
This is a repository copy of Synthesis of surveillance strategies via belief abstraction.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156426/

Version: Accepted Version

Proceedings Paper:
Bharadwaj, S., Dimitrova, R. and Topcu, U. (2019) Synthesis of surveillance strategies via
belief abstraction. In: 2018 IEEE Conference on Decision and Control (CDC). 2018 IEEE
Conference on Decision and Control (CDC), 17-19 Dec 2018, Miami Beach, FL, USA.
IEEE , pp. 4159-4166. ISBN 9781538613962

https://doi.org/10.1109/cdc.2018.8619353

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Synthesis of Surveillance Strategies via Belief Abstraction

Suda Bharadwaj1 and Rayna Dimitrova2 and Ufuk Topcu1

Abstract— We provide a novel framework for the synthesis
of a controller for a robot with a surveillance objective, that is,
the robot is required to maintain knowledge of the location of a
moving, possibly adversarial target. We formulate this problem
as a one-sided partial-information game in which the winning
condition for the agent is specified as a temporal logic formula.
The specification formalizes the surveillance requirement
given by the user by quantifying and reasoning over the
agent’s beliefs about a target’s location. We also incorporate
additional non-surveillance tasks. In order to synthesize a
surveillance strategy that meets the specification, we transform
the partial-information game into a perfect-information one,
using abstraction to mitigate the exponential blow-up typically
incurred by such transformations. This transformation enables
the use of off-the-shelf tools for reactive synthesis. We evaluate
the proposed method on two case-studies, demonstrating its
applicability to diverse surveillance requirements.

I. INTRODUCTION

Performing surveillance, that is, tracking the location of

a target, has many applications. If the target is adversarial,

these applications include patrolling and defense, especially

in combination with other objectives, such as providing

certain services or accomplishing a mission. Techniques for

tracking non-adversarial but unpredictable targets have been

proposed in settings like surgery to control cameras to keep a

patient’s organs under observation despite unpredictable mo-

tion of occluding obstacles [1]. Mobile robots in airports have

also been proposed to carry luggage for passengers, requiring

the robots to follow the human despite unpredictable motion

and possibly sporadically losing sight of the target [2].

When dealing with a possibly adversarial target, a strategy

for the surveying agent for achieving its objective can be seen

as a strategy in a two-player game between the agent and

the target. Since the agent may not always observe, or even

know, the exact location of the target, surveillance is, by its

very nature, a partial-information problem. It is thus natural

to reduce surveillance strategy synthesis to computing a win-

ning strategy for the agent in a two-player partial-information

game. Game-based models for related problems have been

extensively studied in the literature. Notable examples in-

clude pursuit-evasion games [3], patrolling games [4], and

graph-searching games [5], where the problem is formulated

as enforcing eventual detection, which is, in its essence a

search problem – once the target is detected, the game ends.

For many applications, this formulation is too restrictive.

Often, the goal is not to detect or capture the target, but to

1Suda Bharadwaj and Ufuk Topcu are with the University of Texas at
Austin

2Rayna Dimitrova is with the University of Leicester, UK. Most of this
work was done while Rayna Dimitrova was a postdoctoral researcher at UT
Austin.

maintain certain level of information about its location over

an unbounded (or infinite) time duration, or, alternatively, be

able to obtain sufficiently precise information over and over

again. In other cases, the agent has an additional objective,

such as performing certain task, which might prevent him

from capturing the target, but allow for satisfying a more

relaxed surveillance objective.

In this paper, we study the problem of synthesizing strate-

gies for enforcing temporal surveillance objectives, such as

the requirement to never let the agent’s uncertainty about

the target’s location exceed a given threshold, or recapturing

the target every time it escapes. To this end, we consider

surveillance objectives specified in linear temporal logic

(LTL), equipped with basic surveillance predicates. This for-

mulation also allows for a seamless combination with other

task specifications. Our computational model is that of a two-

player game played on a finite graph, whose nodes represent

the possible locations of the agent and the target, and whose

edges model the possible (deterministic) moves between

locations. The agent plays the game with partial information,

as it can only observe the target when it is in its area of sight.

The target, on the other hand, always has full information

about the agent’s location, even when the agent is not in

sight. In that way, we consider a model with one-sided partial

information, making the computed strategy for the agent

robust against a potentially more powerful adversary.

We formulate surveillance strategy synthesis as the prob-

lem of computing a winning strategy for the agent in a

partial-information game with a surveillance objective. There

is a rich theory on partial-information games with LTL

objectives [6], [7], and it is well known that even for

very simple objectives the synthesis problem is EXPTIME-

hard [8], [9]. Moreover, all the standard algorithmic solutions

to the problem are based on some form of belief set construc-

tion, which transforms the imperfect-information game into

a perfect-information game and of exponentially larger size,

since the new set of states is the powerset of the original

one. Thus, such approaches scale poorly in general, and are

not applicable in most practical situations.

We address this problem by using abstraction. We in-

troduce an abstract belief set construction, which underap-

proximates the information-tracking abilities of the agent

(or, alternatively, overapproximates its belief, i.e., the set

of positions it knows the target could be in). We leverage

this construction by reasoning over the agent’s belief in the

target location, and this allows us to specify surveillance

objectives in LTL over these belief states. Thus, we provide

a framework to treat surveillance synthesis as a two-player

perfect-information game with an LTL objective, which we

then solve using off-the shelf reactive synthesis tools [10].

