The
University
NGy Of
&% Sheffield.

This is a repository copy of Approximate counting in SMT and value estimation for
probabilistic programs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156434/

Version: Accepted Version

Proceedings Paper:

Chistikov, D., Dimitrova, R. and Majumdar, R. (2015) Approximate counting in SMT and
value estimation for probabilistic programs. In: Baier, C. and Tinelli, C., (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 21st International Conference,
TACAS 2015. Tools and Algorithms for the Construction and Analysis of Systems, 11-18
Apr 2015, London, UK. Lecture Notes in Computer Science (9035). Springer , pp.
320-334. ISBN 9783662466803

https://doi.org/10.1007/978-3-662-46681-0_26

This is a post-peer-review, pre-copyedit version of an article published in TACAS 2015.
The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-662-46681-0_26

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Approximate Counting in SMT and
Value Estimation for Probabilistic Programs

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

Max Planck Institute for Software Systems (MPI-SWS), Germany
{dch,rayna,rupak}@mpi-sws.org

Abstract. #SMT, or model counting for logical theories, is a well-
known hard problem that generalizes such tasks as counting the number
of satisfying assignments to a Boolean formula and computing the vol-
ume of a polytope. In the realm of satisfiability modulo theories (SMT)
there is a growing need for model counting solvers, coming from sev-
eral application domains (quantitative information flow, static analysis
of probabilistic programs). In this paper, we show a reduction from an
approximate version of #SMT to SMT.

We focus on the theories of integer arithmetic and linear real arithmetic.
We propose model counting algorithms that provide approximate solu-
tions with formal bounds on the approximation error. They run in poly-
nomial time and make a polynomial number of queries to the SMT solver
for the underlying theory, exploiting “for free” the sophisticated heuris-
tics implemented within modern SMT solvers. We have implemented
the algorithms and used them to solve a value estimation problem for a
model of loop-free probabilistic programs with nondeterminism.

1 Introduction

Satisfiability modulo theories (SMT) is nowadays ubiquitous, and the research
landscape is not only enjoying the success of existing SMT solvers, but also
generating demand for new features. In particular, there is a growing need for
model counting solvers; for example, questions in quantitative information flow
and in static analysis of probabilistic programs are naturally cast as instances
of model counting problems for appropriate logical theories [I5I25128].

We define the #SMT problem that generalizes several model counting ques-
tions relative to logical theories, such as computing the number of satisfying
assignments to a Boolean formula (#SAT) and computing the volume of a
bounded polyhedron in a finite-dimensional real vector space. Specifically, to de-
fine model counting modulo a measured theory, first suppose every variable in a
logical formula comes with a domain which is also a measure space. Assume that,
for every logical formula ¢ in the theory, the set of its models [¢] is measurable
with respect to the product measure; the model counting (or #SMT) problem
then asks, given ¢, to compute the measure of [¢], called the model count of .

In our work we focus on the model counting problems for theories of bounded
integer arithmetic and linear real arithmetic. These problems are complete for
the complexity class #P, so fast exact algorithms are unlikely to exist.

2 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

We extend to the realm of SMT the well-known hashing approach from the
world of #SAT, which reduces approzrimate versions of counting to decision
problems. From a theoretical perspective, we solve a model counting problem
with a resource-bounded algorithm that has access to an oracle for the decision
problem. From a practical perspective, we show how to use unmodified existing
SMT solvers to obtain approximate solutions to model-counting problems. This
reduces an approximate version of #SMT to SMT.

Specifically, for integer arithmetic (not necessarily linear), we give a random-
ized algorithm that approximates the model count of a given formula ¢ to within
a multiplicative factor (1+¢) for any given € > 0. The algorithm makes O(Z |¢|)
SMT queries of size at most O(Z; [¢[?) where |¢| is the size of ¢.

For linear real arithmetic, we give a randomized algorithm that approximates
the model count with an additive error yN, where N is the volume of a box
containing all models of the formula, and the coefficient ~y is part of the input.
The number of steps of the algorithm and the number of SMT queries (modulo
the combined theory of integer and linear real arithmetic) are again polynomial.

As an application, we show how to solve the value estimation problem [28]
for a model of loop-free probabilistic programs with nondeterminism.

Techniques. Approximation of #P functions by randomized algorithms has a
rich history in complexity theory [31I34I21120]. Jerrum, Valiant, and Vazirani [21]
described a hashing-based BPPNP procedure to approximately compute any #P
function, and noted that this procedure already appeared implicitly in previous
papers by Sipser [30] and Stockmeyer [31]. The procedure works with encoded
computations of a Turing machine and is thus unlikely to perform well in prac-
tice. Instead, we show a direct reduction from approximate model counting to
SMT solving, which allows us to retain the structure of the original formula.
An alternate approach could eagerly encode #SMT problems into #SAT, but
experience with SMT solvers suggests that a “lazy” approach may be preferable
for some problems.

For the theory of linear real arithmetic, we also need an ingredient to handle
continuous domains. Dyer and Frieze [I1] suggested a discretization that intro-
duces bounded additive error; this placed approximate volume computation for
polytopes—or, in logical terms, approximate model counting for quantifier-free
linear real arithmetic—in #P. Motivated by the application in the analysis of
probabilistic programs, we extend this technique to handle formulas with existen-
tially quantified variables. To this end, we prove a geometric result that bounds
the effect of projections: this gives us an approximate model counting proce-
dure for existentially quantified linear arithmetic formulas. Note that applying
quantifier elimination as a preprocessing step may make the resulting formula
exponential; instead, our approach works directly on the original formula that
contains existentially quantified variables.

