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Abstract

We consider isotropic Lévy processes on a compact Riemannian manifold, obtained

from an R
d -valued Lévy process through rolling without slipping. We prove that

the Feller semigroups associated with these processes extend to strongly continuous

contraction semigroups on L p, for 1 ≤ p < ∞. When p = 2, we show that these

semigroups are self-adjoint. If, in addition, the motion has a non-trivial Brownian

part, we prove that the generator has a discrete spectrum of eigenvalues and that the

semigroup is trace-class.

Keywords Riemannian manifold · Frame bundle · Connection · Horizontal vector

field · Lévy process · Lévy measure · Feller semigroup · Generator · Sobolev space ·
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Mathematics Subject Classification 2010 58J65 · 60G51 · 47D07 · 35P05 · 60H10 ·
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1 Introduction

The investigation of Lévy processes (essentially processes with stationary and inde-

pendent increments) has become a rich theme in modern probability theory. These

processes have a deep and interesting structure, there are wide-ranging applications,

and they have been found to be a useful class of driving noises for stochastic differ-

ential equations. Usually Lévy processes are considered as having Euclidean space

(or even the real line) as their state space, although Banach and Hilbert space valued
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processes are important for stochastic partial differential equations (see e.g. [22]). The

most intensively studied class of nonlinear state spaces for Lévy processes has been

Lie groups. Here, the notion of increment is defined using the group law and inverse

operation, so if 0 ≤ s < t , where the increment of the process X in Euclidean space

is X(t) − X(s), on a Lie group we instead consider X(s)−1 X(t). For a dedicated

monograph treatment of such processes, see Liao [18].

Having considered Lévy processes on Lie groups, the next obvious step is to move

to a Riemannian manifold. Indeed, arguably the most important Lévy process in

Euclidean space is Brownian motion, and Brownian motion on manifolds is a very

well developed theory in its own right (see e.g. Elworthy [10] and Hsu [15]). As its

generator is the Laplace–Beltrami operator and transition density is the heat kernel,

it is clear that this process is a natural expression of the geometry of the manifold.

For development of a more general theory of Lévy processes, we are hampered by the

fact that there is no obvious notion of increment on a manifold. When the space is a

symmetric space, there is an alternative point of view pioneered by Gangolli [11,12],

who used spherical functions to establish an analogue of the Lévy–Khintchine for-

mula. Using the fact that every symmetric space is a homogeneous space G/K of a

Lie group G, quotiented by a compact subgroup K , Applebaum [1] was able to realise

these processes as images of Lévy processes on G through the natural map (see [19]

for more recent developments).

Motivated in part by the results of [1], and also the Eels–Elworthy construction of

Brownian motion on a manifold by projection from the frame bundle, Applebaum and

Estrade ( [4]) constructed a process that they called a “Lévy process on a manifold”

and proved that it was a Feller–Markov process. The generic such process has the

structure of a Brownian motion that is interlaced with jumps along geodesics, which

are controlled by an isotropic Lévy measure. It is now more than twenty years since this

paper was published, and to the authors’ knowledge, there has been no further work

carried out on such processes since that time, other than the ergodic theoretic analysis

in Mohari [21]. In the current paper, we hope to start the process of resurrecting this

neglected area.

Since every Lévy process on a manifold is a Feller process, there is an associated

semigroup on the space of continuous functions vanishing at infinity, and the generator

is the sum of the Laplace–Beltrami operator and an integral superposition of jumps

along geodesics. Our first new result is to show that the semigroup also preserves

the L p space of the Riemannian volume measure. We are particularly interested in

the case p = 2, and here, we show that the semigroup (and hence its generator) is

self-adjoint. When there is a non-trivial Brownian motion component to the process,

we find that the generator has a discrete spectrum of non-positive eigenvalues. Under

the latter condition, we also prove that the semigroup is trace-class, and so the process

has a transition density/heat kernel.

