
International Journal of Networked and Distributed Computing
Vol. 8(2); March (2020), pp. 67–75

DOI: https://doi.org/10.2991/ijndc.k.200213.001; ISSN 2211-7938; eISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

Research Article

Solving MTU Mismatch and Broadcast Overhead of
NDN over Link-layer Networks

Thongchai Chuachan1, Karim Djemame2, Somnuk Puangpronpitag1,*

1Information Security and Advanced Network Research Group, Faculty of Informatics, Mahasarakham University, Mahasarakham 44150, Thailand
2School of Computing, Faculty of Engineering, University of Leeds, Leeds LS2 9JT, UK

1.  INTRODUCTION

Named Data Networking (NDN) [1,2] is one of the future internet
architectures using the data centric network model. It is a proposal
of the Information Centric Network (ICN) architecture, defined by
the Internet Research Task Force (IRTF) [3]. NDN is expected to be
more efficient for data distribution. For NDN deployment, it can be
implemented on top of the current Transmission Control Protocol/
Internet Protocol (TCP/IP) stack, or deployed directly over a link-
layer network without the TCP/IP protocol stack. NDN over the TCP/
IP stack would make NDN possible while the old internet is still run-
ning. However, NDN over the link-layer will cut off TCP/IP overhead.

Several protocols for NDN or ICN over the link-layer have been
proposed, such as Link-layer Protocol for NDN (NDNLP) [4],
Fragmentation with Integrity Guarantees and Optional Authen
tication (FIGOA) [5], ICN “Begin–End” Hop-by-Hop Fragmentation
(BEF) [6], and On-broadcast Self-learning (OBSL) [7]. However,
they still face two major challenges, namely broadcast overhead and
Maximum Transmission Unit (MTU) mismatch. First, the previ-
ously proposed NDNLPs have mainly relied on a broadcast scheme
that could drastically increase network overhead. Although a mecha-
nism to create unicast faces over an NDN link layer has been recently
proposed [7], it still needs a manual configuration. There has been
so far no proper mechanism to manage unicast faces. Second, NDN
over link-layer networks should also support a heterogeneous net-
work environment. In such an environment, MTU mismatch is a
serious problem, causing transmission failure.

In this paper, a Neighborhood Discovery Protocol for NDN, named
NDN-NDP, has been proposed to solve the previously described
problems. The NDN-NDP focuses on creating and managing uni-
cast link-layer faces to reduce the number of broadcast packets. In
addition, an Adaptive MTU (aMTU) has also been designed into
NDN-NDP to solve the MTU mismatch problem. Our NDN-NDP
has been implemented by extending Named Forwarding Daemon
(NFD) modules [8]. Performance evaluation has been done using
a Common Open Research Emulator (CORE) [9] and a test-bed.
Experimental results have demonstrated that NDN-NDP can solve
the MTU mismatch issue. It also reduces delay and the number of
unsatisfied interest packets. Furthermore, NDN-NDP can increase
network throughput. So, NDN-NDP effectively enhances the NDN
over link-layer networks.

The rest of this paper is structured as follows. Section 2 summa-
rizes NDN concepts and mechanisms. Problems and motivations
are discussed in Section 3. Section 4 explains the design and
implementation of our NDN-NDP. In Section 5, the experiments
on MTU mismatch problems are presented. The experiments on
broadcast overhead problem are discussed in Section 6. In Section 7,
we discuss and compare our NDN-NDP with related work. In the
last section, the conclusions of this work are given.

2.  NDN CONCEPTS AND MECHANISMS

In this section, we briefly introduce an overview of NDN architec-
ture [1,2], including NDN model, NFD, face system, and NDN over
link-layer networks.

A RT I C L E I N F O
Article History

Received 04 June 2019
Accepted 20 September 2019

Keywords

Named data networking
NDN link-layer
information centric networks
broadcast overhead
MTU mismatch

