
This is a repository copy of Synthesis of fault-tolerant distributed systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156480/

Version: Accepted Version

Proceedings Paper:
Dimitrova, R. and Finkbeiner, B. (2009) Synthesis of fault-tolerant distributed systems. In:
Liu, Z. and Ravn, A.P., (eds.) Automated Technology for Verification and Analysis - ATVA
2009. Automated Technology for Verification and Analysis - ATVA 2009, 14-16 Oct 2009,
Macao, China. Lecture Notes in Computer Science (5799). Springer , pp. 321-336. ISBN
9783642047602

https://doi.org/10.1007/978-3-642-04761-9_24

This is a post-peer-review, pre-copyedit version of an article published in ATVA 2009
Proceedings. The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-642-04761-9_24

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Synthesis of Fault-Tolerant Distributed Systems⋆

Rayna Dimitrova⋆⋆ and Bernd Finkbeiner

Saarland University, Germany

Abstract. A distributed system is fault-tolerant if it continues to per-
form correctly even when a subset of the processes becomes faulty. Fault-
tolerance is highly desirable but often difficult to implement. In this
paper, we investigate fault-tolerant synthesis, i.e., the problem of deter-
mining whether a given temporal specification can be implemented as
a fault-tolerant distributed system. As in standard distributed synthe-
sis, we assume that the specification of the correct behaviors is given
as a temporal formula over the externally visible variables. Additionally,
we introduce the fault-tolerance specification, a CTL∗ formula describing
the effects and the duration of faults. If, at some point in time, a process
becomes faulty, it becomes part of the external environment and its fur-
ther behavior is only restricted by the fault-tolerance specification. This
allows us to model a large variety of fault types. Our method accounts
for the effect of faults on the values communicated by the processes, and,
hence, on the information available to the non-faulty processes. We prove
that for fully connected system architectures, i.e., for systems where each
pair of processes is connected by a communication link, the fault-tolerant
synthesis problem from CTL∗ specifications is 2EXPTIME-complete.

1 Introduction

Fault-tolerance is an important design consideration in distributed systems.
A fault-tolerant system is able to withstand situations where a subset of its
components breaks: depending on the chosen type of fault-tolerance, the system
may completely mask the fault, return to correct behavior after a finite amount
of time, or switch to a behavior that is still safe but possibly less performant.
Fault-tolerance is highly desirable but often difficult to implement. Thus, formal
methods for verification [7] and synthesis [10] of fault-tolerance are necessary.

Traditionally, fault-tolerance requirements are chosen manually. While it is
obviously desirable to stay as close as possible to the normal behavior, the ques-
tion which type of fault-tolerance can be realized in a given system is difficult to
decide and requires a careful analysis of both the desired system functionality
and the possible faults. In this paper, we develop algorithmic support for this

⋆ This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center Automatic Verification and
Analysis of Complex Systems (SFB/TR 14 AVACS).

⋆⋆ Supported by a Microsoft Research European PhD Scholarship.

design step. We present a synthesis algorithm that determines if a given tempo-
ral specification has a fault-tolerant implementation, and, in case the answer is
positive, automatically derives such an implementation.

Our goal is thus more ambitious than previous approaches (cf. [10, 2, 4])
to fault-tolerant synthesis, which transform an existing fault-intolerant imple-
mentation into a fault-tolerant version. While such approaches are often able
to deliver fault-tolerant systems, they are inherently incomplete, and can there-
fore not be used to decide whether a given fault-tolerance requirement can be
realized. In order to obtain a decision procedure, we cannot treat the implemen-
tation of the system functionality and the implementation of its fault-tolerance
as two separate tasks, but must rather extend the synthesis algorithm to address
both concerns at once. In the restricted setting of closed systems, i.e., of systems
without input, such a combination has already been carried out: Attie et al. [1]
represent faults by a finite set of fault actions that may be carried out by a
malicious environment. Their method then synthesizes a program that is correct
with respect to a specified set of such possible environments.

The key challenge in moving from simple closed systems to general distributed
systems is to account for the incomplete information available to the individual
processes. Faults may affect the communication between processes, which af-
fects the information the non-faulty processes have. Our setting builds on that
of standard distributed synthesis [6], where the communication links between the
processes are described as a directed graph, called the system architecture. We
assume the architecture is fully connected and the system specification is exter-
nal [13, 8], i.e., it does not refer to the internal variables. For standard synthesis,
this case is known to be decidable: while the processes may read different inputs,
they can simply transmit all information to the other processes through the in-
ternal communication links. The distributed system thus resembles a monolithic
program in the sense that all processes are aware of the global state.

The situation is more difficult in a fault-tolerant system, since, when a fault
occurs in some process, the process essentially becomes part of the hostile envi-
ronment and the remaining processes can no longer rely on receiving accurate
information about the external input at its site. We present a synthesis algorithm
for CTL∗ specifications that accounts for the resulting incomplete information.
The given CTL∗ specification is a fault-tolerance specification which encodes the
effects and the durations of the faults and the desired type of tolerance.

Our algorithm is based on a transformation of the architecture and of the
fault-tolerance specification. The architecture transformation changes the set of
external input variables by introducing a new input variable for each process and
making the original input variables unobservable for all processes in the archi-
tecture. The transformation of the specification establishes the relation between
the original input of a process and the new faulty input. The two inputs are
constrained to be the same during the normal operation of the corresponding
process, which guarantees the correctness of the transformation, and may differ
when the process is faulty, which allows us to assume that in the transformed
architecture the faults do not affect the transmission of external input. Thus, we

can reduce the distributed synthesis problem for the original architecture and
fault-tolerance specification to the one of finding a monolithic implementation
that satisfies the transformed specification in the presence of faults.