2 Lévy Processes onManifolds

Let M be a compact, connected, d-dimensional Riemannian manifold of dimension

d ≥ 1, with Riemannian measure μ. Let O M denote the corresponding bundle of
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orthonormal frames, a principle O(d)-bundle over M . The Levi-Civita connection

induces a decomposition

Tr O M ∼= Hr O M ⊕ Vr O M, ∀r ∈ O M

of each tangent space of O M into vertical and horizontal subspaces, and, writing

π : O M → M for the projection map, we have that for each p ∈ M and r ∈ O Mp,

dπr vanishes on Vr O M and defines a linear isomorphism Hr O M ∼= Tp M , for each

p ∈ M and r ∈ O Mp. Moreover, O M may be given the structure of a Riemannian

manifold in such a way that dπr : Hr O M → Tp M is an isometric isomorphism.1

The corresponding Riemannian measure μ̃ is sometimes referred as Liouville measure.

Observe that

μ = μ̃ ◦ π−1. (2.1)

One can easily show that O M is compact, using the fact that both its base manifold

and structure group are compact. As such, both μ and μ̃ are finite measures.

The canonical horizontal fields consist of a family of vector fields {Hx : x ∈ R
d}

on O M , defined by

Hx (r) = r(x)∗, ∀r ∈ O M, x ∈ R
d ,

where ∗ denotes horizontal lift. Since O M is compact, these vector fields are complete;

we write Exp(t Hx ) for the associated flows of diffeomorphisms. These flows are

related to the Riemann exponential map by

π(Exp(Hx )(r)) = expp r(x), ∀x ∈ R
d , p ∈ M, r ∈ O Mp. (2.2)

For standard basis vectors ei of R
d , we use the abbreviation Hei

= Hi . The hori-

zontal Laplacian

�H =
d

∑

i=1

H2
i ,

on O M is related to the Laplace–Beltrami operator � on M by

� f (p) = �H ( f ◦ π)(r), ∀ f ∈ C∞(M), p ∈ M, r ∈ O Mp;

for more details see Hsu [15] Chapter 3.

Let Y be an R
d -valued Lévy process. It is shown in Applebaum and Estrade [4]

that the Marcus canonical SDE on O M

d R(t) =
d

∑

j=1

H j (R(t−)) ⋄ dY j (t), t ≥ 0; R(0) = r (a.s.), (2.3)

1 See Elworthy [10] Chapter III Section 4.
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has a unique, càdlàg solution R that is a Feller process. As in [4], we will call processes

obtained this way horizontal Lévy processes. We also impose the assumption from [4]

that the Lévy process Y is isotropic, in that its law is O(d)-invariant. By Corollary

2.4.22 on page 128 of [2], the Lévy characteristics of Y then take the form (0, aI , ν),

where a ≥ 0, and ν is O(d)-invariant. Then, by Theorem 3.1 of [4], the process

X = π(R) obtained by projection onto the base manifold is also a Feller process. The

infinitesimal generators of R and X are

L =
1

2
a�H + LJ (2.4)

and

A =
1

2
a� + AJ , (2.5)

respectively, where the jump parts LJ and AJ are given by

LJ f (r) =
∫

Rd\{0}

{

f (Exp(Hx )(r)) − f (r) − 1|x |<1 Hx f (r)
}

ν(dx),

∀ f ∈ C∞(O M), r ∈ O M (2.6)

and

AJ f (p) =
∫

Tp M\{0}

{

f (expp y) − f (p) − 1|y|<1 y f (p)
}

νp(dx),

∀ f ∈ C∞(M), p ∈ M .

Here, the family of Lévy measures {νp : p ∈ M} act on each tangent space Tp M and

are defined by νp = ν ◦ r−1 for any frame r ∈ O Mp. The two generators also satisfy

A f (p) = L ( f ◦ π)(r), ∀ f ∈ C∞(M), p ∈ M, r ∈ O Mp.