A B S T R AC T
Named Data Networking (NDN) has been considered as a promising Internet architecture for the future data-centric communication.
In particular, NDN over link-layer networks would cut off the overheads of Transmission Control Protocol/Internet Protocol (TCP/IP),
and enhance the efficiency of data distribution. However, there are two main unsolved issues for the NDN link-layer, namely broadcast
overhead and Maximum Transmission Unit (MTU) mismatch. In this paper, we have therefore designed and implemented an NDN
Neighborhood Discovery Protocol, named NDN-NDP, to enable a unicast data transmission over the link-layer. Furthermore, our
NDN-NDP has included a negotiation mechanism to fix the MTU mismatch issue. In comparison to previously proposed NDN
link-layer technologies, we can fix both MTU mismatch and broadcast overhead problems. Through emulation and experiments on a
test-bed, we have also compared our NDN-NDP with the Link-layer Protocol for NDN (NDNLP), which is the most widely deployed
NDNLP. From our experiments, NDN-NDP can efficiently fix MTU mismatch and broadcast overhead issue.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: somnuk.p@msu.ac.th

https://doi.org/10.2991/ijndc.k.200213.001
https://www.atlantis-press.com/journals/ijndc
http://creativecommons.org/licenses/by-nc/4.0/
mailto:somnuk.p%40msu.ac.th?subject=

68	 T. Chuachan et al. / International Journal of Networked and Distributed Computing 8(2) 67–75

Figure 1 | A sampled face table.

Figure 2 | An example of FIB.

2.1.  Named Data Networking Model

Named data networking is a future internet model using an infor-
mation centric paradigm. It is actually a variant or a proposal of
ICN architecture, defined by the IRTF. There are also other propos-
als of ICN architecture, such as Content Centric Network (CCN)
[1], Data-Oriented Network Architecture (DONA) [10], Network
of Information (NetInf) [11] and so on. Comparing with the cur-
rent internet model, NDN and other ICN proposals would provide
more efficiency for information distribution. Two types of packets,
namely interest and data, have been used in this model. The interest
packet is sent by a consumer (aka., receiver), to request a specific
content from a content producer. This requested content is referred
by a unique name. It is called a named prefix. To fetch the content,
the interest packet follows name-routing paths toward the pro-
ducer. The data packets, carrying the requested content, are then
delivered to the consumer. These data packets are originated from
the producer, and then may be cached in any intermediate NDN
forwarders (i.e., routers) in a reverse path of the interest packet.

2.2.  Named Forwarding Daemon

Named Forwarding Daemon [8] is the process of an NDN for-
warder, acting as an intermediate node between consumers and
producers. It plays a key role to forward interest and data packets in
NDN networks. NFD has been implemented with three main com-
ponents, namely Content Store (CS), Forwarding Information Base
(FIB) and Pending Interest Table (PIT). When an incoming interest
packet arrives, CS is searched for the desired content. If the content
exists, NFD then immediately forward data packets of the desired
content from CS to the consumer. Otherwise, NFD searches PIT
to check whether the interest packet of the desired content has
already been forwarded toward a content producer. If so, the NFD
aggregates the interest packet into the transient PIT. In case that CS
and PIT have been missed, FIB will be used to select routing paths
to fetch the desired content. The content producer generates data
packets, and returns them in a reverse path to the consumer. On
the reverse path back to the consumer, the data packets may also be
cached in the CS of the intermediate nodes. In addition, these data
packets have been digitally signed to ensure data integrity.

2.3.  Face System

To forward NDN packets, NFD abstracts lower-level network
mechanism as faces. So, NDN Face System (FS) [8] is a crucial ele-
ment to identify a communication link. The NDN community uses
the term face instead of interface since NDN packets are not only
forwarded over hardware network interfaces, but also exchanged
directly with application processes within a machine [1]. An NDN
face is identified by its face ID (FID). It is represented as a map
of remote Uniform Resource Identifier (URI) to a local URI with
some parameters, as shown in Figure 1.

Figure 1 represents a sampled face table, maintained at each
node. The FID of 1 is an example of application process faces. The
FID of 2 is a sampled face of NDN over the TCP/IP stack. This
face uses the User Datagram Protocol (UDP) as a communica-
tion link. It represents a map of remote URI, locating over an

IP address of 219.223.222.5, to a local URI, locating over an IP
address of 202.28.34.249. This face is then mapped to remote
named-prefixes by FIB (as shown in Figure 2) to specify routes
to fetch some specific contents.