Our construction guarantees that the abstraction is sound, that

is, if a surveillance strategy is found in the abstract game, it

corresponds to a surveillance strategy for the original game.

If such a strategy is not found because the abstraction is

too coarse, then techniques such as counterexample guided

abstraction refinement (CEGAR) [11] can be used to au-

tomatically refine the abstraction. CEGAR has successfully

demonstrated its potential in formal verification and reactive

synthesis. CEGAR can be applied in our framework to

automatically refine abstract belief states based on counterex-

amples of the agent being unable to satisfy its surveillance

specification. For the full details of the CEGAR procedure

we refer the reader to [12], where we describe the automated

refinement of belief abstractions.

Contributions. Our contributions are as follows:

(1) We propose a formalization of surveillance objectives as

temporal logic specifications, and frame surveillance strat-

egy synthesis as a reactive synthesis problem in a partial-

information two player game.

(2) We develop an abstraction method that soundly approx-

imates surveillance strategy synthesis, thus mitigating the

state space explosion enabling the application of efficient

techniques for reactive synthesis.

(3) We demonstrate the use of our framework in practice by

evaluating our approach on different surveillance objectives

(e.g, safety, and liveness) combined with task specifications,

and discuss the qualitatively different behaviour of the syn-

thesized strategies for the different kinds of specifications.

Related work. While closely related to the surveillance

problem we consider, pursuit-evasion games with partial

information [3], [13], [14] formulate the problem as eventual

detection, and do not consider combinations with other

mission specifications. Other work, such as [15] and [16],

additionally incorporates map building during pursuit in an

unknown environment, but again solely for target detection.

Synthesis from LTL specifications [17], especially from

formulae in the efficient GR(1) fragment [18], has been

extensively used in robotic planning (e.g. [19], [20]), but

surveillance-type objectives, such as the ones we study here,

have not been considered so far. Epistemic logic specifica-

tions [21] can refer to the knowledge of the agent about

the truth-value of logical formulas, but, contrary to our

surveillance specifications, are not capable of expressing

requirements on the size of the agent’s uncertainty.

CEGAR has been developed for verification [11], and later

for control [22], of LTL specifications. It has also been

extended to infinite-state partial-information games [23],

and used for sensor design [24], both in the context of

safety specifications. In addition to being focused on safety

objectives, the refinement method in [23] is designed to

provide the agent with just enough information to achieve

safety, and is thus not applicable to surveillance properties

whose satisfaction depends on the size of the belief sets.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(a) Surveillance arena

vis(4, 18) = false, vis(4, 17) = false,

vis(4, 19) = true, vis(4, 23) = false

(4, 18)

(3, 23) (9, 17)(3, 19)(3, 17) (9, 19) (9, 23)

(b) Transitions from the initial state

Fig. 1: A simple surveillance game on a grid arena. Obstacles

are shown in red, the agent (at location 4) and the target (at

location 18) are coloured in blue and orange respectively.

II. GAMES WITH SURVEILLANCE OBJECTIVES

We begin by defining a formal model for describing

surveillance strategy synthesis problems, in the form of a

two-player game between an agent and a target, in which the

agent has only partial information about the target’s location.

A. Surveillance Game Structures

We define a surveillance game structure to be a tuple G =
(S, sinit, T, vis), with the following components:

• S = La × Lt is the set of states, with La the set of

locations of the agent, and Lt the locations of the target;

• sinit = (linita , linitt) is the initial state;

• T ⊆ S × S is the transition relation describing the

possible moves of the agent and the target; and

• vis : S → B is a function that maps a state (la, lt) to

true iff position lt is in the area of sight of la.

The transition relation T encodes the one-step move of

both the target and the agent, where the target moves first

and the agent moves second. For a state (la, lt) we define

succt(la, lt) as the set of successor locations of the target:

succt(la, lt) = {l′t ∈ Lt | ∃l
′
a. ((la, lt), (l

′
a, l

′
t)) ∈ T}.

We extend succt to sets of locations of the target by

stipulating that the set succt(la, L) consists of all possible

successor locations of the target for states in {la} × L.

Formally, let succt(la, L) =
⋃

lt∈L succt(la, lt).
For a state (la, lt) and a successor location of the target l′t,

we denote with succa(la, lt, l
′
t) the set of successor locations

of the agent, given that the target moves to l′t:

succa(la, lt, l
′
t) = {l′a ∈ La | ((la, lt), (l

′
a, l

′
t)) ∈ T}.

We assume that, for every s ∈ S, there exists s′ ∈ S such

that (s, s′) ∈ T , that is, from every state there is at least

one move possible (this might be staying in the same state).

We also assume that when the target moves to an invisible

location, its position does not influence the possible one-step

moves of the agent. Formally, we require that if vis(la, l
′
t) =

vis(la, l̂
′
t) = false , then succa(la, lt, l

′
t) = succa(la, l̂t, l̂

′
t)

for all target locations lt, l
′
t, l̂t, l̂

′
t ∈ Lt. This assumption is

natural in the setting when the agent can move in one step

only to locations that are in its sight.