We hence establish that the synthesis of fault-tolerant distributed systems
with fully connected system architectures and external specifications is decidable.
In fact, the problem is no more expensive than standard synthesis: fault-tolerant
distributed synthesis from CTL∗ specifications is 2EXPTIME-complete.

2 Modelling Fault-Tolerant Systems

2.1 Faults and Fault-Tolerance

Types of Faults. In the field of fault-tolerant distributed computing faults are
categorized in a variety of ways. The categorization of faults according to the
behavior they cause, results in several standard classes [3, 1]. Stuck-at faults can,
for example, cause a component or a wire to be stuck in some state. If a process
is affected by a fail-stop or a crash fault, it stops (potentially permanently) exe-
cuting any actions before it violates its input-output specification. In both cases
the process is uncorrectably corrupted, but while fail-stop faults are detectable,
that is, other processes are explicitly notified of the fault, crash stops are unde-
tectable. If a process fails to respond to an input from another component, i.e.,
some action is omitted, it is said to exhibit an omission fault. Omission faults
are a subset of the class of timing faults that cause the component to respond
with the correct value but outside the required time interval. The most general
class of Byzantine faults encompasses all possible faults, including arbitrary and
even malicious behavior of the affected process, and are in general undetectable.

According to their duration, faults can be permanent, transient, or intermit-
tent. In the latter two cases, upon recovery the affected process returns to normal
operation from the arbitrary state it has reached in the presence of the fault.

Fault-Tolerance Requirements. Usually the system is not required to satisfy the
original specification after a fault occurs, but instead comply with some fault-
tolerance policy. Fault-tolerance properties are generally classified according to
whether and how they respect the safety and liveness parts of the original specifi-
cation. This classification yields three main types of tolerance. Masking tolerance
always respects both safety and liveness. In non-masking tolerance, however, the
safety property might be temporarily violated, but is guaranteed to be eventu-
ally restored, while the liveness part is again always respected. A third type is
fail-safe tolerance. When formalizing fail-safe tolerance it is assumed that the
original specification is given as conjunction of a safety and a liveness specifica-
tions [12], and after fault occurrence only the safety conjunct has to be satisfied.

2.2 Architectures for Fault-Tolerant Synthesis

An architecture describes the communication between the processes in a dis-
tributed system and their interaction with the external environment. We model

the occurrence of a fault as an action of the environment. In the following, we as-
sume that faults are detectable, that is there exists a reliable unit of the external
environment that notifies all processes immediately when a fault occurs in some
of them, and also informs them exactly which processes were faulty in the pre-
vious execution step. To this end, we consider architectures with a distinguished
set of external input fault-notification variables, which all processes in the sys-
tem are allowed to read. Alternatively, the fault-notification variables could be
made invisible to the system processes, in which case finding the fault-detection
mechanism would be part of the synthesis problem.

An architecture A = (env , P,Ext , C, (D(v))v∈Ext , (In(p),Out(p))p∈P) is a tu-
ple that consists of: environment env, a finite set of processes P , a set Ext of
external variables together with a finite domain D(v) for each v ∈ Ext , a set
C (disjoint from Ext) of internal variables, and read and write permissions for
each p ∈ P . The set Ext is the union of the disjoint sets I, O, H and N , where:

– The set I consists of the external input variables whose values are supplied
by the environment env . The set I is the union of the sets Ip, where for each
process p, Ip is a set of external input variables, this process can read. Each
variable in I is read by at least one (possibly several) processes in P .

– The set O consists of the external output variables, via which the processes
provide their output to the environment env. The set O is the union of the
disjoint sets Op, where for each process p, Op is the set of external output
variables written by that process, which no other process in P can read.

– The set H consists of the external private environment variables written
by the environment env , and which none of the processes in P can read.

– The set N = {np,mp | p ∈ P} of external input variables for fault notifica-
tion contains one variable np for each process p that is used by the environment
to notify all processes for a fault occurrence in p and a variable mp that indi-
cates whether p was faulty in the previous execution step. The variables in N can
be read by all processes and are written only by the environment. The domain
D(np) of np is a finite subset of N that consists of the different faults that can
occur in process p, where 0 indicates normal operation. Similarly for mp.

The set C consists of the variables used for internal communication between
the processes. It is the union of the disjoint sets Cp, where for each process p,
Cp is the set of internal variables written by p via which it communicates to the
other processes. We denote with V the set of all variables in an architecture A.

For a process p, the set In(p) consists of all variables (internal or external)
this process is allowed to read and Out(p) = Cp ∪ Op consists of all variables
that this process is allowed to write. By definition, the sets Out(p) are disjoint.

The architecture associates with each external variable v ∈ Ext a finite
nonempty domain D(v) together with some designated element d0(v) ∈ D(v).
The domains of the internal variables are unconstrained by the architecture, and
hence the capacity of the communication channels is not limited a priori.

Consider some nonempty finite domains D(v)v∈C for the internal variables in
A. For a subset U ⊆ V , we denote with D(U) the Cartesian product

∏
u∈U D(u)

and with d0(U) the tuple (d0(u))u∈U . For d ∈ D(U), u ∈ U and U ′ ⊆ U , d〈u〉 and

d〈U ′〉 denote the projections of d on the variable u and on the subset of variables
U ′, respectively. For a finite or infinite sequence σ = d0d1d2 . . . of elements of
D(U) and j ≥ 0, we denote by σ[j] the element dj and with σ(j) the prefix of
length j of σ (if j = 0, then σ(j) = ε). Projection trivially extends to sequences
and prefixes. When σ is finite, we denote with |σ| the number of elements of σ.

