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Abstract

Vertebroplasty has been widely used for the treatment of osteoporotic compression

fractures but the efficacy of the technique has been questioned by the outcomes of

randomized clinical trials. Finite-element (FE) models allow an investigation into the

structural and geometric variation that affect the response to augmentation. How-

ever, current specimen-specific FE models are limited due to their poor reproduction

of cement augmentation behavior. The aims of this study were to develop new

methods of modeling the vertebral body in both a nonaugmented and augmented

state. Experimental tests were conducted using human lumbar spine vertebral speci-

mens. These tests included micro-computed tomography imaging, mechanical testing,

augmentation with cement, reimaging, and retesting. Specimen-specific FE models of

the vertebrae were made comparing different approaches to capturing the bone mate-

rial properties and to modeling the cement augmentation region. These methods signif-

icantly improved the modeling accuracy of nonaugmented vertebrae. Methods that

used the registration of multiple images (pre- and post-augmentation) of a vertebra

achieved good agreement between augmented models and their experimental counter-

parts in terms of predictions of stiffness. Such models allow for further investigation

into how vertebral variation influences the mechanical outcomes of vertebroplasty.
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1 | INTRODUCTION

Vertebral compression fractures are among the most common types

of fractures that patients with osteoporosis experience.1 Ver-

tebroplasty is widely used as a treatment for such fractures, offering

vertebral stability and pain relief. The procedure involves the injection

of bone cement into the fractured vertebral body, reducing motion

and stabilizing the segment.

Two influential blinded randomized and controlled studies by

Buchbinder et al2 and Kallmes et al3 have raised questions over the

efficacy of vertebroplasty following their findings that there were no

significant differences in outcomes between vertebroplasty and pla-

cebo groups. However, there is evidence of positive outcomes to the

procedure,4 and it may be the case that subgroups of patients with

particular characteristics benefit more than others.

Finite-element (FE) models are a clear choice to investigate how

different types of variation in the procedure, geometry and material

properties change the effectiveness of vertebroplasty from a mechan-

ical perspective. While a number of studies have attempted to model

cement augmentation in human vertebrae,5–10 few have attempted to
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validate models against experimentally augmented specimens8–10 and

fewer succeeded in producing models that could closely predict

experimental findings.10 Studies that achieved good agreement in

modeling cement augmentation required individual calibration, mean-

ing that the methods have limited application in analyzing larger sets

of vertebral models. There is therefore a need to build validated,

specimen-specific models of augmentation in vertebrae to provide

robust predictions of how vertebroplasty affects the population. An

understanding of the effects of variation in terms of geometric fea-

tures, material properties, and changes to the vertebroplasty proce-

dure on the mechanical response to augmentation will allow a

determination of which vertebrae are best suited to receiving the

procedure.

The primary aim of this study was to develop methodologies to

accurately model both augmented and nonaugmented human lumbar

vertebrae. The details of the human tissue used in this study are

described along with the experimental methods for testing, augmenting,

and imaging the specimens. A comparison of two-image to FE modeling

methods is then reported. Comparisons are then made between the

experimental and FE results and the implications are discussed.

2 | METHODS

2.1 | Experimental methods

A total of 14 human lumbar vertebrae were harvested from four fresh

frozen cadaveric spines obtained with ethical permission from the

Leeds GIFT Research Tissue Project, as detailed in Table 1.

A simulated prophylactic vertebroplasty procedure was under-

taken on each vertebra; all specimens were also mechanically tested

and imaged before and after the augmentation, as described below.

The mechanical stiffness of the vertebrae were determined under

axial compression using a materials testing machine (Instron 3366,

10 kN load-cell; Instron Ltd, UK). Stiffness was chosen for the mea-

sured outcome as the pain reduction following augmentation is

thought to originate through a stabilization of the vertebrae.11 Each

vertebra was first potted in polymethylmethacrylate (PMMA) endcaps,

and placed between two steel end plates, the lower of which inhibited

lateral motion of the specimen when under load. A ramp load up to

1600 N was then applied at a rate of 1 mm/min to avoid damaging

the vertebrae and viscoelastic effects. The load was applied through a

steel ball allowing flexion of the top steel plate (Figure 1). The stiff-

ness of the vertebrae was measured by identifying the maximum

gradient in the linear region of the load displacement curve, by itera-

tively calculating the gradient over segments of 20 data points (equiv-

alent to a displacement of 0.034 mm). All specimens were imaged in

their PMMA endcaps before and after augmentation using high reso-

lution peripheral quantitative computed tomography (HR-pQCT;