We have implemented our algorithm on top of the Z3 SMT solver and applied
it to formulas encoding the value estimation problem for probabilistic programs.
Our initial experience suggests that simple randomized algorithms using off-the-
shelf SMT solvers can be reasonably effective.

Approximate Counting in SMT 3

Related work. #SMT is a well-known hard problem whose instances have
been studied before, e. g., in volume computation [I1], in enumeration of lattice
points in integer polyhedra [I], and as #SAT [17]. Indeed, very simple sub-
problems, such as counting the number of satisfying assignments of a Boolean
formula or computing the volume of a union of axis-parallel rectangles in R™ are
already #P-hard (see Section [2| below).

Existing techniques for #SMT either incorporate model counting primi-
tives into propositional reasoning [26/35] or are based on enumerative combi-
natorics [23l25/15]. Typically, exact algorithms [23126]T5] are exponential in the
worst case, whereas approximate algorithms [25I35] lack provable performance
guarantees. In contrast to exact counting techniques, our procedure is easily im-
plementable and uses “for free” the sophisticated heuristics built in off-the-shelf
SMT solvers. Although the solutions it produces are not exact, they provably
meet user-provided requirements on approximation quality. This is achieved by
extending the hashing approach from SAT [I6IT7U7IT3] to the SMT context.

A famous result of Dyer, Frieze, and Kannan [I2] states that the volume of a
convex polyhedron can be approximated with a multiplicative error in probabilis-
tic polynomial time (without the need for an SMT solver). In our application,
analysis of probabilistic programs, we wish to compute the volume of a projection
of a Boolean combination of polyhedra; in general, it is, of course, non-convex.
Thus, we cannot apply the volume estimation algorithm of [12], so we turn to the
“generic” approximation of #P using an NP oracle instead. Our #SMT pro-
cedure for linear real arithmetic allows an additive error in the approximation;
it is unknown if the exact volume of a polytope has a small representation [IT].

An alternative approach to approximate #SMT is to apply Monte Carlo
methods for volume estimation. They can easily handle complicated measures
for which there is limited symbolic reasoning available. Like the hashing tech-
nique, this approach is also exponential in the worst case [20]: suppose the volume
in question, p, is very small and the required precision is a constant multiple of p.
In this case, Chernoff bound arguments would suggest the need for Q(1%) sam-
ples; the hashing approach, in contrast, will perform well. So, while in “regular”
settings (when p is non-vanishing) the Monte Carlo approach performs better,
“singular” settings (when p is close to zero) are better handled by the hashing
approach. The two techniques, therefore, are complementary to each other.

Contributions. We extend, from SAT to SMT, the hashing approach to ap-
proximate model counting:

1. We formulate the notion of a measured theory (Section that gives a unified
framework for model-counting problems.

2. For the theory of bounded integer arithmetic, we provide a direct reduction
(Theorem [1]in Section [2)) from approximate counting to SMT.

3. For the theory of bounded linear real arithmetic, we give a technical con-
struction (Lemma 1| in subsection that lets us extend the results of
Dyer and Frieze to the case when the polytope is given as a projection of
a Boolean combination of polytopes; this leads to an approximate model
counting procedure for this theory (Theorem [2in Section [2)).

4 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

4. As an application, we solve the value estimation problem for small loop-free
probabilistic programs with nondeterminism (Section .
An extended version of the paper is available as [§].

2 The #SMT Problem

We present a framework for a uniform treatment of model counting both in
discrete theories like SAT (where it is literally counting models) and in linear
real arithmetic (where it is really volume computation for polyhedra). We then
introduce the notion of approximation and show an algorithm for approximate
model counting by reduction to SMT.

Preliminaries: Counting Problems and #P. A relation R C ¥* x ¥* is
a p-relation if (1) there exists a polynomial p(n) such that if (z,y) € R then
ly| = p(Jz|) and (2) the predicate (x,y) € R can be checked in deterministic
polynomial time in the size of z. Intuitively, a p-relation relates inputs z to
solutions y. It is easy to see that a decision problem L belongs to NP if there is
a p-relation R such that L = {x | Jy.R(z,y)}.

A counting problem is a function that maps ¥* to N. A counting problem
f: X" — N belongs to the class #P if there exists a p-relation R such that
f(x) = |[{y | R(z,y)}|, i-e., the class #P consists of functions that count the
number of solutions to a p-relation [33]. Completeness in #P is with respect to
Turing reductions; the same term is also (ab)used to encompass problems that
reduce to a fixed number of queries to a #P function (see, e.g., [11]).

#SAT is an example of a #P-complete problem: it asks for the number of
satisfying assignments to a Boolean formula in CNF [33]. Remarkably, #P char-
acterizes the computational complexity not only of “discrete” problems, but also
of problems involving real-valued variables: approximate volume computation
(with additive error) for bounded rational polyhedra in R* is #P-complete [11].

Measured Theories and #SMT. Suppose T is a logical theory. Let ¢(x)
be a formula in this theory with free first-order variables x = (z1,...,z). As-
sume that 7 comes with a fixed interpretation, which specifies domains of the
variables, denoted Dy, ..., D, and assigns a meaning to predicates and function
symbols in the signature of 7. Then a tuple a = (ay,...,a;) € D1 X ... X Dg
is called a model of ¢ if the sentence p(ay,...,ax) holds, i.e., if a =7 p(z). We
denote the set of all models of a formula ¢(z) by [p]; the satisfiability problem
for T asks, for a formula ¢ given as input, whether [¢] # 0.