We consider synchronous communication with delay: at each step, each pro-
cess reads its current external input and the output of the processes in P de-
layed by one step. For a global computation history σ ∈ D(V)∗ we have that
σ[0] = d0(V) and for every j ≥ 1, σ[j]〈I ∪H ∪N〉 is the input provided by the
environment at step j and σ[j]〈V \ (I ∪H ∪N)〉 is the output of the processes at
step j − 1, i.e., the history reflects the delay. Thus, for simplicity of the presen-
tation we have assumed that the delay of each variable v ∈ V \ (I ∪H ∪N) is 1.
Our results can be easily extended to the case of arbitrary a priori fixed delays.

Fully Connected Architectures. An architecture A is fully connected if every pair
of processes is connected via a communication link with sufficient capacity.

From now on, we consider only fully connected architectures and
w.l.o.g. assume that C = {cp, tp | p ∈ P}, where for each process p, the variables
cp and tp are written by p and read by all processes, and the domain of cp is fixed
to be D(Ip). Thus, process p can use cp to communicate its input. We denote
with cvp the component of the variable cp used for the transmission of v ∈ Ip.
The domains of the variables tp for p ∈ P are left unspecified in the architecture.

2.3 The Specification Language CTL∗

Syntax. Let AP be a finite set of atomic propositions. The logic CTL∗ distin-
guishes state and path formulas. State formulas are called CTL∗ formulas.

State formulas over AP are formed according to the following grammar,
where p ∈ AP and θ stands for a path formula: ϕ ::= true | p | ¬ϕ | ϕ1∧ϕ2 | Eθ.

Path formulas are formed according to the following grammar, where ϕ is a state
formula and θ, θ1 and θ2 are path formulas: θ ::= ϕ | ¬θ | θ1 ∧ θ2 | Xθ | θ1 U θ2.

As abbreviations we can define the remaining usual boolean operators over
state and path formulas. For a path formula θ, we define the state formula Aθ

as ¬E¬θ, the path formula Fθ as true U θ and the path formula Gθ as ¬F¬θ.

Trees. As usual, for a finite set X, an X-tree is a prefix-closed subset T ⊆ X∗ of
finite words over X. The direction of every nonempty node σ ·x ∈ X+ is defined
as dir(σ · x) = x, and for ε, dir(ε) = x0 where x0 ∈ X is some designated root
direction. A X-tree T is called total if ε ∈ T and for every σ ∈ T there exists
at least one successor σ · x ∈ T , x ∈ X. If T = X∗, then T is called full. For a
given finite set Y , a Y -labeled X-tree is a pair 〈T, l〉, where T is an X-tree and
l : T → Y is a labelling function that maps each node in T to an element of Y .

Semantics. Consider a set of variables V with D(V) being the Cartesian product
of their domains. Let AP be a finite set of atomic propositions over V . A CTL∗

formula ϕ over AP can then be interpreted over total D(V)-labeled trees ac-
cording to the standard semantics [5] of CTL∗. A total D(V)-labeled tree 〈T, l〉
is a model of ϕ, written 〈T, l〉 |= ϕ, iff the root node of 〈T, l〉 satisfies ϕ.

2.4 Specifying Fault-Tolerance

The system specification describes the desired input-output behavior of the
system in the absence of faults and leaves the internal communication uncon-
strained. That is, we are given an external specification as a CTL∗ formula ϕ

over atomic propositions from the set AP = {v = a | v ∈ Ext \N, a ∈ D(v)}, i.e.,
about external variables. The models of ϕ are totalD(Ext)-labeledD(Ext)-trees.

In the presence of faults, the system need not satisfy the original specification,
but instead comply with some (possibly weaker) fault-tolerance specification. An
external specification for an architecture A can refer to the fault notification
variables in N . This allows for specifying the intended fault-tolerance policy as
well as encoding the effects and durations of faults in the input CTL∗ formula.

Given the original specification ϕ, we first construct a formula ΦTOL ac-
cording to the required type of fault-tolerance. The user can describe manually
as a CTL∗ formula the desired properties of the behavior of the system in the
presence of particular faults in particular processes and combinations thereof.
Of course, classical fault-tolerance requirements, such as masking, non-masking
or fail-safe, can be also specified (for masking tolerance it suffices to leave the
specification unchanged). Moreover, in the case of simple specifications such as
invariants, i.e., of the form AGψ, this compilation can be done automatically :
For fail-safe and non-masking tolerance, the tolerance properties are respectively
AG(ψ ∨ (fault-present ∧ ψsafe)) and AG(ψ ∨ (fault-present ∧ AFAGψ)), where
fault-present =

∨
p∈P ¬(np = 0) and ψsafe is the safety conjunct of ψ.

In our model, the occurrence of a fault causes the affected process to behave
in an arbitrary way, i.e., it exhibits maximal behavior. However, by constraining
this behavior in the fault-tolerance specification, we can model several of the
fault types mentioned in the beginning of this section, as well as many more.

Given a set of faults with their effects on the behavior of a process and
their durations, we transform the formula ϕTOL into the fault-tolerance speci-
fication Φt, by relativizing the path quantifiers in the formula ϕTOL w.r.t. the
corresponding assumptions on the environment. These assumptions are encoded
in the formulas fault-behavior , fault-duration, and fault-distribution, whose
construction we discuss below. Thus, the fault-tolerance specification Φt is
obtained from the formula ϕTOL by substituting each occurrence of Aθ by
A((fault-behavior ∧ fault-duration ∧ fault-distribution) → θ), and each occur-
rence of Eθ by E(fault-behavior ∧ fault-duration ∧ fault-distribution ∧ θ).