Example 1: Figure 1 shows an example of a surveillance

game on a grid. The sets of possible locations La and Lt for

the agent and the target consist of the squares of the grid. The

transition relation T encodes the possible one-step moves of

both the agent and the target on the grid, and incorporates

(4, {18})

(3, {17, 23}) (9, {19})(3, {19}) (9, {17, 23})

Fig. 2: Transitions from the initial state in the belief-set game

from Example 2 where vis(4, 17) = vis(4, 23) = false .

all desired constraints. For example, moving to an occupied

location, or an obstacle, is not allowed. Figure 1b shows the

possible transitions from the initial state (4, 18).
The function vis encodes straight-line visibility: a location

lt is visible from a location la if there is no obstacle on

the straight line between them. Initially the target is not

in the area of sight of the agent, but the agent knows the

initial position of the target. However, once the target moves

to one of the locations reachable in one step, in this case,

locations {17, 19, 23}, this might no longer be the case. More

precisely, if the target moves to location 19, then the agent

observes its location, but if it moves to one of the others,

then the agent no longer knows its exact location. �

B. Belief-Set Game Structures

In surveillance strategy synthesis we need to state prop-

erties of, and reason about, the information which the agent

has, i.e. its belief about the location of the target. To this end,

we can employ a powerset construction which is commonly

used to transform a partial-information game into a perfect-

information one, by explicitly tracking the knowledge one

player has as a set of possible states of the other player.

Given a set B, we denote with P(B) = {B′ | B′ ⊆ B}
the powerset (set of all subsets) of B.

For a surveillance game structure G = (S, sinit, T, vis) we

define the corresponding belief-set game structure Gbelief =
(Sbelief , s

init

belief
, Tbelief) with the following components:

• Sbelief = La×P(Lt) is the set of states, with La the set

of locations of the agent, and P(Lt) the set of belief sets

describing information about the location of the target;

• sinit
belief

= (linita , {linitt }) is the initial state;

• Tbelief ⊆ Sbelief × Sbelief is the transition relation where

((la, Bt), (l
′
a, B

′
t)) ∈ Tbelief iff l′a ∈ succa(la, lt, l

′
t) for

some lt ∈ Bt and l′t ∈ B′
t and one of these holds:

(1) B′
t = {l′t}, l′t ∈ succt(la, Bt), vis(la, l

′
t) = true;

(2) B′
t = {l′t ∈ succt(la, Bt) | vis(la, l

′
t) = false}.

Condition (1) captures the successor locations of the target

that can be observed from the agent’s current position la.

Condition (2) corresponds to the belief set consisting of all

possible successor locations of the target not visible from la.

Example 2: Consider the surveillance game structure

from Example 1. The initial belief set is {18}, consisting of

the target’s initial position. After the first move of the target,

there are two possible belief sets: the set {19} resulting from

the move to a location in the area of sight of the agent, and

{17, 23} consisting of the two invisible locations reachable

in one step from location 18. Figure 2 shows the successor

states of the initial state (4, {18}) in Gbelief . �

Based on Tbelief , we can define the functions succt :
Sbelief → P(P(Lt)) and succa : Sbelief × P(Lt) → P(La)
similarly to the corresponding functions defined for G.

A run in Gbelief is an infinite sequence s0, s1, . . . of states

in Sbelief , where s0 = sinit
belief

, (si, si+1) ∈ Tbelief for all i.

A strategy for the target in Gbelief is a function ft :
S+

belief
→ P(Lt) such that ft(π · s) = Bt implies Bt ∈

succt(s) for every π ∈ S∗
belief

and s ∈ Sbelief . That is, a

strategy for the target suggests a move resulting in some

belief set reachable from some location in the current belief.

A strategy for the agent in Gbelief is a function fa : S+

belief
×

P(Lt) → Sbelief such that fa(π · s,Bt) = (l′a, B
′
t) implies

B′
t = Bt and l′a ∈ succa(s,Bt) for every π ∈ S∗

belief
, s ∈

Sbelief and Bt ∈ P(Lt). Intuitively, a strategy for the agent

suggests a move based on the observed history of the play

and the current belief about the target’s position.

The outcome of given strategies fa and ft for the agent

and the target in Gbelief , denoted outcome(Gbelief , fa, ft), is

a run s0, s1, . . . of Gbelief such that for every i ≥ 0, we have

si+1 = fa(s0, . . . , si, B
i
t), where Bi

t = ft(s0, . . . , si).

C. Temporal Surveillance Objectives

Since the states of a belief-set game structure track the

information that the agent has, we can state and interpret

surveillance objectives over its runs. We now formally define

the surveillance properties in which we are interested.

We consider a set of surveillance predicates SP = {pk |
k ∈ N>0}, where for k ∈ N>0 we say that a state (la, Bt) in

the belief game structure satisfies pk (denoted (la, Bt) |= pk)

iff |{lt ∈ Bt | vis(la, lt) = false}| ≤ k. Intuitively, pk is

satisfied by the states in the belief game structure where the

size of the belief set does not exceed the threshold k ∈ N>0.

We study surveillance objectives expressed by formulas of

linear temporal logic (LTL) over surveillance predicates. The

LTL surveillance formulas are generated by the grammar

ϕ := p | true | false | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ | ϕU ϕ | ϕRϕ,

where p ∈ SP is a surveillance predicate, is the next

operator, U is the until operator, and R is the release

operator. We also define the derived operators finally: ϕ =
true U ϕ and globally: ϕ = falseRϕ.

LTL formulas are interpreted over (infinite) runs. If a run

ρ satisfies an LTL formula ϕ, we write ρ |= ϕ. The formal

definition of LTL semantics can be found in [25]. Here we

informally explain the meaning of the formulas we use.

Of special interest will be surveillance formulas of the

form pk, termed safety surveillance objective, and pk,

called liveness surveillance objective. Intuitively, the safety

surveillance formula pk is satisfied if at each point in time

the size of the belief set does not exceed k. The liveness

surveillance objective pk, on the other hand, requires

that infinitely often this size is below or equal to k.