Consider the special cases of (propositional) SAT and linear real arithmetic.
For SAT, atomic predicates are of the form x; = b, for b € {0,1}, the domain
D; of each z; is {0,1}, and formulas are propositional formulas in conjunctive
normal form. For linear real arithmetic, atomic predicates are of the form ¢z +
..tz < d, for ey, ..., cx, d € R, the domain D; of each x; is R, and formulas
are conjunctions of atomic predicates. Sets [¢] in these cases are the set of
satisfying assignments and the polyhedron itself, respectively.

Suppose the domains D1, ..., Dy given by the fixed interpretation are mea-
sure spaces: each D; is associated with a o-algebra F; C 2P and a measure

Approximate Counting in SMT 5

Wi+ F; — R. This means, by definition, that F; and p; satisfy the following
properties: F; contains () and is closed under complement and countable unions,
and p; is non-negative, assigns 0 to (), and is o-additive.

In our special cases, these spaces are as follows. For SAT, each F; is the set
of all subsets of D; = {0,1}, and ;(A) is simply the number of elements in A.
For linear real arithmetic, each JF; is the set of all Borel subsets of D; = R, and
w; is the Lebesgue measure.

Assume that each measure p; is o-finite, that is, the domain D is a countable
union of measurable sets (i.e., of elements of F;, and so with finite measure
associated with them). This condition, which holds for both special cases, implies
that the Cartesian product Dy X ... x Dy is measurable with respect to a unique
product measure p, defined as follows. A set A C Dy x ... x Dy is measurable
(that is, p assigns a value to A) if and ounly if A is an element of the smallest
o-algebra that contains all sets of the form A; x ... x Ay, with A; € F; for all
i. For all such sets, it holds that pu(A4; X ... X Ag) = p1(A1) ... ux(Ag).

In our special cases, the product measure u(A) of a set A is the number of
elements in A C {0,1}* and the volume of A C R*, respectively.

We say that the theory T is measured if for every formula ¢(x) in 7 with
free (first-order) variables x = (21, ..., xy) the set [¢] is measurable. We define
the model count of a formula ¢ as mc(¢) = u([¢]). Naturally, if the measures in
a measured theory can assume non-integer values, the model count of a formula
is not necessarily an integer. With every measured theory we associate a model
counting problem, denoted #SMT[T]: the input is a logical formula ¢(x) in T,
and the goal is to compute the value mc(yp).

The #SAT and volume computation problems are just special cases as in-
tended, since mc(yp) is equal to the number of satisfying assignments of a Boolean
formula and to the volume of a polyhedron, respectively.

Approximate Model Counting. We now introduce approzimate #SMT and
show how approximate #SMT reduces to SMT. For our purposes, a randomized
algorithm is an algorithm that uses internal coin-tossing. We always assume,
whenever we use the term, that, for each possible input = to A, the overall
probability, over the internal coin tosses r, that A outputs a wrong answer is at
most 1/4. (This error probability 1/4 can be reduced to any smaller « > 0, by
taking the median across O(log 1) independent runs of A.)

We say that a randomized algorithm A approzimates a real-valued functional
problem C: ¥* — R with an additive error if A takes as input an z € ¥* and a
rational number v > 0 and produces an output A(z,~) such that

PrllA(e,7) — Cla)| < yU()] > 3/4,

where U: ¥* — R is some specific and efficiently computable upper bound on
the absolute value of C(x), i.e., |C(z)] < U(x), that comes with the problem C.
Similarly, A approzimates a (possibly real-valued) functional problem C: ¥* —
R with a multiplicative error if A takes as input an x € X* and a rational number
¢ > 0 and produces an output A(z,) such that

Prl(1+e)'C(z) < A(z,e) < (1 +¢)C(x)] > 3/4.

6 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

1 1

The computation time is usually considered relative to || +~~* or || +&~ 1, re-
spectively (note the inverse of the admissible error). Polynomial-time algorithms
that achieve approximations with a multiplicative error are also known as fully
polynomial-time randomized approximation schemes (FPRAS) [21].
Algorithms can be equipped with oracles solving auxiliary problems, with
the intuition that an external solver (say, for SAT) is invoked. In theoretical
considerations, the definition of the running time of such an algorithm takes into
account the preparation of queries to the oracle (just as any other computation),
but not the answer to a query—it is returned within a single time step. Oracles
may be defined as solving some specific problems (say, SAT) as well as any
problems from a class (say, from NP). The following result is well-known.

Proposition 1 (generic approximate counting [2131]). Let C: ¥* — N
be any member of #P. There exists a polynomial-time randomized algorithm A
which, using an NP-oracle, approximates C with a multiplicative error.

In the rest of this section, we present our results on the complexity of model
counting problems, #SMT[T], for measured theories. For these problems, we de-
velop randomized polynomial-time approximation algorithms equipped with or-
acles, in the flavour of Proposition[I] We describe the proof ideas in Section[3] We
relate the theories to value estimation problems of probabilistic programs later
in Section [} our implementation substitutes an appropriate solver for the oracle.