The formula fault-behavior describes the possible behaviors of the processes
in the presence of each of the given faults. Let faulty-output(d, p) be a state
formula describing the possible outputs of process p when affected by the fault
of type d (we can assume that a stopped process outputs some default element
⊥). Then, fault-behavior = G

∧
p∈P

∧
d∈D(np)(np = d→ X(faulty-output(d, p))).

The formula fault-duration constrains the duration of faults. Let D′(np) and
D′′(np) be the subsets of D(np) consisting of the permanent and the transient
faults, respectively, for a process p ∈ P . For each d ∈ D′′(np), we assume the exis-
tence of a boolean variable rdp in H, where rdp being true means that process p has
recovered from d. The path formulas permanent(d, p) = G((np = d) → G(np =

d)) and transient(d, p) = G(((np = d) → (np = d U rdp)) ∧ (rdp → (¬(np = d) ∧

Grdp))) state that the occurrence of fault of type d in process p is permanent, re-
spectively transient (i.e., the duration of the fault is finite and the recovered pro-
cess cannot perturb again, cf. [7]). Finally, we define the formula fault-duration =∧
p∈P ((

∧
d∈D′(np) permanent(d, p)) ∧ (

∧
d∈D′′(np) transient(d, p))).

The user can also provide a path formula fault-distribution that constrains
the number of faulty processes in the considered system during the execution,
e.g., there is at most one faulty process at every point of the execution.

To avoid restriction to only memoryless implementations, we assume that
at every point of the system’s execution at least one process is not faulty, i.e.,
the synthesized system is designed to tolerate up to n− 1 simultaneously faulty
processes, where n is the total number of processes. Thus, we assume that the
formula fault-distribution is a conjunction of the user specified requirements and:
the formula G

∨
p∈P (np = 0) which guarantees that there is at least one non-

faulty process at every point, and the formula G
∧
p∈P (np = d → X(mp = d)),

which states that the values of the variables mp and np are correctly related.

Note that for common fault types such as fail-stop or stuck-at, as well as for
the usual constraints on the duration of faults, the fault-tolerance specification
can be compiled automatically from the original specification. The user can also
specify customized requirements expressible in CTL∗. From now on, we assume
that the fault-tolerance specification is given as input to our algorithm.

Example (Reliable Broadcast). In a broadcast protocol, the environment consists
of n clients E1, . . . , En, which broadcast messages. The system consists of n
servers, S1, . . . , Sn that correspond to the processes p1, . . . , pn, which deliver the
messages to the clients. Each client Ej communicates only with the correspond-
ing server Sj and we assume that each message sent by a client is unique.

E1

S1

i1
o1

E2

S2

i2
o2

E3

S3

i3
o3

env

system

D

n1, n2, n3

Fig. 1. Architecture of a distributed server.

A system with 3 servers is depicted on Fig. 1, where we have omitted the
internal communication variables. Let M be the finite set of possible message
contents. The domain of each input, output or communication variable v ∈
{ij , oj , cj | j = 1, 2, 3} is D(v) = {(m, j) | m ∈ M, j ∈ {1, 2, 3}} ∪ {⊥}, where j
denotes the broadcaster’s name and ⊥ indicates the absence of message.

In the absence of faults, the correctness can be specified by the following
standard requirements: (1) If a client Ej broadcasts a message m, then the
server Sj eventually delivers m; (2) If a server delivers a message m, then all

servers eventually deliver m; (3) For every message m, every server delivers (m, l)
at most once and does so only if m was previously broadcast by the client El.

The environment component D notifies all servers when a fault in server j
occurs, by setting nj to 1. A faulty server sends arbitrary messages to the corre-
sponding client and to the other servers. The duration of faults is unconstrained.
Thus, both formulas fault-behavior and fault-duration are equivalent to true.

We specify the fault-tolerance requirement as follows. We replace each re-
quirement that a server eventually delivers a message m by the weaker require-
ment that it has to eventually deliver a message, provided that from that point
on it is never faulty. The safety property that the servers do not invent mes-
sages is also weakened to hold only for non-faulty processes. Thus, we obtain a
variation of the standard requirements for reliable broadcast from [9].

Validity: If a client Ej broadcasts a message m and the corresponding server
Sj is never faulty from that point on, then Sj eventually delivers m.

ϕVj = AG
∧
m∈M ((ij = (m, j) ∧ G(nj = 0)) → F(oj = (m, j)))

Agreement: If a non-faulty server Ej delivers a message (m, l), then all servers
that are non-faulty from that point on eventually deliver (m, l).

ϕAj = AG
∧
m∈M,l∈P (oj = (m, l)∧nj = 0 →

∧
p∈P (G(np = 0) → F(op = (m, l))))

Integrity: For every message m, every non-faulty server Ej delivers (m, l) at
most once and does so only if m was previously broadcast by the client El.

ϕIj = AG
∧
m∈M,l∈P ((nj = 0 ∧ oj = (m, l)) → XG(nj = 0 → ¬(oj = (m, l))))∧

AG
∧
m∈M,l∈P ¬((¬il = (m, l)) U (oj = (m, l) ∧ nj = 0 ∧ ¬il = (m, l)))

2.5 The Fault-Tolerant Synthesis Problem

Let A = (env , P,Ext , C, (D(v))v∈Ext , (In(p),Out(p))p∈P) be a fully connected
architecture. A distributed implementation for the architecture A consists of a
tuple (D(v))v∈C of sets defining domains for the internal variables and a tuple
ŝ = (sp)p∈P of implementations for the processes in P , where an implementation
for a process p is a function (strategy) sp : D(In(p))∗ → D(Out(p)) which maps
each local input history for p to an assignment to the variables written by p.
A distributed implementation ŝ is finite-state if for each process p, the domain
D(Cp) is finite and the strategy sp can be represented by a finite automaton.