Example 3: We can specify that the agent is required to

always know with certainty the location of the target as p1.

A more relaxed requirement is that the agent’s uncertainty

never grows above 5 locations, and it infinitely often reduces

this uncertainty to at most 2 locations: p5 ∧ p2. �

D. Incorporating Task Specifications

We can integrate LTL objectives not related to surveil-

lance, i.e., task specifications, by considering, in addition to

SP , a set AP of atomic predicates interpreted over states of

G. In order to define the semantics of p ∈ AP over states

of Gbelief , we restrict ourselves to predicates observable by

the agent. Formally, we require that for p ∈ AP , and states

(la, l
′
t) and (la, l

′′
t) with vis(la, l

′
t) = vis(la, l

′′
t) = false it

holds that (la, l
′
t) |= p iff (la, l

′′
t) |= p. One class of such

predicates are those that depend only on the agent’s position.

Example 4: Suppose that at goal is a predicate true ex-

actly when the agent is at some designated goal location. We

can then state that the agent visits the goal infinitely often

while always maintaining belief uncertainty of at most 10
locations using the LTL formula at goal ∧ p10. �

E. Surveillance Synthesis Problem

A surveillance game is a pair (G,ϕ), where G is a

surveillance game structure and ϕ is a surveillance objective.

A winning strategy for the agent for (G,ϕ) is a strategy fa
for the agent in the corresponding belief-set game structure

Gbelief such that for every strategy ft for the target in Gbelief

it holds that outcome(Gbelief , fa, ft) |= ϕ. Analogously, a

winning strategy for the target for (G,ϕ) is a strategy ft
such that, for every strategy fa for the agent in Gbelief , it

holds that outcome(Gbelief , fa, ft) 6|= ϕ.

Surveillance synthesis problem: Given a surveillance

game (G,ϕ), compute a winning strategy for the agent for

(G,ϕ), or determine that such a strategy does not exist.

It is well-known that two-player perfect-information

games with LTL objectives over finite-state game structures

are determined, that is exactly one of the players has a

winning strategy [26]. This means that the agent does not

have a winning strategy for a given surveillance game, if and

only if the target has a winning strategy for this game. We

refer to winning strategies of the target as counterexamples.

III. BELIEF SET ABSTRACTION

We used the belief-set game structure in order to state the

surveillance objective of the agent. While in principle it is

possible to solve the surveillance strategy synthesis problem

on this game, it is in most cases computationally infeasible,

since the size of this game is exponential in the size of

the original game. To circumvent such a construction when

possible, we propose an abstraction-based method, that given

a surveillance game structure and a partition of the set of the

target’s locations, yields an approximation that is sound with

respect to surveillance objectives for the agent.

An abstraction partition is a family Q = {Qi}
n
i=1 of

subsets of Lt, Qi ⊆ Lt such that the following hold:

•

⋃n

i=1
Qi = Lt and Qi ∩Qj = ∅ for all i 6= j.

• For each p ∈ AP , Q ∈ Q and la ∈ La, it holds that

(la, l
′
t) |= p iff (la, l

′′
t) |= p for every l′t, l

′′
t ∈ Q.

Intuitively, these conditions mean that Q partitions the set of

locations of the target, and the concrete locations in each of

the sets in Q agree on the value of the propositions in AP .

(4, 18)

(3, 19) (9, {Q4, Q5})(3, {Q4, Q5}) (9, 19)

Fig. 3: Transitions from the initial state in the abstract game

from Example 5 where αQ(17) = Q4 and αQ(23) = Q5.

For Q = {Qi}
n
i=1, we define a function αQ : Lt → Q

by αQ(lt) = Q for the unique Q ∈ Q with lt ∈ Q. We

denote also with αQ : P(Lt) → P(Q) the abstraction

function defined by αQ(L) = {αQ(l) | l ∈ L}. We define

a concretization function γ : P(Q) ∪ Lt → P(Lt) such that

γ(lt) = {lt} for lt ∈ Lt, and γ(A) =
⋃

Q∈A Q if A ∈ P(Q).

Intuitively, the abstraction of a set L of locations of the

target is a set of elements of Q that cover L, and each of

them has non-empty intersection with L. The concretization

of a set of elements of Q is the set of locations of the

target formed by the union of these sets. Thus, we have

γ(αQ(L)) ⊇ L, which means that the belief of the agent

is overapproximated by the abstraction as desired.

Given a surveillance game structure G = (S, sinit, T, vis)
and an abstraction partition Q = {Qi}

n
i=1 of the set Lt, we

define the abstraction of G w.r.t. Q to be the game structure

Gabstract = αQ(G) = (Sabstract, s
init

abstract
, Tabstract), where

• Sabstract = (La×P(Q))∪(La×Lt) is the set of abstract

states, consisting of states approximating the belief sets

in the game structure Gbelief , as well as the states S;

• sinit
abstract

= (linita , linitt) is the initial abstract state;

• Tabstract ⊆ Sabstract × Sabstract is the transition relation

such that ((la, At), (l
′
a, A

′
t)) ∈ Tabstract if and only if

one of the following two conditions is satisfied:

(1) A′
t = l′t, l

′
t ∈ succt(γ(At)) and vis(la, l

′
t) = true ,

and l′a ∈ succa(la, lt, l
′
t) for some lt ∈ γ(At).