The FID of 4 is a face for NDN over link-layer networks. It maps
a remote URI, “ether://[01:00:5e:00:17:aa]”, to a local URI, “dev://
ens3”, which is an Ethernet local face. To send and receive interest
and data packets in NDN over an Ethernet link-layer network, a
multicast address of 01:00:5e:00:17:aa is generally used, as shown
from the last sampled face (FID = 4). This address is known as “the
default ICN Multicast Address (ICN-MCAST)”. All NDN-enabled
devices on the Ethernet link-layer network must join to this mul-
ticast address. So, this technique is actually broadcasting to all
NDN-enabled devices on the link-layer network. This paper calls
this face as “NDN Link-layer Broadcast Face (NLBF)”. Deploying
the NLBF can flood the link-layer network, causing broadcast over-
head (further discussed in Section 3.2). To avoid the overhead, it
is very necessary to design new link-layer unicast faces for NDN
over link-layer networks. During finishing our experiments and
on the process of writing this paper, we have found that the NDN
community has initially proposed mechanism to manually create
unicast faces. However, there is still no mechanism to automatically
manage the NDN unicast faces.

2.4.  NDN over Link-layer Networks

To deploy NDN directly over link-layer networks, a Hop-By-Hop
Fragmentation and Reassembly (HBH-FR) [4] technique is used.
HBH-FR generates frame-packets according to the MTU of the
local Network Interface Card (NIC), and broadcast them over the
link-layer networks.

To avoid NDN broadcast scheme, a link-layer unicast face must be
created and inserted into a face table. This process requires a target
Media Access Control (MAC) address, and is still an unsolved issue
in NDN over link-layer networks.

	 T. Chuachan et al. / International Journal of Networked and Distributed Computing 8(2) 67–75	 69

Deploying NDN directly over link-layer networks without the
TCP/IP protocol stack would reduce huge overheads. This over-
head cut-off provides an efficiency for data distribution and would
help many modern network applications evolve rapidly. However,
the design of NDN over link-layer networks is still at its infant-
phase. NDNLP [4], FIGOA [5] and BEF [6] are among the initially
proposed NDN link-layer protocols. These protocols still suffer
some problems, discussed in the next section.

3.  PROBLEMS AND MOTIVATIONS

Previous proposals of NDN link-layer protocols still face two main
problems, namely MTU mismatch and broadcast overhead, as
explained in the following sections.

3.1.  MTU Mismatch

Maximum Transmission Unit is the largest possible payload of
frame-packets that can be sent in a particular link-layer network.
In general, the current Internet uses a standard Ethernet’s MTU size
of 1500 bytes, almost universally across networks. However, Ken
and Monkul [12] have pointed out that various network devices
on the Internet have different MTU sizes, varying from 127 bytes
for an Internet of Thing (IoT) [13] to 65820 bytes for a fibre [14].
For example, constrained low-energy links in IoT networks have
very small MTUs [13,15]. The MTU size is only 127 bytes for IEEE
802.15.4-2006 [16]. In such a heterogeneous MTU environment, if a
sender tries to transmit a packet too big for the receiver to cope with,
the transmission could fail. This problem is called “MTU mismatch”.

To solve MTU mismatch problem for the current Internet, there
have been several proposals. For example, IPv6 Path MTU dis-
covery [17] has been proposed to find the minimum MTU on the
transmission path. Kushalnagar et al. [18], have also proposed an
adaptation layer between a link-layer and a network layer to miti-
gate the problem. For NDN, several studies have also pointed out
that the MTU mismatch would cause a serious problem [5,19].

3.2.  Broadcast Overhead

To send and receive interest and data packets in NDN over a
link-layer network, the broadcast face or NLBF (as mentioned in
Section 2.3) is deployed. Broadcasting on the link-layer helps sim-
plify content distribution. This technique is also useful for reducing
the management of remote destination MAC addresses. However,
broadcasting could severely flood NDN local devices, causing net-
work overheads. So, to avoid the broadcast overhead, a unicast
scheme for NDN over link-layer networks should be designed and
implemented.

To create a unicast face in NDN, a remote destination MAC address
must be learned and mapped. Recently, Shi et al. [7], has proposed
OBSL mechanism to learn and create a unicast face. Their mech-
anism floods the first interest packet to observe where a returned
data comes from, and adds the unicast face over IP. However, this
solution cannot work in a native link-layer network. The NLBF is
still used in such a case. So, the broadcast overhead is still occurred
in the NDN link-layer networks even with the OBSL mechanism.

4.  DESIGN AND IMPLEMENTATION

To solve the MTU mismatch and broadcast overhead, we propose
a novel NDN-NDP for NDN link-layer, and name it “NDN-NDP”.
Our NDN-NDP includes the following mechanisms, namely NDN
Link-layer Unicast Face (NLUF), NDN-NDP operations, and
aMTU. The details of our design and implementation are explained
in the following sub-sections.