In the absence of faults, a distributed implementation ŝ = (sp)p∈P defines a
computation tree CT (ŝ) = 〈T, dir〉, where T ⊆ D(V)∗ is the greatest total tree
such that for all σ ∈ D(V)∗ and all d ∈ D(V), if σ · d ∈ T , then σ ∈ T and for
every p ∈ P it holds that d〈Out(p)〉 = sp(σ〈In(p)〉). Recall that the realizability
problem for an architecture A with fixed finite domains for all variables and a
CTL∗ specification ϕ over Ext \ N is to decide whether there exists a finite-
state distributed implementation ŝ for A such that CT (ŝ) |= ϕ. The distributed
synthesis problem requires finding such an implementation if one exists.

In the presence of faults, a distributed implementation ŝ = (sp)p∈P defines
a fault computation tree FCT (ŝ) = 〈T, dir〉, where T ⊆ D(V)∗ is the greatest

total tree such that for all σ ∈ D(V)∗ and d ∈ D(V), if σ ·d ∈ T , then σ ∈ T and
for every p ∈ P such that dir(σ)〈np〉 = 0 it holds that d〈Out(p)〉 = sp(σ〈In(p)〉),
i.e., the output of only non-faulty processes determines the successors of a node.

The implementations for the processes in P should be independent of in-
formation about the external environment the processes do not have. Consider
an external input variable v ∈ I and assume that at some point all processes
allowed to read v are faulty. The behavior of the (non-faulty) processes in P at
this and at later points of the execution of the system should not depend on the
value of v at that moment, because the faulty processes may communicate the
value incorrectly and their states may be arbitrarily perturbed. Thus, we say
that two local histories for a process p are equivalent up to faults if they differ
only in the values of external input variables at points when all processes reading
them were faulty. A distributed implementation is consistent w.r.t. faults if all
strategies produce the same output for histories that are equivalent up to faults.

Note that for an implementation that is consistent w.r.t. faults, the output
of a strategy for a process p is allowed to depend on the value of a variable
v ∈ Ip from points in the history in which process p was faulty, as long as some
process allowed to read v was not faulty. Thus, provided that at each point of
the execution of the system there exists at least one process that is not faulty
(an assumption that can be specified in the fault-tolerance specification as shown
above), a recovered process is allowed to depend on the history up to equivalence
w.r.t. faults. This is possible since in a fully connected architecture a process can,
upon recovery from a fault, receive information about the current state of the
system from another process that was not faulty at the previous step.

Definition 1 (Equivalence up to faults). For a process p ∈ P , we define
the equivalence relation ≡fp on D(In(p))∗ in the architecture A as follows. For

σ1 ∈ D(In(p))∗ and σ2 ∈ D(In(p))∗, we have σ1 ≡fp σ2 if and only if |σ1| = |σ2|,
σ1[|σ1| − 1] = σ2[|σ2| − 1] and for every 0 ≤ j < |σ1| − 1 it holds that: (1)
σ1[j]〈In(p) \ Ip〉 = σ2[j]〈In(p) \ Ip〉 and (2) for every v ∈ Ip, if there exists a
process q ∈ P with v ∈ Iq and σ[j]〈nq〉 = 0, then it holds that σ1[j]〈v〉 = σ2[j]〈v〉.

Definition 2 (Consistency w.r.t. faults). We say that a distributed strategy
ŝ for the architecture A is consistent w.r.t. faults if for every p ∈ P and for
every σ1 and σ2 in D(In(p))∗ with σ1 ≡fp σ2 it holds that sp(σ1) = sp(σ2).

Definition 3 (Fault-Tolerant Synthesis Problem). The fault-tolerant real-
izability problem for an architecture A and a CTL∗ fault-tolerance specification
Φt is to decide whether there exists a finite-state distributed implementation ŝ for
A that is consistent w.r.t. faults and such that FCT (ŝ) |= Φt. The fault-tolerant
synthesis problem requires finding such an implementation if the answer is yes.

3 Synthesis

Our synthesis algorithm builds on that of single-process synthesis under incom-
plete information [11], via a standard reduction for fully connected architectures

and external specifications [8]. We now provide the necessary preliminaries based
on the classical synthesis case and in the next sections we present the method-
ology we developed to employ a similar approach in the fault-tolerant setting.

3.1 Synthesis for Fully Connected Architectures

Transmission Delay. In a fully connected architecture, the output of every pro-
cess p may depend, with a certain delay, on all external input variables in I ∪N .
The delay, delay(v, p), of the transmission of an external input variable v to a
process p in a fully connected architecture is 0 if v ∈ Ip ∪N and 1 otherwise.

Input-Output Functions. An input-output function for a process p is a function
gp : D(I ∪N)∗ → D(Op) which based on the global input history assigns values
to the variables in Op. A global input-output function g : D(I ∪ N)∗ → D(O)
assigns values to all external output variables, based on the global input history.

An input-output function gp is delay-compatible if for each σ1, σ2 ∈ D(I∪N)∗,
for which for every v ∈ I∪N it holds that σ1〈v〉(|σ1|−delay(v, p)) = σ2〈v〉(|σ2|−
delay(v, p)), it holds that gp(σ1) = gp(σ2). A global input-output function g is
delay-compatible iff so is the projection of g on Op, for every process p ∈ P .

Routing Strategies. Given a nonempty set D(v) for each v ∈ C, a routing r̂ =
(rp)p∈P for an architecture A is a tuple of local memoryless strategies, called
routing strategies, where for each p ∈ P , rp : D(In(p)) → D(Cp) is a function
that given values for the variables in In(p), assigns values to the variables in Cp.