XtremeCT; Scanco Medical AG, Switzerland) with an isotropic voxel

size of 82 μm, energy settings of 900 lA, 60 kVp, and 300 ms expo-

sure time. A radio-opaque marker was embedded in the upper endcap

to align with the position of the steel ball (Figure 1), enabling the loca-

tion of the applied load to be identified on the images.12,13

Augmentation of the vertebrae used an oblique approach,

avoiding damage to the dense cortical bone surrounding the pedicles

(Figure 2). A side-opening needle was used, allowing the cement to be

directed into the anterior center region of the vertebral body as

opposed to directly out of the needle end. The cement used was

PMMA, mixed in a powder:liquid weight ratio of 1:1, with barium sul-

fate in a 1:4 ratio with the powder component, as a radio-opacifier.

TABLE 1 Details of the lumbar sections used from four cadaveric
spines

Spine name Vertebrae Sex Age

Spine 1 L1, L2, L3, L4, L5 F 90

Spine 2 L1 F 94

Spine 3 L1, L2, L3 M 86

Spine 4 L1, L2, L3, L4, L5 M 83

F IGURE 1 The experimental setup for axial loading the vertebral
specimens

F IGURE 2 A micro-computed tomography scan showing the

injected volume of cement at the anterior of the vertebral body with
the cement track from the exiting needle to the right. For this
specimen, cement leaked through the anterior wall, limiting the
quantity of cement injected
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The largest possible volume of cement was injected into each verte-

bra, mimicking the clinical process. The injection was stopped upon

observed cement leakage, which generally occurred through one of

the vascular channels at either the posterior or anterior portions of

the vertebrae. The resulting cement fill volume was measured using

segmented micro-computed tomography (μCT) scans.

2.2 | Computational methods

2.2.1 | Nonaugmented models

FE models were generated based on μCT image data, converted into

8-bit TIFF format image stacks using an in-house script written in

MATLAB (Mathworks, USA). Image processing was carried out using

Simpleware ScanIP (version 7; Synopsis, USA) and ImageJ (Fiji version

1.51a, https://imagej.net/Citing)14 for masking and meshing, and for

threshold determination, respectively. Two approaches to generating

the models were compared (Figure 3). In the first (“direct grayscale

method”), the images were downsampled to 1 mm3 and the resulting

grayscale of each voxel was used to define the local bone elastic modu-

lus (Figure 3A,B), similar to a method used by Zapata-Cornelio et al.15 In

the second (“bone volume fraction” method), an initial threshold was

applied to the 82-μm image stack to segment the trabeculae from the

trabecular spaces (Figure 3D). The selected threshold was determined

as the mean across all specimens using the optimize threshold feature of

the BoneJ plugin for ImageJ (version 1.4.116), which optimized the con-

nectivity against the threshold value. The segmented images were then

downsampled to 1 mm3 such that the resulting grayscale value of each

voxel, which was used to define the material properties, was propor-

tional to the regional bone volume fraction (Figure 3D,E) similar to the

method reported by Robson Brown et al.17 In both cases, the down-

sampled images were then segmented to separately mask the bone and

endcap regions (Figure 3C,F).

FE meshes were generated for the two approaches in ScanIP

using a mix of hexahedral elements internally and tetrahedral elements

on the mesh surface for smoothing. Meshing was at the model μCT

background resolution of 1 mm3, given the results of previous

studies.18

Bone materials were modeled as an isotropic linear elastic mate-

rial, where the Young's modulus of each element was correlated

with the grayscale value of the corresponding voxel using a linear

conversion factor. The relationship between the grayscale value and

Young's modulus was optimized to provide the best fit between the

FE-predicted stiffness values and the corresponding experimentally

derived stiffness values using an optimization toolbox19 with the

method employed by Zapata-Cornelio et al.15 Initially, the 14 verte-

bra models were split evenly into a build set and a validation set,

with the optimization of the conversion factor carried out on the

build set and this factor was then applied to the models in the vali-

dation set. Following this validation step, all 14 vertebrae were then

used to optimize the conversion factor. The remaining properties

used for all of the models are listed in Table 2.

Constraints were set such that the inferior endcap had an

encastre boundary condition matching the steel plate housing in the

experimental setup. A rigid platen was tied to the superior endcap

with a point load applied through the plate at a location matching the

experiment for each specimen. The load was applied using a 1-mm

displacement with rotation allowed and nonaxial translations con-

strained. The interfaces between the endcaps and bone were defined

as frictionless contact, with separation prevented following contact,

mimicking the adhesive-less properties of the PMMA endcaps.

2.2.2 | Augmented models

Two approaches to modeling augmentation were also compared.