4.1.  NDN Link-layer Unicast Face

In NDNLP [4], NDN Link-layer Broadcast Face (NLBF) is com-
monly used for communicating over NDN link-layer networks.
So, we propose a new NLUF, that supports unicast transmission
over link-layer networks. This NLUF provides the unicast face for
OBSL [7] in link-layer networks. In addition, not only NLUF can
reduce the broadcast overhead, but it can also fix the MTU mis-
match problem. The details of creating and deploying NLUF are
discussed as follows.

	 (i)	 First of all, an aMTU table is created and maintained at each
node, to record an aMTU size of each face (in the face table),
as shown in Figures 3 and 4. After that, the face MTU of each
NLUF is set to aMTU to avoid the MTU mismatch. The details
of an adaptive MTU selection is further discussed in Section 4.3.

	 (ii)	 In order to support unicast communication over link-layer
networks, we have to map a destination named prefix to a
destination unicast MAC address. To do so, we use NLUFs
and FIB as follows. At each NDN node, an NLUF is created
after learning the destination MAC addresses. This NLUF
maps a destination unicast MAC address with a link-layer
local face in the face table (as shown in Figure 3). After that,
NLUF may be mapped further to named prefixes in FIB (as
shown in Figure 5).

Figure 3 | A face table.

Figure 4 | An adaptive MTU table.

70	 T. Chuachan et al. / International Journal of Networked and Distributed Computing 8(2) 67–75

Figure 5 | Forwarding information base.

Figure 6 | NDN-NDP operations.

Examples are shown in Figures 3–5. The face, of FID = 2, is an
NLUF. It maps a destination MAC address of 18:65:90:b5:e7:f0 to
an Ethernet local face (dev://ens3), as shown in the face table
(in Figure 3). This face uses a very big aMTU size of 9000 bytes (as
shown in the adaptive MTU table, in Figure 4) to transfer a movie.
In FIB (shown in Figure 5), this NLUF is further mapped to a des-
tination named-prefix of “/lab/isan/movie1”.

The NLUF, with FID = 4, is mapped from an Ethernet local face
(dev://ens3) to a destination MAC address of 98:01:a7:ac:1a:65,
which is the MAC address of a forwarder (router). The MTU for this
NLUF is 1280 bytes. In FIB, this NLUF is further mapped to a desti-
nation named prefix of “/”, which is the default named prefix. For any
desired named-prefixes with no route (in FIB) to data packets, this
NLUF (FID = 4) will be chosen to forward an interest packet to the
forwarder. The forwarder then forward the interest packet further to
fetch the contents from outside Local Area Network (LAN).

4.2.  NDN-NDP Operations

NDN-NDP is deployed to learn the destination MAC addresses,
and map a destination named prefix to destination MAC addresses.
The overall operations of NDN-NDP are illustrated in Figure 6.
From the figure, there are several end-user devices on a link-layer
network, including node A and node B. Node A and B have 9000
and 1500 bytes of MTUs respectively. Node A is an NDN forwarder.
The NDN-NDP operations can be explained as the following steps:

	 (i)	 Each node, for example node A, periodically broadcasts a
special interest packet, named Neighbor Discovery Interest
(NDI), to all NDN local devices on the same link-layer net-
work at every heartbeat interval (Th). The “name” field of this
NDI consists of an NDN-NDP identifier, a device’s MAC
address, an interface MTU, and an optional named prefix (as

shown in the step-1 of Figure 6). For example, an NDI name
is “/ndp/c0:c1:c0:13:fb:64/9000/prefix=/ndp” is an NDN-
NDP identifier. c0:c1:c0:13:fb:64 presents the MAC address
of node A. It is followed by the MTU of node A, which is
9000 bytes. At the end, “prefix=/” is the default named prefix,
showing that node A can act as a forwarder to fetch the inter-
net contents by forwarding interest packets further. If node A
is a producer, the prefix will show the named prefix of node A,
for example “prefix=/ndn/uk/ac/leeds/ node/A”. However, if
node A is a consumer, this prefix part will not exist.