(2) A′
t = αQ({l

′
t ∈ succt(γ(At))|vis(la, l

′
t) = false}),

and l′a ∈ succa(la, lt, l
′
t) for some lt ∈ γ(At) and

some l′t ∈ succt(γ(At)) with vis(la, l
′
t) = false .

As for the belief-set game structure, the first condition

captures the successor locations of the target, which can be

observed from the agent’s current location la. Condition (2)

corresponds to the abstract belief set whose concretization

consists of all possible successors of all positions in γ(At),
which are not visible from la. Since the belief abstraction

overapproximates the agent’s belief, that is, γ(αQ(B)) ⊇ B,

the next-state abstract belief γ(A′
t) may include positions in

Lt that are not successors of positions in γ(At).

Example 5: Consider again the surveillance game from

Example 1, and the abstraction partition Q = {Q1, . . . , Q5},

where the set Qi corresponds to the i-th row of the grid.

For location 17 of the target we have αQ(17) = Q4,

and for 23 we have αQ(23) = Q5. Thus, the belief set

B = {17, 23} is covered by the abstract belief set αQ(B) =
{Q4, Q5}. Figure 3 shows the successors of the initial

state (4, 18) of the abstract belief-set game structure. The

concretization of the abstract belief set {Q4, Q5} is the set

{15, 16, 17, 18, 19, 20, 21, 22, 23, 24} of target locations. �

An abstract state (la, At) satisfies a surveillance predicate

pk, denoted (la, At) |= pk, iff |{lt ∈ γ(At) | vis(la, lt) =
false}| ≤ k. Simply, the number of states in the concretized

belief set has to be less than or equal to k. Similarly, for

a predicate p ∈ AP , we define (la, At) |= p iff for every

lt ∈ γ(At) it holds that (la, lt) |= p. With these definitions,

we can interpret surveillance objectives over runs of Gabstract.

Strategies (and winning strategies) for the agent and the

target in an abstract belief-set game (αQ(G), ϕ) are defined

analogously to strategies (and winning strategies) in Gbelief .

In the construction of the abstract game structure, we

overapproximate the belief-set of the agent at each step.

Since we consider surveillance predicates that impose upper

bounds on the size of the belief, such an abstraction gives

more power to the target (and dually less power to the agent).

This construction guarantees, as stated in Theorem 1, that the

abstraction is sound, meaning that an abstract strategy for the

agent that achieves a surveillance objective corresponds to a

winning strategy in the concrete game. Soundness follows

from the fact that the abstract belief game simulates the

concrete one. The following theorem formally states the

soundness property of the abstraction.

Theorem 1: Let G be a surveillance game structure, Q =
{Qi}

n
i=1 be an abstraction partition, and Gabstract = αQ(G).

For every surveillance objective ϕ, if there exists a win-

ning strategy for the agent in the abstract belief-set game

(αQ(G), ϕ), then there exists a winning strategy for the agent

in the concrete surveillance game (G,ϕ).

IV. ABSTRACTION PRECISION

The ideal choice of an abstraction partition is the one

that balances precision and computational burden. More

precisely, the abstraction should be precise enough for the

agent to satisfy its surveillance objective. On the other

hand, an abstraction that is too precise, often results in an

intractably large state space of the resulting game. Thus, a

good abstraction is one that gives the right level of precision

where it is needed, and is coarse (that is, generates fewer

abstract belief states) where precision is not needed. Thus,

choosing a good abstraction partition is often specific to

the game environment and the surveillance specification. In

section V, we present examples with user specified partitions

resulting in feasible abstract games.

In the previous section, we discussed that a winning

strategy for the agent in the abstract belief game corresponds

to a strategy for the agent in the concrete belief game.

This, fact does not hold in general for the abstract winning

strategies of the target. We refer to the abstract winning

strategies for the target as abstract counterexamples.

Given an abstract counterexample, there are two possi-

bilities: it can either be a counterexample in the concrete

belief game, meaning that the agent cannot satisfy the

surveillance objective, or it may exist due to the coarseness

of the abstraction partition. We now discuss in more detail

counterexamples in safety and liveness surveillance games.

The latter generalizes also to general surveillance objectives.

(4, 18)

(3, {Q4, Q5})(9, {Q4, Q5})

(a) Abstract counterexample tree

(4, 18)

(3, {17, 23}) (9, {17, 23})

(b) Concrete counterexample tree

Fig. 4: Abstract and corresponding concrete counterexample

trees for the surveillance game in Example 6.

A. Counterexamples for Safety Surveillance Properties

A winning strategy for the target in a game with safety

surveillance objective can be represented as a tree. An

abstract counterexample tree Cabstract for (Gabstract, pk) is

a finite tree, whose nodes are labelled with states in Sabstract

such that the following conditions are satisfied:

• The root node is labelled with the initial state sinit
abstract

.

• A node is labelled with an abstract state which violates

pk (that is, sabstract where sabstract 6|= pk) iff it is a leaf.

• The tree branches according to all possible transition

choices of the agent. Formally, if an internal node v is

labelled with (la, At), then there is unique A′
t such that:

(1) ((la, At), (l
′
a, A

′
t)) ∈ Tabstract for some l′a ∈ La, and

(2) for every l′a ∈ La such that ((la, At), (l
′
a, A

′
t)) ∈

Tabstract, there is a child v′ of v labelled with (l′a, A
′
t).

A concrete counterexample tree Cbelief for (Gbelief , pk)
is a finite tree defined analogously to an abstract counterex-

ample tree with nodes labelled with states in Sbelief .