In a fully connected architecture A, each process p can transmit the values of
Ip to the other processes via the variable cp. A simple routing r̂ = (rp)p∈P is one
for which rp(d)〈cp〉 = d〈Ip〉 and it allows every process to trivially reconstruct the
value of every variable in I. A distributed implementation ŝ for A has simple rout-
ing if for every σ ∈ D(V)∗ and p ∈ P it holds that sp(σ〈In(p)〉)〈cp〉 = dir(σ)〈Ip〉,
i.e., the strategies directly forward the external input. For fully connected archi-
tectures it suffices to consider only implementations with simple routing.

Synthesis for Fully Connected Architectures and External Specifications. In [8]
it was shown that the distributed synthesis problem is decidable for uniformly
well-connected architectures with linearly preordered information and external
specifications, and it can be reduced to finding a collection of delay-compatible
input-output functions for the processes in P . Fully connected architectures are a
special case of uniformly well-connected architectures in which all processes have
the same information and hence fall in this class. Moreover, in order to find such
a collection of input-output functions, it suffices to find a delay-compatible global
input-output function and use projection to obtain functions for the processes
in P . Thus, the problem reduces to the single-process synthesis problem under
incomplete information with the additional requirement of delay-compatibility.

3.2 Single-Process Synthesis under Incomplete Information

Let A = (env , {p},Ext , ∅, (D(v))v∈Ext , (I ∪ N,O)) be a single-process architec-
ture and ψ be a CTL∗ specification over the variables in V = I ∪H ∪N ∪O.

Tree Automata. An alternating parity tree automaton is a tuple A =
(Y,X,Q, q0, δ, α), where Y is a finite alphabet, X is a finite set of directions,
Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × Y → B

+(Q × X)
is a transition function that maps a state and an input letter to a positive
boolean combination of pairs of states and directions, and a coloring function
α : Q → Col ⊂ N that maps each state to some color from a finite set Col . An
alternating automaton runs on full Y -labeled X-trees. A run tree on a given full
Y -labeled X-tree 〈X∗, l〉 is a Q×X∗-labeled tree where the root is labeled with
(q, ε) and where for every node ρ with label (q, σ) the set of children K of ρ
satisfies the following properties: (1) for every ρ′ ∈ K, the label of ρ′ is (q′, σ ·x)
for some q′ ∈ Q and x ∈ X such that (q′, x′) is an atom of δ(q, l(σ)), and (2)
the set of atoms defined by the set of children K satisfies δ(q, l(σ)). An infinite
path fulfills the parity condition if the maximal color of the states appearing in-
finitely often is even. A run tree is accepting if all infinite paths fulfill the parity
condition. A full Y -labeled X-tree is accepted if it has an accepting run tree. A
nondeterministic automaton is an alternating automaton, in which, in the DNF
of each transition every disjunct contains exactly one (q, x) for every x ∈ X.

Symmetric alternating automata are a variant of alternating automata that
run on total Y -labeled X-trees. For a symmetric alternating automaton S =
(Y,Q, q0, δ, α), Q,q0, and α are as above, but the transition function δ : Q ×
Y → B

+(Q × {�,♦}) maps a state and an input letter to a positive boolean
combination over atoms that refer to some(♦) or all(�) successors in the tree.
A run tree on a given Y -labeled X-tree 〈T, l〉 is a Q × X∗-labeled tree where
the root is labeled with (q, ε) and where for every node ρ with label (q, σ) the
set of children K of ρ satisfies the following properties: (1) for every ρ′ ∈ K, the
label of ρ′ is (q′, σ · x) for some q′ ∈ Q, x ∈ X and σ · x ∈ T such that (q′,�) or
(q′,♦) is an atom of δ(q, l(σ)), and (2) interpreting each occurrence of (q′,�) as∧
x∈X,σ·x∈T (q′, x) and each occurrence of (q′,♦) as

∨
x∈X,σ·x∈T (q′, x), the set of

atoms defined by the set of children K satisfies δ(q, l(σ)).

Automata-Theoretic Solution. For a CTL∗ formula ψ one can construct an al-
ternating parity tree automaton Aψ with 2O(|ψ|) states that accepts exactly the
models of ψ [11]. Via the automata transformations described in [11], the real-
izability problem for the single process architecture A and the specification ψ

can be reduced to the nonemptiness of an alternating tree automaton Cψ that is
obtained from Aψ and that has the same number of states as Aψ.

Theorem 1 (from [11]). The single-process synthesis problem for CTL∗ with
incomplete information is 2EXPTIME-complete.

4 Encoding Fault-Tolerant Realizability

In this section we present a transformation of the architecture and the fault-
tolerance specification to an architecture and a specification for which the dis-
tributed fault-tolerant synthesis problem can be reduced to single-process syn-
thesis under incomplete information. The key challenge is to account for the

fact, that the non-faulty processes cannot rely on receiving accurate information
about the external input of a faulty process. We describe how we model the effect
of a fault occurrence on the informedness of the non-faulty processes. We show
that the described transformations do not affect fault-tolerant realizability.

Architecture Transformation. To circumvent the change of informedness of the
processes in the architecture caused by the occurrences of faults, and yet al-
low a faulty process to communicate incorrectly its external input to the other
processes, we introduce a faulty copy of the external input of each process.

Formally, we transform the architecture A into an architecture Af defined
as follows: Af = (env , P,Extf , C, (D(v))v∈Extf , (Inf (p),Out(p))p∈P), where V f

is partitioned into If = F , Hf = H ∪ I, N , C and O. The new set of variables
F = {fp | p ∈ P} consists of the external faulty-input variables, one for each
process p in P , whose values are supplied by the environment. For p ∈ P we
have Inf (p) = (In(p)\ Ip)∪{fp}. The domain of each fp is D(Ip) and we denote
with fvp the component of fp that corresponds to a variable v ∈ Ip.