Observe that since ν is O(d)-invariant, the right hand side of (2.6) is invariant under

the change of variable x → −x , and hence for all f ∈ C∞(O M) and r ∈ O M ,

LJ f (r) =
∫

Rd\{0}

{

f (Exp(H−x )(r)) − f (r) + 1|x |<1 Hx f (r)
}

ν(dx), (2.7)

where we have used the fact that H−x f = −Hx f . Summing (2.6) and (2.7) and

dividing by two,

LJ f (r) =
1

2

∫

Rd\{0}

{

f
(

Exp(Hx )(r)
)

− 2 f (r) + f (Exp(H−x )(r))
}

ν(dx)

(2.8)
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for all f ∈ C∞(O M) and r ∈ O M . It follows that

AJ f (p) =
1

2

∫

Tp M\{0}

[

f (expp y) − 2 f (p) + f (expp(−y))
]

νp(dy) (2.9)

for each f ∈ C∞(M) and p ∈ M . Note the analogous expression (5.4.16) in [3] for

symmetric Lévy motion on a Lie group.

3 Lp Properties of the Semigroup

We now turn our attention to the Feller semigroups associated with R and X . These

consist of families of contraction operators (St , t ≥ 0) and (Tt , t ≥ 0) acting on the

Banach spaces C(O M) and C(M) by

St f (r) = E
(

f (R(t))|R(0) = r
)

, ∀ f ∈ C(O M), r ∈ O M, t ≥ 0,

and

Tt f (p) = E
(

f (X(t))|X(0) = p
)

, ∀ f ∈ C(M), p ∈ M, t ≥ 0.

Since X = π(R), it is immediate that

Tt f (p) = St ( f ◦ π)(r) (3.1)

for all f ∈ C(M), p = π(r) ∈ M , and t ≥ 0.

Any Riemannian manifold has a natural L p structure arising from its Rieman-

nian measure, and so we may consider the spaces L p(O M):=L p(O M, μ̃, R) and

L p(M):=L p(M, μ, R) for 1 ≤ p ≤ ∞. For p < ∞, we prove that (St , t ≥ 0) and

(Tt , t ≥ 0) extend to strongly continuous contraction semigroups on these spaces, and

that they are self-adjoint when p = 2.

We begin by considering the semigroup (St , t ≥ 0) associated with the horizontal

process R; analogous results for (Tt , t ≥ 0) are then obtained by projection down onto

M .

Theorem 3.1 For all 1 ≤ p < ∞, (St , t ≥ 0) extends to a C0-semigroup of contrac-

tions on L p(O M).

Proof Let qt (·, ·) denote the transition measure of (St , t ≥ 0), so that

St f (r) =
∫

O M

f (u)qt (r , du), ∀t ≥ 0, f ∈ C(O M), r ∈ O M .

The horizontal fields Hx are divergence free for all x ∈ R
d (Proposition 4.1 of [20]),

and so by Theorem 3.1 of [5], μ̃ is invariant for St , in the sense that

∫

O M

(St f )(r)μ̃(dr) =
∫

O M

f (r)μ̃(dr), ∀t ≥ 0, f ∈ C(O M).
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Therefore, by Jensen’s inequality,

‖St f ‖p
p =

∫

O M

∣

∣

∣

∣

∫

O M

f (u)qt (r , du)

∣

∣

∣

∣

p

μ̃(dr) ≤
∫

O M

∫

O M

| f (u)|pqt (r , du)μ̃(dr)

=
∫

O M

(St | f |p)(r)μ̃(dr) =
∫

O M

| f (r)|pμ̃(dr) = ‖ f ‖p
p

for all t ≥ 0 and f ∈ C(O M). Each St has domain C(O M), which is a dense subspace

of L p(O M) for all 1 ≤ p < ∞. It follows that each St extends to a unique contraction

defined on the whole of L p(O M), which we also denote by St . By continuity, the

semigroup property

St Ss = St+s, ∀s, t ≥ 0

continues to hold in this larger domain. It remains to prove strong continuity, i.e. that

lim
t→0

‖St f − f ‖p = 0 (3.2)

for all f ∈ L p(O M). By density of C(O M) in L p(O M), it is sufficient to verify

this for f ∈ C(O M). The map t → St is strongly continuous in C(O M), and so

limt→0 ‖St f − f ‖∞ = 0 for all f ∈ C(O M). Since (O M,B(O M), μ̃) is a finite

measure space,

‖St f − f ‖p ≤ μ̃(O M)
1
p ‖St f − f ‖∞,

for all f ∈ C(O M). Equation (3.2) now follows. ⊓⊔

Remark 3.2 The final part of the above proof applies more generally, in that if X is

a compact space equipped with a finite measure m, and if (Pt , t ≥ 0) is a Feller

semigroup on X , then (Pt , t ≥ 0) is strongly continuous in L p(X , m).