The first involved a simple segmentation of the four regions in the

F IGURE 3 A comparison of the direct grayscale method, A-C, and the bone volume fraction method, D-F. A, The original full (82 μm)
resolution scan. B, The same image downsampled to 1 mm resolution. C, The resulting segmented scan. D, The segmented bone at 82 μm. E, The
segmented image of D following downsampling to 1 mm. F, The resulting image after segmentation
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postaugmentation scans of the vertebrae: the two endcaps, the verte-

bra, and the region of injected cement. This method effectively uses

the direct grayscale method, given that the trabecular bone cannot be

segmented from the augmented regions. The second approach utilized

image registration, combining scans of pre- and post-augmentation in

order to remove artifacts from the barium sulfate and allow use of the

presegmented nonaugmented scan data. The cement regions were

identified from the augmented scan and superimposed onto the regis-

tered nonaugmented scan. The bone material properties were then

derived from the nonaugmented initial computed tomography scan.

Registration of the images was carried out in 3D Slicer (version 4.10,

www.slicer.org21) using the pre- and post-augmentation scans, using

the direct grayscale background version for the preaugmentation scan.

The method of registration used three landmarks for each vertebra (the

superior of one pedicle, the inferior of the other pedicle, and the inferior

anterior of the vertebral body). The selection of these points proved to

provide a repeatable registration of the vertebrae, without selecting

superfluous landmarks. This registration allowed the two grayscale

backgrounds to be used for one model as shown in Figure 4, where the

mask and material properties for the vertebrae were derived from the

preaugmentation scan and the mask for the cement region came from

the augmented scan.

A final variation of the modeling process defined the needle

tracks within the vertebral mesh by removing the mask based on the

postaugmentation μCT scan. Given that the material properties are

based on the nonaugmented image data, the damage created by the

needle tracks from the augmentation process would otherwise not be

included.

Material properties for the augmented region in all the model-

ing approaches included a yielding material interface layer between

the cement and trabecular bone regions. This was to represent the

trabecular level interfaces between the two materials at the contin-

uum scale. The interface layer was created by using the dilate fea-

ture within ScanIP, giving two masks, one describing a 1-mm-thick

layer between the bone and the cement region and the other the

cement region itself. Material properties for the region are

described in Table 2, which were initially based on the study by

Sikora et al,22 with subsequent tuning to match the experimental

results.

2.2.3 | Analysis

All FE analyses were conducted with Abaqus 6.14 (Simulia, Dassault

Systemes). Models were run on 10 cores within an High Performance

Computing (HPC) cluster, where each model solved within

20 minutes. The agreement between the experimental and computa-

tional measures of stiffness was quantified using the concordance cor-

relation coefficient (CCC).23

3 | RESULTS

The dataset associated with this study is openly available from the

University of Leeds data repository.24

TABLE 2 Material properties used for the vertebral models

Material

Young's

modulus (GPa)

Poisson's

ratio

Yielding

stress

PMMA endcaps20 2.45 0.3 —

Augmentation cement 1.7 0.4 —

Augmentation

cement interface

0.01 0.4 5 Pa ! P.P.

Note: Properties for the cement and cement interface were tuned using

the described method. Properties for the endcaps originated from the

literature.20

Abbreviations: PMMA, polymethylmethacrylate; P.P., perfectly plastic

behavior.

F IGURE 4 An illustration showing the origin of the masks from
the nonaugmented scan (left) and the augmented scan (right)

F IGURE 5 The stiffness variation seen before and after

augmentation for the 14 specimens
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3.1 | Experimental results

A large variation in vertebral stiffness was found following augmenta-

tion that ranged from −39% to +48% of the nonaugmented stiffness

(Figure 5). The distribution of the cement was found to vary from a

concentrated region to being highly dispersed (Figure 6, Table 3). For

the vertebrae with a concentrated region of cement, there was a cor-

relation between the change in stiffness following augmentation and

the fill volume (Figure 7). In addition, vertebrae with concentrated

volumes of cement had a correlation between density of the verte-

brae and the quantity of cement injected before cement leakage

occurred.

3.2 | Computational results

The validation set for the direct grayscale method had a CCC value of

0.53 and the CCC value for the validate set of the bone volume

fraction method was 0.83. Utilizing all 14 vertebrae to optimize mate-

rial property calibration, it was found that there was an improvement

in the agreement and reduction in error between the experimental

and computational results for the bone volume fraction method

(CCC = 0.86, Root Mean Square (RMS) error = 15.3%) compared to

the direct grayscale method (CCC = 0.55, RMS error = 20.1%), as

shown in Figure 8.