In the architecture Af , none of the processes is allowed to read the values of
the original input variables in I and thus, a routing strategy for process p can
only transmit the value of the faulty-input variable fp to the other processes.

Specification Transformation. The relation between the correct and the faulty
input in normal execution and after the occurrence of a fault is established by
an assumption on the environment introduced in the specification: While the
tuple of values given by the environment to the input variables of a process p
and the value given to the corresponding faulty-input variable for that process
are constrained to be the same during the normal execution of process p, during
the time process p is faulty this may not be the case. Formally, the assumption is
faulty-input = G

∧
p∈P,v∈Ip

(np = 0 → fvp = v). Then the formula Φf is obtained

by substituting in the fault-tolerance specification Φt each occurrence of Aθ by
A(faulty-input → θ) and each occurrence of Eθ by E(faulty-input ∧ θ).

For implementations for the architecture Af we assume that faults do not
affect the forwarding of external input by a faulty process. This results in the
fault computation tree FCT f (ŝ) = 〈T, dir〉, where T ⊆ D(V f)∗ is the greatest
total tree such that for all σ ∈ D(V f)∗ and all d ∈ D(V f), if σ ·d ∈ T , then σ ∈ T

and for every p ∈ P it holds that d〈cp〉 = sp(σ〈In
f (p)〉)〈cp〉 and if dir(σ)〈np〉 = 0

then d〈Out(p)〉 = sp(σ〈In
f (p)〉)〈Out(p)〉. The following theorem establishes the

connection between the fault computation trees for the implementations for the
architecture Af and the implementations for the original architecture A.

Theorem 2. There exists a finite-state distributed implementation ŝ with sim-
ple routing for the architecture A that is consistent w.r.t. faults and such that
the fault computation tree FCT (ŝ) is a model of Φt iff there exist a finite-state
distributed implementation ŝf with simple routing for the architecture Af such
that the fault computation tree FCT f (ŝf) is a model of Φf .

Proof (Idea). We define mappings from local input histories for a process p ∈ P

in the architecture A to local input histories for p in Af and vice versa. An
element of D(In(p))∗ is mapped to an element of D(Inf (p))∗, where the value

of fp in a state of the image prefix is the value of cp from the next state in
the original prefix, if such a state exists, and is equal to the tuple of values for
Ip in the corresponding state of the original prefix otherwise. When mapping

D(Inf (p))∗ to D(In(p))∗, the value of a variable v ∈ Ip in a state of the image
prefix is the same as the value of cvq from the next state in the original prefix,
if such a state exists and there exists a process q with v ∈ Iq that is not faulty
in the corresponding state of the original prefix, and is the value of fvp from the
corresponding state in the original prefix otherwise. Based on these mappings we
define the respective strategies and show that they have the required properties.
The formal definitions and proof can be found in the full version of this paper.

5 From Fault Input-Output Trees to Full Trees

We now present a modification of the classical construction that transforms
an automaton on total trees into one that accepts full trees. Our construction
accounts for the shape of the total tree resulting from the occurrences of faults.

Consider the architecture Af and the formula Φf obtained as described in
Sect. 4 from the architecture A and the fault-tolerance specification Φt.

For a global input-output function g for Af , we define a fault input-output
tree FOT (g) = 〈T, dir〉 similarly to fault computation trees: T ⊆ D(Extf)∗ is
the greatest total tree such that for all σ ∈ D(Extf)∗ and all d ∈ D(Extf),
if σ · d ∈ T , then σ ∈ T and for all p ∈ P with dir(σ)〈np〉 = 0 it holds

that d〈Op〉 = g(σ〈If 〉)〈Op〉. The tree FOT (g), which is a total D(Extf)-labeled

D(Extf)-tree, can be represented as a full D(Extf)×D(O)-labeled D(Extf)-tree
where the nodes are labeled additionally with the output of g that determines the
enabled directions. Given a full D(Extf)×D(O)-labeled D(Extf)-tree T , we can
determine the corresponding total characteristic tree under faults, charF (T).

Definition 4. Let 〈D(Extf)∗, l〉 be a full D(Extf) × D(O)-labeled D(Extf)-
tree. We define the characteristic tree under faults as the total D(Extf)-labeled
D(Extf)-tree 〈T, dir〉 = charF (〈D(Extf)∗, l〉) as follows: T ⊆ D(Extf)∗ is the
greatest total tree such that for all σ ∈ D(Extf)∗ and all d′ ∈ D(Extf), if
σ · d′ ∈ T , then σ ∈ T and the condition (∗) below holds:
(∗) for every p ∈ P , if d〈np〉 = 0, then d′〈Op〉 = do〈Op〉, where l(σ) = 〈d, do〉.

For the CTL∗ formula Φf , we can construct [11] a symmetric parity automa-
ton SΦ that accepts exactly the models of Φf . This automaton runs on total

D(Extf)-labeled trees, has 2O(|Φf |) states and five colors. Since automata trans-
formations are simpler for automata running on full trees, from the symmetric
automaton SΦ we construct the alternating parity automaton AΦ that accepts
a full tree iff its characteristic tree under faults is a model of Φf . The transition
function of AΦ uses the information about enabled successors given in the la-
bels: Where SΦ sends a copy to all successors (some successor), AΦ sends a copy
to all enabled successors (some enabled successor). However, here the enabled
successors are determined only according to the output of the processes that are
non-faulty according to the node’s label.

Theorem 3. If SΦ is a symmetric automaton over D(Extf)-labeled D(Extf)-
trees, we can construct an alternating parity automaton AΦ such that AΦ accepts
a D(Extf)×D(O)-labeled D(Extf)-tree T iff SΦ accepts charF (T). The automa-
ton AΦ has the same state space and acceptance condition as SΦ.