	 (ii)	 Neighbor Discovery Interest from node A will arrive at all
other NDN nodes in its link-layer network. Each node that
received NDI from node A then responds as follows. For
instance, node B, after receiving NDI from node A, will
choose an aMTU from the minimum between its MTU and
node A’s MTU. From this example, aMTU is 1500 bytes.
Node B can then create an NLUF to node A with the MTU
size equal to aMTU. After creating the NLUF corresponding
to the NDI of node A, node B will ignore all incoming NDIs
from node A. Yet, it will deploy and maintain the created
NLUF for communicating with node A.

	 (iii)	 If a named prefix (in this example, “/”) is attached in NDI,
node B will map the NLUF to the named prefix in FIB. For
receiving NDI without a prefix part, neighbor nodes will create
NLUF without adding any named prefix to FIB.

	 (iv)	 Furthermore, node B responds by sending a Neighbor Reply
Data (NRD) packet back to node A via the NLUF. The name
field of NRD is the same as the received NDI. This NRD con-
tains two important information for node A: aMTU and the
MAC address of node B. NRD must also be digitally signed in
order to be validated in the next step.

	 (v)	 After receiving NRD from node B and validating its legitimacy,
node A creates a new NLUF to node B, as shown in step-3 in
Figure 6. This NLUF has its MTU size equal to aMTU.

	 (vi)	 After NLUFs between node A and B have been successfully cre-
ated, the NDN communication between these two nodes over
the link-layer network can be done in the unicast mode. An idle
NLUF for a period of time will be destroyed, assuming that the
link has been disconnected.

	(vii)	 To keep NLUFs alive, both A and B maintain their NLUFs by
sending a special interest message (called “NLUF maintenance
message”) to each other for every Th. Without receiving the
NLUF maintenance message for a certain period of time (t), the
NLUF record will be deleted.

4.3.  Adaptive MTU

To solve the MTU mismatch, this work proposes to use the min-
imal hop-by-hop MTU between two nodes as an aMTU of their
faces. By exchanging NDI and NRD between two nodes in the
NDN-NDP operations (as described in Section 4.2), the minimum
MTU between them is selected as aMTU for HBH-FR. Figure 7
illustrates an example of aMTU. According to the figure, there are
three nodes, including A, B and C. Node A and C supports jumbo-
frame [20] MTU of 9000 bytes. Node B is an IoT device, merely
supporting MTU of 127 bytes. According to NDN-NDP operations,

	 T. Chuachan et al. / International Journal of Networked and Distributed Computing 8(2) 67–75	 71

Figure 7 | An example of adaptive MTUs.

Figure 8 | The test-bed scenario to evaluate MTU mismatch problem.
(a) varying producer’s MTU sizes, (b) varying consumer’s MTU sizes.

node A propagates an NDI packet, carrying a device’s MTU. Node
B then compares the received MTU with its local NIC’s MTU, and
creates an NLUF to node A with an aMTU of 127 bytes. Node B
then responses the aMTU value back to inform node A via an NRD.
Node A finally creates a new NLUF with the aMTU of 127 bytes to
node B. For node A and node C operations, NLUFs will be created
by using the same operations as node A and node B, and vice versa.

4.4.  NLUF Security

To avoid a similar Address Resolution Protocol (ARP)-spoof attack
in NDN over link-layer networks, a security vulnerability in a clas-
sical Ethernet has been explored. From the literature [21,22], ARP-
spoof can deviate a communication path to capture and manipulate
sensitive information. It finally leads to denied of service attack,
replay attack and man-in-the-middle attack. To protect against the
similar problem, NDN over link-layer networks needs a verifica-
tion of interest and data packets before making a unicast as the
followings:

	 (i)	 Signature: The digital signature in an NRD packet must be ver-
ified before taking any actions.

	 (ii)	 Verification: The incoming NRD packet must be corresponded
to the outgoing NDI packet. This is done by using a nonce.

	 (iii)	 Capturing attacks: Unsolicited NRD packets have been ana-
lyzed to quarantine a risky behavior of neighbor nodes.

	 (iv)	 Dropping attacks: By capturing and analyzing unsolicited NRD
packets, we use a threshold (T), which is adjustable according
to network environment, to recognize undesired behaviors, and
drop all NRD packets received from attackers.

Even with the above security procedures, other in-depth security
issues would be further studied. It is not in the scope of this paper,
but should be done as future work.