In modeling the postaugmentation vertebrae, it was found that

the best agreement with the experimental data was achieved using

the image registration and the explicitly defined needle tracks

(Figure 9). The models developed using this approach achieved a

CCC of 0.62 compared to the models that used the registration

method but did not include the needle tracks, which achieved a CCC

of 0.46, and the initial method utilizing only the postaugmentation

scans that had a CCC of 0.18.

The models have the ability to broadly represent the change in

stiffness following augmentation (Figure 10). However, a reduction in

the model accuracy for those vertebrae that received a dispersed vol-

ume of cement can also be observed.

F IGURE 6 A, Vertebra showing a
dispersed volume of cement. B,
Concentrated volume of cement

TABLE 3 Bone volume fraction values for the specimens, the
achieved augmentation fill volume and the nature of the injected
cement volume, dispersed or concentrated

Vertebra BV/TV
Percentage fill
of vertebral volume

Dispersed
cement volume

Spine 1 L1 0.174 33 Yes

Spine 1 L2 0.170 35 No

Spine 1 L3 0.137 35 No

Spine 1 L4 0.127 32 No

Spine 1 L5 0.187 55 No

Spine 2 L1 0.391 5 Yes

Spine 3 L1 0.255 3 Yes

Spine 3 L2 0.267 9 No

Spine 3 L3 0.281 8 No

Spine 4 L1 0.257 8 Yes

Spine 4 L2 0.241 9 Yes

Spine 4 L3 0.244 15 No

Spine 4 L4 0.247 27 No

Spine 4 L5 0.249 33 Yes

Abbreviation: BV/TV, Bone Volume Fraction.

F IGURE 7 The relationship between the percentage fill of the
total vertebral volume and the percentage change in the vertebral
stiffness following augmentation. The line and r value are for the red
points where the cement volume was characterized as concentrated.
The remaining blue points indicated the vertebra where the cement
volume was characterized as dispersed
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4 | DISCUSSION

The overall aims of the study were to develop effective methods for

modeling augmented vertebrae at the continuum level using image

data with experimental data as a comparison. Successful outcomes

were achieved for the modeling of nonaugmented and augmented

specimens using improved methodologies compared to previous stud-

ies and examples found in the literature. Despite this, a number of fac-

tors still need to be considered, which are discussed in more detail in

the following sections.

4.1 | Nonaugmented models

In this study, it was found that there was better agreement with experi-

mental results using the bone volume fraction method as compared to

the direct grayscale method for generating FE models of vertebrae. The

improvement in model agreement using the bone volume fraction

method is most likely due to the added definition of the trabecular bone

and cortical shell, especially given how important the correct representa-

tion of load sharing is for accurate models.17 Having greater definition of

the cortical shell and trabecular bone alignment also allows a better

regional representation of the load transfer through the vertebrae than

the more homogenized predictions seen with the direct grayscale

method. This improved agreement is much stronger than the agreement

found in similar studies that used a comparable methodology to the direct

grayscale method9,15,17 and comparable to methods that used more com-

plex, specimen-specific material properties for each model.10,25 The con-

version between grayscale and Young's modulus was comparable to

studies with similar methodologies; Robson Brown et al17 found an equiv-

alent conversion factor of 0.0013/GPa (0.0009/GPa in the current study),

which gives a similar average bone modulus of 0.33 GPa to that of the

current study, 0.25 GPa. Differences between the two are likely from

scanner and image processing variances between the studies. An advan-

tage the current study has over the two studies that achieved similar

levels of agreement10,25 is that it provides a uniform calibration coeffi-

cient that, once calibrated over a large set of vertebrae, can be applied to

future unseen human lumbar vertebral image data.

The bone volume fraction method also removed any effect caused

by the bone marrow, which had leaked in some regions following

freeze/thaw cycles. This affected the grayscale-based models due to

regions devoid of bone marrow having a lower grayscale in the trabecu-

lar spaces, therefore altering the derived material properties. Due to the

initial segmentation and binarization at 82 μm in the bone volume frac-

tion method, the bone marrow was not present in the segmented full

resolution or downsampled scans and therefore its presence or other-

wise had no effect on the derived material properties of the models.

