 6∈ r.

THEOREM 6.[Termination] Consider a symbolic safety game (S , err) for which there exists
a finite region algebra (R,Obs) with Obs = Lm for some m ∈ N. If algorithm ARGII using
the modified algorithm LILAr is called with argument (S , err), then it terminates.

References

[1] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations in software pred-

icate abstraction. In TACAS, volume 2988 of LNCS, pages 388–403. Springer, 2004.

[2] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-

regular games of incomplete information. In Proc. CSL, volume 4207 of LNCS. 2006.

[3] S. Das and D. L. Dill. Counter-example based predicate discovery in predicate abstrac-

tion. In Proc. FMCAD, pages 19–32, London, UK, 2002. Springer-Verlag.

[4] L. de Alfaro and P. Roy. Solving games via three-valued abstraction refinement. In

Proc. CONCUR, volume 4703, pages 74–89. Springer-Verlag, 2007.

[5] M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of imperfect

information. In Proc. HSCC, LNCS, pages 153–168. Springer-Verlag, 2006.

[6] R. Dimitrova and B. Finkbeiner. Abstraction refinement for games with incomplete

information. Reports of SFB/TR 14 AVACS 43, SFB/TR 14 AVACS, October 2008.

[7] T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In Proc.

ICALP’03, volume 2719 of LNCS, pages 886–902. Springer-Verlag, 2003.

[8] R. Jhala and K. L. McMillan. A practical and complete approach to predicate refine-

ment. In Proc. TACAS, volume 3920, pages 459–473. Springer-Verlag, 2006.

[9] J. H. Reif. The complexity of two-player games of incomplete information. J. Comput.

Syst. Sci., 29(2):274–301, 1984.

[10] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. In

Proc. VMCAI, volume 4349 of LNCS, pages 346–362. Springer-Verlag, 2007.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.