Integer arithmetic. By |A we denote the bounded version of integer arithmetic:
each free variable x; of a formula ¢(z1,...,z) comes with a bounded domain
D; = [a;,b;] C Z, where a;,b; € Z. We use the counting measure | -|: A CZ —
|Al, so the model count mc(p) of a formula ¢ is the number of its models. In
the formulas, we allow existential (but not universal) quantifiers at the top level.
The model counting problem for IA is #P-complete.

Theorem 1. The model counting problem for |A can be approximated with a
multiplicative error by a polynomial-time randomized algorithm that has oracle
access to satisfiability of formulas in IA.

Linear real arithmetic. By RA we denote the bounded version of linear real
arithmetic, with possible existential (but not universal) quantifiers at the top
level. Each free variable z; of a formula ¢(z1,...,2;) comes with a bounded
domain D; = [a;,b;] € R, where a;,b; € R. The associated measure is the
standard Lebesgue measure, and the model count mc(p) of a formula ¢ is the
volume of its set of models. (Since we consider linear constraints, any quantifier-
free formula defines a finite union of polytopes. It is an easy geometric fact
that its projection on a set of variables will again be a finite union of bounded
polytopes. Thus, existential quantification involves only finite unions.)

In the model counting problem for RA, the a priori upper bound U on the
solution is Hle (b; —a;); additive approximation of the problem is #P-complete.

Theorem 2. The model counting problem for RA can be approximated with an
additive error by a polynomial-time randomized algorithm that has oracle access
to satisfiability of formulas in IA + RA (the combined theory of IA and RA).

Approximate Counting in SMT 7
3 Proof Techniques

3.1 Approximate discrete model counting

We now explain the idea behind Theorem [I} Let ¢(x) be an input formula in 1A
and x = (z1,...,xy) free variables of p. Suppose M is a big enough integer such
that all models of ¢ have components not exceeding M, i.e., [¢] C [0, M]*.

Our approach to approximating mc(¢) = |[¢]| follows the construction in
Jerrum et al. [21I], which builds upon the following observation. Suppose our
goal is to find a value v such that v < mc(y) < 2v, and we have an oracle &, for
“Estimate”, answering questions of the form mc(p) =" N. Then it is sufficient
to make such queries to £ for N = N,,, =2™, m =0,...,klog(M + 1), and the
overall algorithm design is reduced to implementing such an oracle efficiently.

It turns out that this can be done with the help of hashing. Suppose that a
hash function &, taken at random from some family #, maps elements of [0, M]*
to {0,1}™. If the family H is chosen appropriately, then each potential model w
is mapped by h to, say, 0™ with probability 2~"*; moreover, one should expect
that any set S C [0, M]* of size d has roughly 2=™ - d elements in h=1(0™) =
{w € [0, M]* | h(w) = 0™}. In other words, if |S| > 2™, then SN A™1(0™) is
non-empty with high probability, and if |S| < 2™, then S N A~1(0™) is empty
with high probability. Distinguishing between empty and non-empty sets is, in
its turn, a satisfiability question and, as such, can be entrusted to the IA solver.
As a result, we reduced the approximation of the model count of ¢ to a series of
satisfiability questions in IA.

Our algorithm posts these questions as SMT queries of the form

p(z) At(a,2’) A (B (2') = 0™), (1)

where x and 2’ are tuples of integer variables, each component of 2’ is either 0
or 1, the formula ¢(z, 2') says that 2’ is binary encoding of z, and the IA formula
h'(x') = 0™ encodes the computation of the hash function h on input .

Algorithm [I] is the basis of our implementation. It returns a value v that
satisfies the inequalities (1 +) 'mc(p) < v < (1 + €) mc(p) with probability
at least 1 — a. Algorithm [I| uses a set of parameters to discharge “small” values
by enumeration in the SMT solver (parameters a,p) and to optimally query
the solver for larger instances (parameters B,q,r). The procedure £ given as
Algorithm [2] asks the SMT solver for IA to produce a satisfying assignments
(for a positive integer parameter a) to formulas of the form by calling the
procedure SMT. The constant B in the algorithm is defined by B = ((va+ 1+
1)/(v/a + 1—1))2. To achieve the required precision with the desired probability,
the algorithm makes ¢ copies of the formula, constructing a formula with &’
Boolean variables, and does a majority vote over r calls to the procedure &,
where

= [HI%B)W and 1 — [8111 (k’ |log B — 2log(vVB —1)] 3)-‘
2log(l+¢ o)

8 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

Algorithm 1: Approximate model counting for IA

Input: formula ¢(z) in IA
Output: value v € N

Parameters: ¢ € (0,1), /* approximation factor */
a € (0,1), /* error probability */
a € N /* enumeration limit for SMT solver */

Pick B, q,p,r based on parameters (see text);
b(z,2') = p(x) ALz, o),
wQ(val) = 7/)($1: 1,/1) A ¢(1’27 3:/2) ARRRWA w(iﬁqw/q);
if (e := SMT(¢)q,p + 1)) < p then return Ve;
k' := number of bits in x’;
form=1,...,k' +1do
c:=0; /* majority vote counter */
for j=1,...,r do
| if E(Yq, k', m,a) then c:=c+ 1;
if ¢ <r/2 then break;

o 2mT3/2 VB
return N

Algorithm 2: Satisfiability “oracle” &
Input: formula v,(x,x’) in I1A; k',m,a € N
Output: true or false
R’ := P1CK-HASH(K', m);
e (36,5 = g (3, %) A (B (') = O™);
return (SMT(¢y/,a) > a) /* check if 1, has at least a assignments */

For formulas ¢ with up to p'/¢ models, where p = 2 [4/(v/B —1)?], Algorithm
returns precisely the model count mc(y) computed by the procedure SMT
which repeatedly calls the solver, counting the number of models up to p + 1.