Projection down onto the base manifold yields the following.

Theorem 3.3 For all 1 ≤ p < ∞, (Tt , t ≥ 0) extends to a strongly continuous

semigroup of contractions on L p(M).

Proof Let 1 ≤ p < ∞. By Eqs. (2.1) and (3.1), many of the conditions we must check

follow from their analogues on the frame bundle. Indeed, for all f ∈ C∞(M) and

t ≥ 0, we have

‖Tt f ‖p

L p(M)
=

∫

M

|Tt f (p)|pdμ =
∫

O M

|St ( f ◦ π)(r)|pdμ̃ = ‖St ( f ◦ π)‖p

L p(O M)
,

and so, using the fact that St is a contraction of L p(O M),

‖Tt f ‖L p(M) = ‖St ( f ◦ π)‖L p(O M) ≤ ‖ f ◦ π‖L p(O M) = ‖ f ‖L p(M).

123



Journal of Theoretical Probability

Hence, Tt extends to a contraction of L p(M) for all t ≥ 0. It is clear by continuity

that the semigroup property continues to hold on this larger domain, as does Eq. (3.1).

Strong continuity follows by Remark 3.2, or alternatively can be seen by the observa-

tion

‖Tt f − f ‖L p(M) = ‖St ( f ◦ π) − f ◦ π‖L p(O M) ∀ f ∈ L p(M).

Thus, (Tt , t ≥ 0) extends to a contraction semigroup on L p(M) for all 1 ≤ p < ∞.

⊓⊔

We continue to denote the generators of (St , t ≥ 0) and (Tt , t ≥ 0) by L and A ,

respectively. Note that by Lemma 6.1.14 of [9], L and A are both closed operators

on L p(O M).

4 The Case p = 2

For the remainder of this paper, we focus on the case p = 2. Our aim in this section

is to prove that the semigroups (St , t ≥ 0) and (Tt , t ≥ 0) are self-adjoint semigroups

on L2(O M) and L2(M), respectively. By a standard result from semigroup theory, it

will follow that L and A are self-adjoint linear operators.

Let us first impose the assumption that the Lévy measure ν is finite. In this case,

AJ is the generator of a compound Poisson process on M (see [4]).

Lemma 4.1 If ν is finite, then L is a self-adjoint operator on L2(O M).

Proof Since ν is finite, LJ is a bounded linear operator on L2(O M), and so Eq. (2.8)

extends by continuity to the whole of L2(O M). It follows that L is a bounded per-

turbation of the horizontal Laplacian, and so its domain is Dom(�H ). Clearly, L is

symmetric on this domain.

Since L is a closed, symmetric operator, by Theorem X.1 on page 136 of Reed

and Simon [23], the spectrum σ(L ) of L is equal to one of the following:

1. The closed upper-half plane.

2. The closed lower-half plane.

3. The entire complex plane.

4. A subset of R.

Moreover, L is self-adjoint if and only if Case 4 holds. By Theorem 8.2.1 of [9],

σ(L ) ⊆ (−∞, 0], (4.1)

from which we see that Case 4 is the only option. ⊓⊔

We now drop the assumption that ν is finite.

Theorem 4.2 (St , t ≥ 0) and (Tt , t ≥ 0) are self-adjoint semigroups of operators on

L2(O M) and L2(M), respectively.
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Proof We will find it convenient to rewrite the process R(t) (with initial condition

R(0) = r (a.s.)) as the action of a stochastic flow ηt on the point r , as in [4]. Then, as

shown in Section 4 of [4], there is a sequence (η
(n)
t ) of stochastic flows on O M such

that each η
(n)
t is the flow of a horizontal Lévy process with finite Lévy measure, and

lim
n→∞

η
(n)
t (r) = ηt (r) (a.s.),

for all r ∈ O M and t ≥ 0.