Due to the overapproximation of the belief sets, not

every counterexample in the abstract game corresponds to

a winning strategy for the target in the original game.

An abstract counterexample Cabstract in (Gabstract, pk) is

concretizable if there exists a concrete counterexample tree

Cbelief in (Gbelief , pk), that differs from Cabstract only in the

node labels, and each node labelled with (la, At) in Cabstract
has label (la, Bt) in Cbelief for which Bt ⊆ γ(At).

Example 6: Figure 4a shows an abstract counterexample

tree Cabstract for the game (αQ(G), p1), where G is the

surveillance game structure from Example 1 and Q is the

abstraction partition from Example 5. The counterexample

corresponds to the choice of the target to move to one of

the locations 17 or 23, which, for every possible move of

the agent, results in an abstract state with abstract belief

B = {Q4, Q5} violating p1. A concrete counterexample tree

Cbelief concretizing Cabstract is shown in Figure 4b. �

B. Counterexamples for Liveness Surveillance Properties

The counterexamples for general surveillance properties

are directed graphs, which may contain cycles. In particular,

for a liveness surveillance property of the form pk each

infinite path in the graph has a position such that, from this

position on, each state on the path violates pk. An abstract

counterexample graph in the game (Gabstract, pk) is

a finite graph Cabstract defined analogously to the abstract

counterexample tree. The difference is that there are no

leaves, and that for each cycle ρ = v1, v2, . . . , vn with

v1 = vn in Cabstract that is reachable from v0, every node

vi in ρ is labelled with state si
abstract

where si
abstract

6|= pk.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Fig. 5: Agent locations on an (infinite)
path in the abstract counterexample
graph from Example 7. In the graph,
the first node is labelled with (4, 18),
the second with (9, {Q2}), and all
other nodes with some (la, {Q1, Q2}).

Example 7: We saw in Example 6 that in the safety

surveillance game (G, p1) the agent does not have a

winning strategy. We now consider a relaxed requirement,

namely, that the uncertainty drops to at most 1 infinitely of-

ten. We consider the liveness surveillance game (G, p2).
Let Q = {Q1, Q2} be a partition such that Q1, corre-

sponds to the first two columns of the grid in Figure 1a

and the set Q2 contains the locations from the other three

columns of the grid. Figure 5 shows an infinite path (in

lasso form) in the abstract game (αQ(G), p2). The

figure depicts only the corresponding trajectory (sequence of

positions) of the agent. The initial abstract state is (4, 18),
the second node on the path is labeled with the abstract state

(9, {Q2}), and all other nodes on the path are labeled with

abstract states of the form (la, {Q1, Q2}). As each abstract

state in the cycle violates p2, the path violates p2. The

same holds for all infinite paths in the existing abstract

counterexample graph. �

A concrete counterexample graph Cbelief for the belief

game (Gbelief , pk) is defined analogously.

An abstract counterexample graph Cabstract for the game

(Gabstract, pk) is concretizable if there exists a coun-

terexample Cbelief in (Gbelief , pk), such that for each

infinite path πabstract = v0
abstract

, v1
abstract

, . . . starting from

the initial node of Cabstract there exists an infinite path

πbelief = v0
belief

, v1
belief

, . . . in Cbelief starting from its initial

node. Furthermore, if vi
abstract

is labelled with (la, At) in

Cabstract, then the corresponding node vi
belief

in Cbelief is

labelled with (la, Bt) for some Bt ∈ P(Lt) for which

Bt ⊆ γ(At).

C. Counterexample-Guided Refinement

Since the game structures we consider are finite, and

counterexamples have finite representation, we can effec-

tively determine whether an abstract counterexample is con-

cretizable or not. In the first case we report the unreal-

izability of the surveillance objective. In the second case,

the counterexample can be used to determine which parts

of the abstraction need to be refined in order to eliminate

this, and possibly other, counterexamples. This analysis and

refinement procedure can be automated, and we refer the

reader to [12] for more details on the process. We remark

that even when the refinement is automated, the choice of

the initial abstraction often plays a crucial role in keeping

the size of the abstract game within feasible limits.

V. EXPERIMENTAL EVALUATION

We report on the application of our approach for surveil-

lance synthesis in two case studies. We have implemented

the proposed method in Python, using the slugs reactive

(a) Gridworld with a user provided
abstraction partition with 7 sets,
marked by black lines.

(b) Gridworld showing visibility of the
agent. All locations shown in black are
invisible to the agent.

Fig. 6: 10x15 gridworld with a surveillance liveness specifi-

cation. The agent is blue, and the target to be surveilled is

orange. Red states are obstacles.

(a) t1 (b) t3 (c) t4

(d) t5 (e) t6 (f) t7

Fig. 7: Evolution of the agent’s belief about the target’s

location as it moves to the goal and loses sight of the target.

Grey cells represent the locations the agent believes the

target could be in. We show the belief at different timesteps

t1, . . . , t7 (note that t2 is excluded for simplicity).

synthesis tool [10]. The experiments were performed on an

Intel i5-5300U 2.30 GHz CPU with 8 GB of RAM.

A. Liveness Surveillance Specification + Task Specification

Figure 6a shows a gridworld divided into regions. The

surveillance objective requires the agent to infinitely often

know precisely the location of the target (either see it, or have

a belief consisting of one cell). Additionally, it has to perform

the task of patrolling (visiting infinitely often) the green

’goal’ cell. Formally, the specification is p1∧ goal .