The family of hash functions H used by PICK-HASH needs to satisfy the
condition of pairwise independence: for any two distinct vectors 1, x9 € [0, M]*
and any two strings wy,wq € {0,1}™, the probability that a random function h
from H satisfies h(x1) = wy and h(xs) = wy is equal to 1/22™. There are several
constructions for pairwise independent hash functions; we employ a commonly
used family, that of random XOR constraints [342I1706]. Given &’ and m, the
family contains (in binary encoding) all functions b’ = (h},...,h.): {0,1}* —
{0, 1}m with h;(xl S ,$k/) = a;0 + Zfl:l Qi g, where ajj € {0, 1} for all 7
and + is the XOR operator (addition in GF(2)). By randomly choosing the
coeflicients a; ; we get a random hash function from this family. The size of each
query is thus bounded by O(Z|¢[?), where |¢] is the size of the original formula
¢, and there will be at most O(2|¢|) queries in total.

Approximate Counting in SMT 9

3.2 Approximate continuous model counting

In this subsection we explain the idea behind Theorem [2| Let ¢ be a formula
in RA; using appropriate scaling, we can assume without loss of generality that
all the variables share the same domain. Suppose [¢] C [0, M]* and fix some -,
with the prospect of finding a value v that is at most € = yM* away from mc(y)
(we take M* as the value of the upper bound U in the definition of additive
approximation). We show below how to reduce this task of continuous model
counting to additive approximation of a model counting problem for a formula
with a discrete set of possible models, which, in turn, will be reduced to that of
multiplicative approximation.

We first show how to reduce our continuous problem to a discrete one. Divide
the cube [0, M]* into s* small cubes with side § each, § = M/s. For each y =
(Y1, yk) € {0,1,...,5s — 1}* set ¢/(y) = 1 if at least one point of the cube
Cly) ={y;0 < zj < (y; +1) 6,1 < j < k} satisfies ¢; that is, if C'(y) N [¢] # 0.

Imagine that we have a formula ¢ such that ¢(y) = ¢'(y) for all y €
{0,1,...,5 — 1}*, and let ¥ be written in a theory with a uniform measure
that assigns “weight” M/s to each point y; € {0,1,...,s — 1}; one can think
of these weights as coefficients in numerical integration. From the technique of
Dyer and Frieze [II, Theorem 2] it follows that for a quantifier-free ¢ and an
appropriate value of s the inequality |mc(y)) — mc(p)| < £/2 holds.

Indeed, Dyer and Frieze prove a statement of this form in the context of
volume computation of a polyhedron, defined by a system of inequalities Az < b.
However, they actually show a stronger statement: given a collection of m hyper-
planes in R* and a set [0, M]*, an appropriate setting of s will ensure that out of
sk cubes with side § = M/s only a small number J will be cut, i.e., intersected
by some hyperplane. More precisely, if s = [mk*M*/(/2)], then this number
J will satisfy the inequality 6% - J < e/2. Thus, the total volume of cut cubes
is at most €/2, and so, in our terms, we have |mc(y) — mc(p)| < /2 as desired.

However, in our case the formula ¢ need not be quantifier-free and may con-
tain existential quantifiers at the top level. If p(z) = Fu.®(z,u) where @ is
quantifier-free, then the constraints that can “cut” the z-cubes are not neces-
sarily inequalities from ®. These constraints can rather arise from projections
of constraints on variables x and, what makes the problem more difficult, their
combinations. However, we are able to prove the following statement:

Lemma 1. The number J of points y € {0,1,...,s —1}* for which cubes C(y)
are cut satisfies 6% - J < €/2 if 6 = M/s, where 5 = [2mT2KE2MF/(e/2)] =
[2mF2k2 /(v /2)] and m is the number of atomic predicates in ®.

A consequence of the lemma is that the choice of § ensures that the formula
Y(y) = Fz.(p(x) Ax € C(y)) written in the combined theory IA + RA satisfies
the inequality |mc(¢) — mc(p)| < /2. Here we associate the domain of each
free variable y; € {0,1,...,5 — 1} with the uniform measure p;(v) = M/s. Note
that the value of § chosen in Lemma [1| will still keep the number of steps of our
algorithm polynomial in the size of the input, because the number of bits needed
to store the integer index along each axis is [log(s + 1)| and not 5 itself.

10 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

As a result, it remains to approximate mc(vy)) with additive error of at most
¢/ = ¢/2 = yM*¥/2, which can be done by invoking the procedure from Theorem
that delivers approximation with multiplicative error 8 = ¢’ /M* = ~/2.

4 Value Estimation for Probabilistic Programs

4.1 The Value Estimation Problem

We now describe an application of approximate model counting to probabilistic
programs. Probabilistic programming models extend “usual” nondeterministic
programs with the ability to sample values from a distribution and condition
the behavior of the program based on observations [18]. Intuitively, probabilistic
programs extend an imperative programming language like C with two con-
structs: a nondeterministic assignment to a variable from a range of values, and
a probabilistic assignment that sets a variable to a random value sampled from
a distribution. Designed as a modeling framework, probabilistic programs are
typically treated as descriptions of probability distributions and not meant to
be implemented as usual programs.