Let (S
(n)
t , t ≥ 0)be the transition semigroup corresponding to the flow (η

(n)
t , t ≥ 0),

for each n ∈ N. It is a standard result in semigroup theory that a semigroup of

operators on a Hilbert space is self-adjoint if and only if its generator is self-adjoint.2

By Lemma 4.1, (S
(n)
t , t ≥ 0) is a self-adjoint semigroup on L2(O M), for all n ∈ N.

By dominated convergence, for each f ∈ C(O M) and t ≥ 0, we have

lim
n→∞

∥

∥

∥
St f − S

(n)
t f

∥

∥

∥

2

L2(O M)
= lim

n→∞

∫

O M

∣

∣

∣
E

(

f (ηt (r)) − f
(

η
(n)
t (r)

))
∣

∣

∣

2
μ̃(dr) = 0.

Then, by the density of C(O M) in L2(O M), and a standard ǫ/3 argument (using the

fact that S
(n)
t is an L2-contraction), we deduce that for all f ∈ L2(O M),

lim
n→∞

∥

∥

∥
St f − S

(n)
t f

∥

∥

∥

L2(O M)
= 0

So, St is the strong limit of a sequence of bounded self-adjoint operators, and hence

is itself self-adjoint. To see that (Tt , t ≥ 0) is also self-adjoint, let t ≥ 0 and f , g ∈
L2(M), and observe that by (2.1) and (3.1),

〈Tt f , g〉L2(M) = 〈St ( f ◦ π), g ◦ π〉L2(O M) = 〈 f ◦ π, St (g ◦ π)〉L2(O M)

= 〈 f , Tt g〉L2(M).

⊓⊔

By Theorem 4.6 of Davies [8], −L and −A are positive self-adjoint operators on

L2(O M) and L2(M), respectively.

5 Spectral Properties of the Generator

For this final section, we restrict attention to the case in which X has non-trivial

Brownian part (that is, when a > 0) and prove some spectral results that are already

well-established for the case of Brownian motion and the Laplace–Beltrami operator

�. For example, it is well known that � has a discrete spectrum of eigenvalues. Each

eigenspace is finite dimensional, and the eigenvectors may be normalised so as to

form an orthonormal basis of L2(M) (see for example Lablée [17] Theorem 4.3.1).

2 See for example Goldstein [13] page 31.
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Moreover, such an eigenbasis (ψn) can be ordered so that the corresponding sequence

of eigenvalues decreases to −∞. For each n ∈ N, write −μn for the eigenvalue

associated with ψn , so that the real sequence (μn) satisfies

0 ≤ μ1 ≤ μ2 ≤ · · · ≤ μn → ∞ as n → ∞. (5.1)

We prove an analogous result for A , using a generalisation of the approach used by

Lablée [17].

Theorem 5.1 Let X be an isotropic Lévy process on M with non-trivial Brownian part.

Then, its generator A has a discrete spectrum

σ(A ) = {−λn : n ∈ N},

where (λn) is a sequence of real numbers satisfying

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn → ∞ as n → ∞. (5.2)

Moreover, each of the associated eigenspaces is finite dimensional, and there is a cor-

responding sequence (φn) of eigenvectors that forms an orthonormal basis of L2(M).

Remark 5.2 We will generally assume that (5.2) is listed with multiplicity, so that for

all n ∈ N, −λn is the eigenvalue associated with φn .

Proof Without loss of generality, assume that a = 2 so that

A = � + AJ , (5.3)

where AJ is given by (2.9). Both A and AJ are generators of self-adjoint contraction

semigroups, and hence, −A and −AJ are positive, self-adjoint operators.3 For f , g ∈
Dom A , define

〈 f , g〉A = 〈 f , g〉2 − 〈A f , g〉2. (5.4)

The operator I − A is also positive and self-adjoint, and so by Theorem 11 of [7],

there is a unique positive self-adjoint operator B such that B2 = I − A . By (4.1),

I − A is invertible, and hence B is injective. Moreover,

〈 f , g〉A = 〈B f , Bg〉2, ∀ f , g ∈ Dom A ,

from which it is easy4 to see that 〈·, ·〉A defines an inner product on Dom A .