4.5.  Implementation

We have built our NDN-NDP protocol by extending NFD-0.6.5 [8].
The implementation has been done to handle NDN-NDP opera-
tions, aMTU selection and NLUF management. For NDN-NDP
packet processing, our extended NFD is compatible with common
interest and data packets. An identification of NDN link-layer is
defined as 0x8624. The NLUF management is implemented in the
NFD Ethernet factory. It connects with the NFD Ethernet transport

for multiplexing frame-packets. Finally, validation tests on our
implementation have been done extensively.

5. � EXPERIMENTS ON MTU MISMATCH
PROBLEM

5.1.  Experiment Setup

To experiment on the MTU mismatch issue, we have setup a test-bed
as shown in Figure 8. An ESP8266 IoT board [23] and a Raspberry
PI-3 model B (installed with Ubuntu mate 16.04) are deployed as a
producer and a consumer, and vice versa. In Figure 8a, the Raspberry
PI-3 acts as the producer, while the ESP8266 acts as the producer
in Figure 8b. A micro NFD has been implemented using MicroPython
[24] to process basic NDN functionalities for ESP8266 IoT board. NFD
version 0.6.5 has been deployed in Raspberry PI-3. Two nodes have
been connected to each other using IEEE 802.11n, 2.4 GHz signal.

The details of MTU setting are as follows. In Figure 8a, the ESP8266
IoT board (acted as a consumer) uses the universal 1500-byte MTU.
For the producer (Raspberry PI-3), the MTU sizes have been varied
as 127, 1500 and 9000 bytes to represent different MTU sizes. The
127-byte MTU represents a small MTU size of several IoT devices
[13,15,16]. The 9000-byte MTU represents the jumbo-frame [20].
The 1500-byte MTU represents the Ethernet MTU, which is the most
widely deployed MTU size. In Figure 8b, the producer (ESP8266)
uses an MTU size of 1500 bytes, while the consumer (Raspberry PI-3)
deployed different MTU sizes, 127, 1500 and 9000 bytes respectively.

The objective of our experiments is to observe the MTU mismatch
problem by checking the success or failure of data transmission
using different MTU sizes between the producer and the consumer.
If the MTU mismatch occurs, NDN packets would be dropped and
the transmission would fail.

For each experiment, NDN packets are sent continuously for
10 min. To compare our protocol with NDNLP, the experiments
have been run twice: one for NDN-NDP and the other one for
NDNLP. Moreover, each experiment has been repeatedly run for
30 times to ensure the consistency.

5.2.  Experimental Results

The experimental results have shown that NDN-NDP has no
problem with the MTU mismatch, while NDNLP has a serious
problem with MTU mismatch. As shown in Tables 1 and 2, NDN-
NDP can transmit packets successfully for all different sizes of
MTUs between the producer and the consumer. Yet, NDNLP
has failed in two scenarios due to the MTU mismatch problem.

72	 T. Chuachan et al. / International Journal of Networked and Distributed Computing 8(2) 67–75

In Table 1, NDNLP transmission is failed when the producer
with the 9000-byte MTU size trying to send to the consumer
with 1500-byte MTU. In Table 2, NDNLP transmission is also
failed when the producer with the 1500-byte MTU trying to send
to the consumer with 127-byte MTU. Summarily, NDNLP suf-
fers the MTU mismatch problem. Its transmission will fail if the
MTU size of the receiver is smaller than the MTU of the sender.
On the other hand, our NDN-NDP has successfully solved the
MTU mismatch problem using its adaptive MTU mechanism.

6. � EXPERIMENTS ON BROADCAST
OVERHEAD PROBLEM

6.1.  Experimental Setup

For broadcast overhead, an emulation technique is deployed to
evaluate the performance of our protocol. CORE [9] is used to emu-
late our experimental test-bed. The NFD version 0.6.5 is deployed.
Ethernet is used as a link-layer network to handle frame-packets.

For experimental network scenario, a grid topology has been
chosen as shown in Figure 9. Three NDN producers, nine NDN
forwarders, and five NDN consumers are connected on the topology.

Table 1 | Experimental results of scenario I (Figure 8a),
a consumer MTU’s size for all cases equals to 1500 bytes

Producer
MTUs (bytes)

The success of transmission

NDN-NDP NDNLP

127 Successful Successful
1500 Successful Successful
9000 Successful Failed

Table 2 | Experimental results of scenario II (Figure 8b),
a producer MTU’s size for all cases equals to 1500 bytes

 Consumer
MTUs (bytes)

The success of transmission

NDN-NDP NDNLP

127 Successful Failed
1500 Successful Successful
9000 Successful Successful

Figure 9 | An experimental scenario.