We consider a core loop-free imperative language extended with probabilistic
statements and with nondeterministic choice:

s u= x:=e |z ~ Uniform(a,b) | assume(p) | s;s | s|s | accept | reject.

The statement 2 := e models (usual) assignment, x ~ Uniform(a, b) takes a value
uniformly at random from [a, b] and assigns it to x, assume(yp) models observa-
tions used to condition a distribution, | models nondeterministic choice between
statements, and accept and reject are special accepting and rejecting statements.

Under each given assignment to the probabilistic variables, a program accepts
(rejects) if there is an execution path that is compatible with the observations
and goes from the initial state to an accepting (resp., rejecting) statement. Con-
sider all possible outcomes of the probabilistic assignments in a program 7P.
Restrict attention to those that result in P reaching (nondeterministically) at
least one of accept or reject statements—such elementary outcomes form the set
Term (for “termination”); only these scenarios are compatible with the obser-
vations. Similarly, some of these outcomes may result in the program reaching
(again, nondeterministically) an accept statement—they form the set Accept.
Note that the sets Term and Accept are events in a probability space; define

val(P), the wvalue of P, as the conditional probability Pr[Accept | Term], which
Pr[Accept]
Pr[Term]
well-formed in that Pr[Term] is bounded away from 0.

Now consider a probabilistic program P over a measured theory T, i. e., where
the expressions and predicates come from 7. Associate a separate variable r with
each probabilistic assignment in P and denote the corresponding distribution by
dist(r). Let R be the set of all such variables r.

is equal to the ratio as Accept C Term. We assume that programs are

Approximate Counting in SMT 11

Proposition 2. There exists a polynomial-time algorithm that, given a program
P over T, constructs logical formulas pacc(R) and orerm(R) over T such that
Accept = [pacc] and Term = [prerm], where each free variable r € R is interpreted
over its domain with measure dist(r). Thus, val(P) = mc(pacc)/Mc(Prerm)-

Proposition [2| reduces the wvalue estimation problem—i.e., the problem of esti-
mating val(P)—to model counting. For the theories of integer and linear real
arithmetic, we get a #P upper bound on the complexity of value estimation. On
the other hand, value estimation is #P-hard, as it easily encodes #SAT. Finally,
since the model counting problem can be approximated using a polynomial-time
randomized algorithm with a satisfiability oracle, we also get an algorithm for
approximate value estimation.

Proposition 3 (complexity of value estimation).

1. The value estimation problem for loop-free probabilistic programs (over 1A
and RA) is #P-complete. The problem is #P-hard already for programs
with Boolean variables only.

2. The value estimation problem for loop-free probabilistic programs over IA can
be approximated with a multiplicative error by a polynomial-time randomized
algorithm that has oracle access to satisfiability of formulas in 1A.

8. The value estimation problem for loop-free probabilistic programs over RA
can be approximated with an additive error by a polynomial-time randomized
algorithm that has oracle access to satisfiability of formulas in IA + RA.

4.2 Evaluation

We have implemented the algorithm from Subsection 3.1 in C++ on top of the
SMT solver Z3 [10]. The SMT solver is used unmodified, with default settings.

Examples. For the evaluation we consider five examples. The first two are
probabilistic programs that use nondeterminism. The remaining examples are
Bayesian networks encoded in our language.

The Monty Hall problem [29] is a classic problem from probability theory. Imag-
ine a television game show with two characters: the player and the host. The
player is facing three doors, numbered 1, 2, and 3; behind one of them is a car,
and behind the other two are goats. The player initially picks one of the doors,
say door i, but does not open it. The host, who knows the position of the car,
then opens another door, say door j with j # ¢, and shows a goat behind it. The
player then gets to open one of the remaining doors. There are two available
strategies: stay with the original choice, door ¢, or switch to the remaining alter-
native, door k ¢ {i,j}. The Monty Hall problem asks, which strategy is better?
It is widely known that, in the standard probabilistic setting of the problem, the
switching strategy is the better one: it has payoff 2/3, i.e., it chooses the door
with the car with probability 2/3; the staying strategy has payoff of only 1/3.
We model this problem as a probabilistic program, where the host’s actions are
modelled using nondeterminism (for details see the extended version [g]).

12

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

Example € « a k" |Macc |[Miernd[time(s) for @pacc|time(s) for @rerm
Monty Hall (1) 0.2]0.01 1 24| 13| 20 3.37 4.11
Three prisoners (2)|| 0.2/ 0.01 1| 36] 0 20 0.04 19.84
Alarm (3) 0.5 0.1 20| 56/ 36| 49 196.54 132.53
Grass model (4) 0.5 0.1] 20| 48| 34| 35 85.71 89.37
Sensitivity est. (5) 0.5 0.1 20| 66/ 56| 57 295.09 241.55

Table 1. Input and algorithm parameters, and running time. The input parameter ¢ is
the multiplicative approximation factor, « is the desired error probability and a is the
number of satisfying assignments the SMT solver checks for; k' is the resulting number
of bits and macc and Mierm are the maximal hash sizes for @acc and Yrerm-

The three prisoners problem. Our second example is a problem that appeared
in Martin Gardner’s “Mathematical Games” column in the Scientific American
in 1959. There, one of three prisoners (1, 2, and 3), who are sentenced to death,
is randomly pardoned. The guard gives prisoner 1 the following information: If
2 is pardoned, he gives 1 the name of 3. If 3 is pardoned, he gives him the name
of 2. If 1 is pardoned, he flips a coin to decide whether to name 2 or 3. Provided
that the guard tells prisoner 1 that prisoner 2 is to be executed, determine what
is prisoner 1’s chance to be pardoned?