Let V denote the completion of C∞(M) with respect to 〈·, ·〉A . This is a “Lévy

analogue” of the Sobolev space H1(M) considered in Lablée [17] or Grigor’yan [14],

where the completion is instead taken with respect to the Sobolev inner product

〈 f , g〉H1 = 〈 f , g〉2 − 〈� f , g〉2, ∀ f , g ∈ C∞(M). (5.5)

3 See Theorem 4.6 on page 99 of Davies [8].

4 Bilinearity and symmetry are clear, and positive-definiteness is immediate by injectivity of B.
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In the case when M = R
d , spaces of this type are discussed in Section 3.10 of Jacob

[16], who refers to them as anisotropic Sobolev spaces. By (5.3), we have

〈 f , g〉A = 〈 f , g〉H1 − 〈AJ f , g〉2 ∀ f , g ∈ C∞(M),

and since −AJ is a positive operator, it follows that ‖ f ‖A ≥ ‖ f ‖H1 for all f ∈
C∞(M). Similarly, (5.5) implies ‖ f ‖H1 ≥ ‖ f ‖2 for all f ∈ C∞(M). Hence,

V ⊆ H1(M) ⊆ L2(M),

and

‖ f ‖2 ≤ ‖ f ‖H1 ≤ ‖ f ‖A , ∀ f ∈ V . (5.6)

In particular, the inclusion V →֒ H1(M) is bounded. By Rellich’s theorem5, the

inclusion H1(M) →֒ L2(M) is compact, and hence so is the inclusion i : V →֒
L2(M) (it is a composition of a compact operator with a bounded operator).

Let f ∈ L2(M) and consider l ∈ V ∗ given by

l(g) = 〈 f , g〉2 ∀g ∈ V .

For all g ∈ V , we have by the Cauchy–Schwarz inequality

|l(g)| ≤ ‖ f ‖2‖g‖2 ≤ ‖ f ‖2‖g‖A .

Hence,

‖l‖V ∗ ≤ ‖ f ‖2, (5.7)

where ‖ · ‖V ∗ denotes the norm of V ∗. By the Riesz representation theorem, there is

a unique v f ∈ V for which

〈v f , g〉A = l(g), ∀g ∈ V .

Moreover,

‖v f ‖A = sup
g∈V \{0}

|〈v f , g〉A |
‖g‖A

= ‖l‖V ∗ .

Define T : L2(M) → V by T f = v f for all f ∈ L2(M). Then,

〈T f , g〉A = 〈 f , g〉2 ∀ f ∈ L2(M), g ∈ V , (5.8)

5 See Lablée [17] page 68.
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and T is bounded, since by (5.7),

‖T f ‖A = ‖l‖V ∗ ≤ ‖ f ‖2,

for all f ∈ L2(M). By (5.6),

‖T f ‖A ≤ ‖ f ‖A ∀ f ∈ V ,

and so T |V is a bounded operator on V . We also have

T |V = T ◦ i,

and, since i is compact, so too is T |V . By symmetry of inner products and Eq. (5.8),

T is self-adjoint. Equation (5.8) also implies that T |V is a positive operator, and that

0 is not an eigenvalue of T |V (indeed, if T f = 0, then ‖ f ‖2
2 = 〈T f , f 〉A = 0).

By the Hilbert-Schmidt theorem6, the spectrum of T |V consists of a sequence (αn)

of positive eigenvalues that decrease to 0. Each eigenspace is finite dimensional, and

the corresponding eigenvectors can be normalised so as to form an orthonormal basis

(vn) of (V , 〈·, 〉A ).

In fact, it is easy to see from the definition of 〈·, ·〉A that

T = (I − A )−1, (5.9)

and hence, the spectrum of A is just {1 − α−1
n : n ∈ N}, with corresponding eigen-

vectors still given by the vn . Moreover, we may scale these eigenvectors so that they

are L2-orthonormal. Indeed, for each n ∈ N, let

φn =
1

√
αn

vn .