4.2 | Augmented models

The results of modeling augmented vertebrae showed a reduction in

the agreement when compared to the nonaugmented vertebral models,

mirroring that found by Wijayathunga et al.9 Modeling augmentation in

the vertebral models presents a range of challenges compared to their

F IGURE 8 Comparison between the vertebral stiffness predicted
from the computational models and the corresponding values derived
from the experimental tests for the two different methods of deriving
the bone material properties. Red shows the agreement using the
direct grayscale method and blue shows the agreement using the
bone volume fraction method. The concordance correlation
coefficient values for each method are shown along with the line of
perfect agreement. A and B, The stress distributions in the mid-slice
of a typical vertebral model (Spine 3 L1). B shows the improved
cortical shell load transfer using the bone volume fraction method
compared to the direct grayscale method in A

F IGURE 9 The results of using the initial method (red circles), the
registration method (blue triangles), and the defined needle tracks
(green triangles), showing the agreement to the perfect x = y line in
orange

6 of 8 DAY ET AL.



nonaugmented counterparts, which were addressed here. The chal-

lenges included capturing the extent of the augmentation region,

modeling the behavior of the regions where the cement to bone ratio is

low, and capturing the damage caused by the insertion of the needle.

The difficulty in capturing the extent of the injected cement vol-

ume was mainly due to clumping of the barium sulfate particles and

separation of the barium sulfate from the other components of the

PMMA cement. The clumping of barium sulfate was also found by

Sikora.22 In the current study, agglomeration was reduced, but not

removed, through vigorous mixing of the PMMA monomer and bar-

ium sulfate prior to mixing with the PMMA powder. However, others

suggested that the separation of the barium sulfate from the cement

(calcium phosphate in that study26) during the high pressures of the

injection was the cause of the subsequent agglomeration. While in

the current study this problem was minimized through segmentation

of the cement region at higher resolutions before the downsampling,

a problem still lies in capturing the intricate interdigitation between

the cement and the trabecular bone at a resolution of 1 mm3. The use

of the registered preaugmentation scans in this study overcame the

issues documented by others due to the bright halo of the cement

region.9,22 This allowed more accurate modeling of the material prop-

erties of the vertebral bone and additionally improved accuracy of

modeling the interface, given the removal of the false, dense bone

surrounding the yielding interface. These improvements are evidenced

in the greater level of agreement seen with the experimental data,

compared to the use of only the postaugmentation scan data

(Figure 9).

The identification of dispersed and concentrated volumes of

cement is not limited to this study, Aquarius et al27 and Tarsuslugil

et al26 found similar modes of variation within the achieved volumes

of injected cement. As found here, both suggested that the final distri-

bution of cement was governed by the internal bone structure and

proposed a relationship with the pressure applied to the cement

during injection. The clinically used and commercially available

Vebroplast (European Medical Contract Manufacturing, The Nether-

lands) bone cement used by Aquarius et al also suggests that the

effect is not limited to laboratory-based PMMA mixtures.

The approach used to model the complex cement-trabecular

interactions through the use of yielding interface regions significantly

improved the modeling accuracy over simpler descriptions of the aug-

mentation regions. Such regions are difficult to model at the contin-

uum level due to the discontinuity between trabecular regions that

are constrained by the cement and those that remain unconstrained.

The yielding interface approach follows the results of Sikora,22 who

showed that the approach improved the accuracy of modeling trabec-

ular bone sections with cement. The improvement in the agreement

presented here shows that this approach also works for larger vol-

umes of bone, including whole vertebrae.

The inclusion of the explicitly modeled needle tracks also

increased the agreement significantly, with the compromise of inter-

rupting an otherwise automated modeling process due to the diffi-

culty of automatically segmenting the regions.

The models of augmentation were broadly able to represent the

change in stiffness following augmentation that was seen in the experi-

ment, with greater variation between the experimentation and compu-

tational results for those vertebrae that received a dispersed volume of

cement. This is due to the previously discussed difficulty in modeling

cement regions that have a low cement to bone ratio. Despite this, the

models were able to show the wide range of stiffness outcomes that

were seen experimentally, including representing the reduction in stiff-

ness that was present in the densest vertebrae, a result that would not

be possible if using a simpler description of the augmented region and

its interface. This highlights the remaining challenge in modeling verte-

bral augmentation at the continuum level: a method of representing the

dispersed cement augmentation outcomes.

5 | CONCLUSION

Overall, the modeling methods presented in this study were found

to provide accurate estimates of the stiffness of nonaugmented

human lumbar vertebrae. The predictive abilities of models of aug-

mented vertebrae were reduced, although considerable improve-

ments were seen over previous studies that used similar approaches.

Importantly, the models were able to represent the large range of

outcomes that occur following augmentation, suggesting that the

representation is sufficiently robust to examine a range of different

augmentation scenarios, including those where the stiffness follow-

ing augmentation is reduced. This ability will allow future studies to

determine which vertebrae are best suited to receiving the proce-

dure from a mechanical standpoint, based on their geometry and

material properties.
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