Pearl’s burglar alarm and grass model. These two examples are classical Bayesian
networks from the literature. Pearl’s burglar alarm example is as given in [I8|
Figure 15]; the grass model is taken from [22] Figure 1].

Kidney disease eGFR sensitivity estimation. The last example is a probabilistic
model of a medical diagnostics system with noisy inputs. We considered the pro-
gram given in [I8, Figure 11] using a simplified model of the input distributions.
In our setting, we draw the value of the logarithm of the patient’s creatinine
level uniformly from the set {—0.16,—0.09, —0.08,0,0.08,0.09,0.16,0.17} (thus
approximating the original lognormal distribution), regardless of the patient’s
gender, and the patient’s age from the interval [30, 80]. The patient’s gender and
ethnicity are distributed in the same way as described in [2§].

Results. For each program P, we used our tool to estimate the model count
of the formulas @acc and pierm; the value val(P) of the program is approximated
DY Vacc/Vterm, Where vaee and vierm are the approximate model counts computed
by our tool. Table [1| shows input and algorithm parameters for the considered
examples, as well as running time (in seconds) for computing vacc and vierm. The
approximation factor e, the bound « on the error probability, and the enumera-
tion limit @ for the SMT solver are provided by the user. For examples (1) and
(2), we choose € to be 0.2, while for the remaining examples we take 0.5. The
chosen value of € has an impact on the number of copies g of the formula that we
construct, an thus on the number &’ of Boolean variables in the formula given
to the solver. Furthermore, the more satisfying assignments a formula has, the
larger dimension m of the hash function is reached during the run; ma,. and
Mterm are the maximal values of m reached on the runs on @, and Yerm-

Approximate Counting in SMT 13

While our technique can solve these small instances in reasonable time,
there remains much room for improvement. Although SAT solvers can scale to
large instances, it is well known that even a small number of XOR constraints
can quickly exceed the capabilities of state-of-the-art solvers [32]. Since for each
m we add m parity constraints to the formula, we run into the SAT bottleneck:
computing an approximation of mc(p,ec) for example (4) with € = 0.3 results in
running time of several hours. (At the same time, exact counting by enumerating
satisfying assignments is not a feasible alternative either: for the formula @, in
example (4), which has more than 400000 of them, performing this task naively
with Z3 also took several hours.) The efficiency of our approach can benefit
from better handling of XOR, constraints in the SMT solver. For example, SAT
solvers such as CryptoMiniSat which deal with XOR constraints efficiently can
scale to over 1K variables [6I5)17]. This, however, requires incorporating such a
SAT solver within Z3.

The scalability needs improvement also in the continuous case, where our
discretization procedure introduces a large number of discrete variables. For
instance, a more realistic model of example (5) would be one in which the
logarithm of the creatinine level is modeled as a continuous random variable.
This would result, after discretization, in formulas with hundreds of Boolean
variables, which appears to be beyond the limit of Z3’s XOR reasoning.

5 Concluding Remarks

Static reasoning questions for probabilistic programs [I8I2819], as well as quan-
titative and probabilistic analysis of software [3[T5I14124], have received a lot of
recent attention. There are two predominant approaches to these questions. The
first one is to perform Monte Carlo sampling of the program [28[3124427]. To
improve performance, such methods use sophisticated heuristics and variance
reduction techniques, such as stratified sampling in [28)3]. The second approach
is based on reduction to model counting [T4[T52625], either using off-the-shelf
#SMT solvers or developing #SMT procedures on top of existing tools. An-
other recent approach is based on data flow analysis [9]. Our work introduces
a new dimension of approximation to this area: we reduce program analysis to
#SMT, but carry out a randomized approximation procedure for the count.
By known connections between counting and uniform generation [2112], our
techniques can be adapted to generate (approximately) uniform random sam-
ples from the set of models of a formula in IA or RA. Uniform generation from
Boolean formulas using hashing techniques was recently implemented and eval-
uated in the context of constrained random testing of hardware [65]. We extend
this technique to the SMT setting, which was left as a future direction in [6]
(previously known methods for counting integral points of polytopes [I15] do
not generalize to the nonlinear theory IA).
Further directions.
Scalability. An extension of the presented techniques may be desirable to cope
with larger instances of #SMT. As argued in subsection[4.2] incorporating XOR-
aware reasoning into Z3 can be an important step in this direction.

14 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar

Theories. Similar techniques apply to theories other than IA and RA. For
example, our algorithm can be extended to the combined theory of string
constraints and integer arithmetic. While SMT solvers can handle this theory, it
would be nontrivial to design a model counting procedure using the previously
known approach based on generating functions [25].

Distributions. Although the syntax of our probabilistic programs supports only
Uniform, it is easy to simulate other distributions: Bernoulli, uniform with non-
constant boundaries, (approximation of) normal. This, however, will not scale
well, so future work may incorporate non-uniform distributions as a basic prim-
itive. (An important special case covers weighted model counting in SAT, for
which a novel extension of the hashing approach was recently proposed [5].)