Then, for all m, n ∈ N,

〈φn, φm〉2 =
1

√
αnαm

〈T vn, vm〉A =
√

αn

αm

〈vn, vm〉A = δm,n .

By denseness of V in L2(M), the φn form an orthonormal basis of L2(M).

Finally, let λn = α−1
n − 1 for each n ∈ N. Then, (λn) satisfies Eq. (5.2), since −A

is a positive operator, and (αn) is a positive sequence that decreases to 0. ⊓⊔

It is well known that the heat semigroup (Kt , t ≥ 0) associated with Brownian

motion on a compact manifold is trace-class and possesses an integral kernel. The

final two results of this section extend this to the Lévy semigroup (Tt , t ≥ 0), subject

to the assumption that a > 0.

6 See Simon [24] Section 3.2.

123



Journal of Theoretical Probability

Theorem 5.3 Let X be an isotropic Lévy process on M with non-trivial Brownian part.

Then, the transition semigroup operator Tt is trace-class for all t > 0.

Proof We again assume a = 2, so that A has the form (5.3). The case for general

a > 0 is very similar.

Let (λn) and (φn) be as in the statement of Theorem 5.1, and let (μn) and (ψn) be

the analogous sequences for �, so that ψn is the nth eigenvector of �, with associated

eigenvalue −μn .

Let (Kt , t ≥ 0) denote the heat semigroup associated with Brownian motion on M .

This operator semigroup is known to possess many wonderful properties, including

being trace-class. It follows that

tr Kt =
∞
∑

n=1

〈Ktψn, ψn〉 =
∞
∑

n=1

e−tμn < ∞ (5.10)

for all t > 0. As an element of [0,∞], the trace of each Tt is given by

tr Tt =
∞
∑

n=1

〈Ttφn, φn〉 =
∞
∑

n=1

e−tλn . (5.11)

By the min-max principle for self-adjoint semibounded operators,7 we have for all

n ∈ N,

λn = − sup
f1,..., fn−1∈C∞(M)

[

inf
f ∈{ f1,..., fn−1}⊥, ‖ f ‖=1

〈A f , f 〉
]

,

and

μn = − sup
f1,..., fn−1∈C∞(M)

[

inf
f ∈{ f1,..., fn−1}⊥, ‖ f ‖=1

〈� f , f 〉
]

.

As noted in the proof of Theorem 5.1, for all f ∈ C∞(M),

−〈A f , f 〉 ≥ −〈� f , f 〉 ≥ 0,

and hence λn ≥ μn for all n ∈ N. But then, e−tλn ≤ e−tμn for all t > 0 and n ∈ N,

and so, comparing (5.11) with (5.10),

tr Tt < tr Kt < ∞

for all t > 0. ⊓⊔

By Lemma 7.2.1 of Davies [9], we immediately obtain the following.

7 Simon [24] page 666.
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Corollary 5.4 Let X be an isotropic Lévy process on M with non-trivial Brownian part.

Then, its semigroup (Tt , t ≥ 0) has a square-integrable kernel. That is, for all t > 0

there is a map pt ∈ L2(M × M) such that

Tt f (x) =
∫

M

f (y)pt (x, y)μ(dy)

for all f ∈ L2(M) and x ∈ M. Moreover, we have the following L2-convergent

expansion:

pt (x, y) =
∞
∑

n=1

e−λn tφn(x)φn(y), ∀x, y ∈ M, t ≥ 0.

It is natural to enquire as to whether similar results hold in the pure jump case when

a = 0 (perhaps under some further condition on ν)? When M is a compact symmetric

space, we can find an orthonormal basis of eigenfunctions that are common to the

L2–semigroups associated with all isotropic Lévy processes (see the results in section

5 of [6]) . The key tool here, which enables a precise description of the spectrum

of eigenvalues, is Gangolli’s Lévy–Khinchine formula [11]. In the general case, as

considered here, such methods are not available, and we are unable to make further

progress at the present time.
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