The agent can move up to 3 grid cells away at each step, and

the target can move 1 cell at each step. The sensor mode,

that is, the visibility function, used here is ’line-of-sight’ with

a range of 5 cells. The agent cannot see through obstacles

(shown in red) and cannot see farther than 5 cells away.

Using the abstraction partition of size 7 shown in Figure

6a, the overall number of abstract belief states is 15× 10 +
27 = 278 states. In contrast, solving the full belief game will

have in the order of 2150 states, which is a state-space size

that state-of-the-art synthesis tools cannot handle.

Figure 7 shows how the belief of the agent (shown in

grey) can grow quickly when it cannot see the target. This

growth occurs due to the coarseness of the abstraction, which

overapproximates the target’s true position. In 7 steps, the

agent believes the target can be anywhere in the grid that

(a) t5 (b) t7 (c) t9

Fig. 8: The agent has to search for the target in order to

lower its belief below the surveillance liveness specification.

(a) t1 (b) t3 (c) t4

(d) t5 (e) t6 (f) t7

Fig. 9: Evolution of the agent’s belief about the target’s

location in a game with an abstraction partition of size 12.

is not in its vision. It has to then find the target in order to

satisfy the surveillance requirement. Figure 8 illustrates the

searching behaviour of the agent when it is trying to lower

the belief below the threshold in order to satisfy the liveness

specification. The behaviour of the agent shown here will

contrast with the behaviour under safety surveillance which

will we look at next.

In this example, an abstraction partition of size 7 was

enough to guarantee the satisfaction surveillance specifica-

tion. For the purpose of comparison, we also solve the game

with an abstraction partition of size 12 to illustrate the change

in belief growth. Figure 9 shows the belief states growing

much more slowly as the abstract belief states are smaller,

and thus they more closely approximate the true belief of the

agent.

The additional abstraction partitions result in a much larger

game as the state space grows exponentially in the size

of the abstraction partition. Table I compares the sizes of

the corresponding abstract games, and the time it takes to

synthesize a surveillance controller in each case.

Size of abstraction partition Size of abstract game Synthesis time

7 278 237s
12 4346 810s

TABLE I: Comparison of synthesis times for the two cases

A video simulation of the synthesized surveillance strategy

against a target controlled by a human can be found at

http://goo.gl/YkFuxr.

B. Safety Surveillance Specification + Task Specification

Figure 10 depicts an environment created in Gazebo where

the red blocks model buildings. The drone is given full line

Fig. 10: A Gazebo environment where the red blocks are

obstacles that the drones cannot see past. The green drone

is the agent and the orange drone is the target.

of sight vision - it can detect the target if there is no obstacle

in the way.

In this setting, we enforce the safety surveillance objective

�p30 (the belief size should never exceed 30) in addition to

infinitely often reaching the green cell. The formal specifi-

cation is p30 ∧ goal . Additionally, the target itself is

trying to reach the goal cell infinitely often as well, which

is known to the agent.

We used an abstraction generated by a partition of size

6, which was sufficiently precise to compute a surveillance

strategy in 210 s. Again, note that the precise belief-set game

would have in the order of 2200 states.

We simulated the environment and the synthesized surveil-

lance strategy for the agent in Gazebo and ROS. In the

simulation, the target is being controlled by a human while

the agent responds using the synthesized surveillance strat-

egy. A video of the simulation can be found at http:

//goo.gl/LyC1gQ. This simulation shows a qualitative

difference in behaviour compared to the previous example.

There, in the case of liveness surveillance, the agent had more

leeway to completely lose the target in order to reach its goal

location, even though the requirement of reducing the size

of the belief to 1 is quite strict. Here, on the other hand, the

safety surveillance objective, even with a large threshold of

30, forces the agent to follow the target more closely, in order

to prevent its belief from getting too large. The synthesis

algorithm thus provides the ability to obtain qualitatively

different behaviour as necessary for specific applications by

combining different objectives.

C. Discussion

The difference in the behaviour in the case studies high-

lights the different use cases of the surveillance objectives.

Depending on the domain, the user can specify a combination

of safety and liveness specification to tune the behaviour

of the agent. In a critical surveillance situation (typical in

defense or security situations), the safety specification will

guarantee to the user that the belief will never grow too large.

However, in less critical situations (such as luggage carrying

robots in airports), the robot has more flexibility in allowing

the belief to grow as long as it can guarantee its reduction

in the future.

http://goo.gl/YkFuxr
http://goo.gl/LyC1gQ
http://goo.gl/LyC1gQ

VI. CONCLUSIONS

We have presented a novel approach to solving a surveil-

lance problem with information guarantees. We provided a

framework that enables the formalization of the surveillance

synthesis problem as a two-player, partial-information game.

We then presented a method to reason over the belief that

the agent has over the target’s location, which allows for

specifying and enforcing surveillance requirements. The user

can tailor the behaviour to their specific application by using

a combination of safety and liveness surveillance objectives.

The benefit of the proposed framework is that it allows us

to employ techniques successfully used in verification and

reactive synthesis to develop efficient methods for solving the

surveillance problem. There are several promising avenues of

future work using and extending this framework. Some of the

directions currently being explored are the following:

• Synthesizing distributed strategies for multi-agent

surveillance in a decentralized manner. Compositional

synthesis methods can be used to avoid the blow-up

of the state space that occurs in centralized synthesis

procedures as the number of surveillance agents grows.

• Incorporating static sensors or alarm triggers for the

mobile agent(s) to coordinate with.