Applications. A natural application of the uniform generation technique in the
SMT setting would be a procedure that generates program behaviors uniformly
at random from the space of possible behaviors. (For the model we studied,
program behaviors are trees: the branching comes from nondeterministic choice,
and the random variables are sampled from their respective distributions.)

References

1. A. Barvinok. A polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed. In FOCS 93. ACM, 1993.

2. M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses
using an NP-oracle. Inf. Comput., 163(2):510-526, 2000.

3. M. Borges, A. Filieri, M. d’Amorim, C. Pasareanu, and W. Visser. Compositional
solution space quantification for probabilistic software analysis. In PLDI, page 15.
ACM, 2014.

4. A. Chaganty, A. Nori, and S. Rajamani. Efficiently sampling probabilistic programs
via program analysis. In AISTATS, volume 31 of JMLR Proceedings, pages 153—
160. JMLR.org, 2013.

5. S. Chakraborty, D. Fremont, K. Meel, S. Seshia, and M. Vardi. Distribution-aware
sampling and weighted model counting for SAT. In AAAI’1/, pages 1722-1730,
2014.

6. S. Chakraborty, K. Meel, and M. Vardi. A scalable and nearly uniform generator
of SAT witnesses. In CAV, volume 8044 of LNCS, pages 608-623, 2013.

7. S. Chakraborty, K. Meel, and M. Vardi. A scalable approximate model counter.
In CP: Constraint Programming, volume 8124 of LNCS, pages 200-216, 2013.

8. D. Chistikov, R. Dimitrova, and R. Majumdar. Approximate counting in SMT
and value estimation for probabilistic programs. CoRR, abs/1411.0659, 2014.

9. G. Claret, S. K. Rajamani, A. V. Nori, A. D. Gordon, and J. Borgstrém. Bayesian
inference using data flow analysis. In ESEC/FSE’13, pages 92-102, 2013.

10. L. De Moura and N. Bjgrner. Z3: An efficient smt solver. In TACAS,
TACAS’08/ETAPS’08, pages 337-340. Springer-Verlag, 2008.

11. M. Dyer and A. Frieze. On the complexity of computing the volume of a polyhe-
dron. SIAM J. Comput., 17(5):967-974, 1988.

12. M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. J. ACM, 38(1):1-17, 1991.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

Approximate Counting in SMT 15

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimen-
sionality: Discrete integration by hashing and optimization. In ICML (2), pages
334-342, 2013.

A. Filieri, C. Pasareanu, and W. Visser. Reliability analysis in symbolic Pathfinder.
In ICSE, pages 622-631, 2013.

M. Fredrikson and S. Jha. Satisfiability modulo counting: A new approach for
analyzing privacy properties. In LICS. ACM, 2014.

C. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. From sampling to model
counting. In IJCAI, pages 2293-2299, 2007.

C. Gomes, A. Sabharwal, and B. Selman. Model counting. In Handbook of Satis-
fiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages
633-654. IOS Press, 2009.

A. Gordon, T. Henzinger, A. Nori, S. Rajamani, and S. Samuel. Probabilistic
programming. In FOSE 14, pages 167-181. ACM, 2014.

C.-K. Hur, A. Nori, S. Rajamani, and S. Samuel. Slicing probabilistic programs.
In PLDI, page 16. ACM, 2014.

M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an approach
to approximate counting and integration. Approxzimation algorithms for NP-hard
problems, pages 482-520, 1996.

M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. T'CS, 43:169-188, 1986.

O. Kiselyov and C.-C. Shan. Monolingual probabilistic programming using gener-
alized coroutines. In UAI pages 285-292. AUAI Press, 2009.

LattE tool. https://www.math.ucdavis.edu/~latte.

K. S. Luckow, C. S. Pasareanu, M. B. Dwyer, A. Filieri, and W. Visser. Exact
and approximate probabilistic symbolic execution for nondeterministic programs.
In ASE’14, pages 575-586, 2014.

L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model counter for constraints
over unbounded strings. In PLDI, page 57. ACM, 2014.

F. Ma, S. Liu, and J. Zhang. Volume computation for boolean combination of
linear arithmetic constraints. In CADE-22, LNCS 5663, pages 453-468. Springer,
2009.

A. Sampson, P. Panchekha, T. Mytkowicz, K. McKinley, D. Grossman, and L. Ceze.
Expressing and verifying probabilistic assertions. In PLDI, page 14. ACM, 2014.
S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for proba-
bilistic programs: inferring whole program properties from finitely many paths. In
PLDI, pages 447-458. ACM, 2013.

S. Selvin. A problem in probability. American Statistician, 29(1):67, 1975.

M. Sipser. A complexity-theoretic approach to randomness. In STOC, pages 330—
335. ACM, 1983.

L. Stockmeyer. On approximation algorithms for #P. SIAM J. of Computing,
14:849-861, 1985.

A. Urquhart. Hard examples for resolution. J. ACM, 34(1):209-219, 1987.

L. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 9:189-201, 1979.

L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85-93, 1986.

M. Zhou, F. He, X. Song, S. He, G. Chen, and M. Gu. Estimating the volume of
solution space for satisfiability modulo linear real arithmetic. Theory of Computing
Systems, pages 1-25, 2014.

https://www.math.ucdavis.edu/~latte

	Approximate Counting in SMT andValue Estimation for Probabilistic Programs