6 Synthesis of Fault-Tolerant Systems

We reduced the fault-tolerant synthesis problem for the architecture A and the
formula Φt to the corresponding problem for the architecture Af and Φf . In Af

we can assume that faults do not affect the routing of input and therefore we
can reduce the problem to finding delay-compatible input-output functions.

Delay-Compatible Global Input-Output Functions for Af . From a symmetric au-
tomaton SΦ that accepts exactly the total D(Extf)-labeled D(Extf)-trees that
are models of Φf , we construct, as explained in the previous section, an alter-
nating parity tree automaton AΦ that accepts a full D(Extf) × D(O)-labeled
D(Extf)-tree T iff charF (T) is a model of Φf . Via standard transformations we
obtain from AΦ a nondeterministic automaton NΦ with number of states doubly
exponential in the size of Φf that accepts a D(O)-labeled D(If ∪N)-tree T iff
T corresponds to a global input-output function for A whose fault input-output
tree is a model of Φf . Via a construction similar to the one in [8], we transform
NΦ into a nondeterministic tree automaton DΦ that accepts exactly the labeled
trees accepted by NΦ that correspond to delay-compatible global input-output
functions. The size of DΦ is linear in the size of NΦ. If the language of DΦ is
nonempty the nonemptiness test produces a finite-state delay-compatible global
input-output function g : D(If ∪N)∗ → D(O) for Af for which FOT (g) |= Φf .

From Global Input-Output Functions to Distributed Implementations. By pro-
jecting a finite-state delay-compatible global input-output function g for Af on
the sets Op of variables we obtain a set of delay-compatible input-output func-
tions (gp)p∈P for the processes in Af . These functions are represented as finite
automata, which have the same set of states Qg, which are labeled by elements
of D(Op), and the same deterministic transition function δg. For each variable
tp ∈ C, we define D(tp) = Qg ∪ {⊥}, d0(tp) = ⊥ and for each cp ∈ C we have
D(cp) = D(Ifp). Then, we define a simple routing r̂ = (rp)p∈P as follows. For

every process p and d ∈ D(Inf (p)), the value assigned to tp by rp is determined
as follows. If d〈tq〉 = ⊥ for all q, this value is q0g (the initial state). Otherwise,
the value is δg(t, d

′), where t = d〈tq〉 for some process q with d〈mq〉 = 0 if one
exists, or some fixed process q otherwise, and for every fq ∈ If , d′〈fq〉 = d〈cq〉.

Combining the functions (gp)p∈P with this simple routing we obtain a finite-
state distributed implementation ŝf = (sfp)p∈P for Af . If the tree FOT (g) is a

model of Φf , then so is the tree FCT f (ŝf).
Clearly, vice versa, if there exists a distributed implementation ŝ for Af

with FCT f (ŝf) |= Φf , then there exists a delay-compatible global input-output
function g with FOT (g) |= Φf and hence the language of DΦ is not empty.

Recalling the relation between the implementations in the architectures A
and Af we established in Sect. 4, we obtain the following result.

Theorem 4. The fault-tolerant distributed synthesis problem is 2EXPTIME-
complete for fully connected architectures and external specifications.

7 Conclusion

We have presented a synthesis algorithm that determines for a fully connected ar-
chitecture and a temporal specification whether a fault-tolerant implementation
exists, and, in case the answer is positive, automatically derives such an imple-
mentation. We demonstrated that the framework of incomplete information is
well-suited for encoding the effects of faults on the informedness of individual
processes in a distributed system. This allowed us to reduce the fault-tolerant
distributed synthesis problem to single-process synthesis with incomplete infor-
mation for a modified specification. We thus showed that the fault-tolerance
synthesis problem is decidable and no more expensive than standard synthesis.
Establishing general decidability criteria for architectures that are not fully con-
nected as well as extending the scope to broader fault types such as Byzantine
faults are two open problems that deserve further study.

References

[1] P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. ACM Trans. Program. Lang. Syst., 26(1):125–185, 2004.

[2] B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad. Distributed synthesis of fault-
tolerant programs in the high atomicity model. In Proc. SSS, pages 21–36, 2007.

[3] D. Dolev and H. R. Strong. A simple model for agreement in distributed sys-
tems. In Proceedings of the Asilomar Workshop on Fault-Tolerant Distributed
Computing, pages 42–50, London, UK, 1990. Springer-Verlag.

[4] A. Ebnenasir, S. S. Kulkarni, and A. Arora. FTSyn: a framework for automatic
synthesis of fault-tolerance. STTT, 10(5):455–471, 2008.

[5] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 995–1072. 1990.

[6] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. LICS’05,
pages 321–330, June 2005.

[7] D. Fisman, O. Kupferman, and Y. Lustig. On verifying fault tolerance of dis-
tributed protocols. In Proc. TACAS, pages 315–331, 2008.

[8] P. Gastin, N. Sznajder, and M. Zeitoun. Distributed synthesis for well-connected
architectures. In Proc. FSTTCS, volume 4337 of LNCS, pages 321–332, 2006.

[9] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and
related problems. In Distributed Systems (2nd edition). Addison-Wesley, 1993.

[10] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In
Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 82–93, 2000.

[11] O. Kupferman and M. Y. Vardi. Church’s problem revisited. Bulletin of Symbolic
Logic, 5(2):245–263, 1999.

[12] P. Manolios and R. Trefler. Safety and liveness in branching time. In Proc. LICS,
pages 366–374. IEEE Computer Society, 2001.

[13] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
Proc. FOCS, volume II, pages 746–757. IEEE, 1990.