• Allowing for sensor models to include uncertainty and

detection errors while still providing surveillance guar-

antees.

Acknowledgement: This work was supported in part by

grant Sandia National Lab 801KOB, grant ARO W911NF-

15-1-0592, and grant DARPA W911NF-16-1-0001.

REFERENCES

[1] T. Bandyopadhyay, M. H. Ang, and D. Hsu, Motion Planning for 3-

D Target Tracking among Obstacles. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 267–279.

[2] H. H. Gonzalez-Banos, C.-Y. Lee, and J. C. Latombe, “Real-time com-
binatorial tracking of a target moving unpredictably among obstacles,”
in Proc. ICRA 2002, vol. 2, May 2002, pp. 1683–1690 vol.2.

[3] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion
in mobile robotics,” Autonomous Robots, vol. 31, p. 299, Jul 2011.

[4] N. Basilico, N. Gatti, and F. Amigoni, “Patrolling security games:
Definition and algorithms for solving large instances with single
patroller and single intruder,” Artif. Intell., vol. 184-185, June 2012.

[5] S. Kreutzer, Graph Searching Games. Cambridge University Press,
2011, pp. 213–261.

[6] L. Doyen and J. Raskin, Games with Imperfect Information: Theory

and Algorithms. Cambridge University Press, 2011, pp. 185–212.

[7] K. Chatterjee, L. Doyen, and T. A. Henzinger, “A survey of partial-
observation stochastic parity games,” Formal Methods in System

Design, vol. 43, no. 2, pp. 268–284, Oct 2013.

[8] J. H. Reif, “The complexity of two-player games of incomplete
information,” J. Comput. Syst. Sci., vol. 29, no. 2, pp. 274–301, 1984.

[9] D. Berwanger and L. Doyen, “On the power of imperfect information,”
in Proc. FSTTCS 2008, ser. LIPIcs, vol. 2, 2008, pp. 73–82.

[10] R. Ehlers and V. Raman, “Slugs: Extensible GR(1) synthesis,” in Proc.

CAV 2016, ser. LNCS, vol. 9780. Springer, 2016, pp. 333–339.

[11] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Proc. CAV 2000,
ser. LNCS, vol. 1855. Springer, 2000, pp. 154–169.

[12] S. Bharadwaj, R. Dimitrova, and U. Topcu, “Synthesis of surveillance
strategies via belief abstraction,” 09 2017.

[13] J.-C. Chin, Y. Dong, W.-K. Hon, C. Y.-T. Ma, and D. K. Y. Yau,
“Detection of intelligent mobile target in a mobile sensor network,”
IEEE/ACM Trans. Netw., vol. 18, no. 1, pp. 41–52, Feb. 2010.

[14] A. Antoniades, H. J. Kim, and S. Sastry, “Pursuit-evasion strategies
for teams of multiple agents with incomplete information,” in Proc.

CDC 2003, vol. 1, Dec 2003, pp. 756–761 Vol.1.
[15] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry, “Prob-

abilistic pursuit-evasion games: theory, implementation, and experi-
mental evaluation,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 5, pp. 662–669, Oct 2002.

[16] H. J. Kim, R. Vidal, D. H. Shim, O. Shakernia, and S. Sastry,
“A hierarchical approach to probabilistic pursuit-evasion games with
unmanned ground and aerial vehicles,” in Proc. CDC 2001, vol. 1,
2001, pp. 634–639 vol.1.

[17] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
Proc. POPL’89. ACM, 1989, pp. 179–190.

[18] N. Piterman, A. Pnueli, and Y. Sa’ar, Synthesis of Reactive(1) Designs.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 364–380.

[19] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, Nov 2012.

[20] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “From structured
english to robot motion,” in Proc. IROS 2007, Oct 2007, pp. 2717–
2722.

[21] R. van der Meyden and M. Y. Vardi, “Synthesis from knowledge-based
specifications (extended abstract),” in Proc. CONCUR’98, ser. LNCS,
vol. 1466. Springer, 1998, pp. 34–49.

[22] T. A. Henzinger, R. Jhala, and R. Majumdar, “Counterexample-guided
control,” in Proc. ICALP 2003, 2003, pp. 886–902.

[23] R. Dimitrova and B. Finkbeiner, “Abstraction refinement for games
with incomplete information,” in Proc. FSTTCS 2008, ser. LIPIcs,
vol. 2, 2008, pp. 175–186.

[24] J. Fu, R. Dimitrova, and U. Topcu, “Abstractions and sensor design in
partial-information, reactive controller synthesis,” in Proc. ACC 2014.
IEEE, 2014, pp. 2297–2304.

[25] C. Baier and J. Katoen, Principles of model checking. MIT Press,
2008.

[26] D. A. Martin, “Borel determinacy,” Annals of Mathematics, vol. 102,
no. 2, pp. 363–371, 1975.

	INTRODUCTION
	GAMES WITH SURVEILLANCE OBJECTIVES
	Surveillance Game Structures
	Belief-Set Game Structures
	Temporal Surveillance Objectives
	Incorporating Task Specifications
	Surveillance Synthesis Problem

	BELIEF SET ABSTRACTION
	 ABSTRACTION PRECISION
	Counterexamples for Safety Surveillance Properties
	Counterexamples for Liveness Surveillance Properties
	Counterexample-Guided Refinement

	EXPERIMENTAL EVALUATION
	Liveness Surveillance Specification + Task Specification
	Safety Surveillance Specification + Task Specification
	Discussion

	CONCLUSIONS
	References