P1, P2 and P3 provide NDN contents using ndnputchunks [8]. Five
NDN consumers are connected at the R2 forwarder, and simultane-
ously retrieve data packets from P1, P2 and P3 by sending interest
packets through the forwarders to consume all available band-
width. The experimental parameters are described as follows:

	 (i)	 Content: A file size to generate NDN data packets is 1 Megabyte.
The ndnputchunks has been used to generate these data packets.

	 (ii)	 Link-speed: All links in the scenario are set to 100 Mbps.

	 (iii)	 Link-layer protocol: The Ethernet is the only available commu-
nication channel in this experiment.

	 (iv)	 Strategy layer: A self-learning strategy of OBSL [7] is used in
NDN strategy layer.

	 (v)	 Data freshness period: A freshness period of NDN data packets
is set to 1 s.

	 (vi)	 FIB: Due to our multi-hop network scenario, FIB in our experi-
ment nodes have been populated by using self-learning protocol.
The first parameter is to use NDNLP to combine with OBSL.
The second parameter is to use our NDN-NDP to provide
NLUFs for OBSL.

	(vii)	 Heartbeat interval (Th): This heartbeat interval is the interval
of broadcasting NDI, which is very important to create and
maintain unicast faces. By increasing the Th, it is better in terms
of broadcast packet reduction. However, too long Th could
increase delay for creating unicast faces, and might be unsuitable
in terms of network responsiveness. In the other way, too short
heartbeat interval could also trigger NDN to create unnecessary
broadcast packets. So, we have tested parameter sensitivity for
this heartbeat interval, and have found that 1–3 s are suitable
for both responsiveness and broadcast overhead. For the exper-
imental results reported in the next section, Th is set to 3 s.

	(viii)	 Timeout: Outgoing interest packets that take too long time to
response will be terminated. We use the default NFD timeout
value (10 s) for our experiments.

In our experiments, we compare our NDN-NDP with NDNLP,
which is the most widely deployed NDN link-layer protocol. OBSL
has been also used to support FIB management in the link-layer
networks. Each experiment is to download data packets from
P1, P2 and P3 for C1, C2, C3, C4, and C5. Moreover, each experi-
ment has been repeatedly run for 30 times. Experimental results are
averaged and quoted from the 30 runs with respect to a confidence
interval of 95%.

The number of broadcast packets, network throughput, delay and
the number of unsatisfied interests are used as our performance
metrics. Each metric can be described as follows:

	 (i)	 Number of broadcast packets: Broadcast packets in an NDN
link-layer network are actually the multicast packets, sent over
the default ICN-MCAST. By using nfd status report, all incom-
ing interest and data broadcast packets have been counted.
This metric indicates broadcast overhead of NDN link-layer
networks.

	 (ii)	 Network throughput: Network throughput is the rate of suc-
cessful data packets, delivered over the experimental NDN
link-layer. It is represented in megabits per second (Mbps).
We use ndncatchunk [8] to report the averaged network

	 T. Chuachan et al. / International Journal of Networked and Distributed Computing 8(2) 67–75	 73

Figure 10 | The numbers of broadcast interests and data packets.

Figure 11 | Network throughput.

Figure 12 | Delay.

throughput of our network nodes. This metric indicates the
efficiency of NDN link-layer networks.

	 (iii)	 Delay: Delay is the averaged time from sending interest pack-
ets until receiving data packets. It is reported in millisecond
(ms) using ndncatchunk report. The lower the delay the
better the performance.

	 (iv)	 Number of unsatisfied interests: The number of unsatisfied
interests is used to count outgoing interest packets with no
returned data packets. It would indicate the problems of NDN
forwarding process, resulting from network broadcast over-
head, MTU mismatch, and other problems. The more the
number of unsatisfied interests, the worse the performance is.

6.2.  Experimental Results

For the broadcast overhead problem, the experimental results for
each metric are discussed in the following sub-sections.

6.2.1.  Number of broadcast packets

In our experiments, the number of broadcast interest packets and
the number of broadcast data packets between NDN-NDP and
NDNLP are compared. For NDN-NDP, the number of broadcast
packets also includes the extra NLUF maintenance messages and
NDIs of our proposed mechanism. The comparative results are
given in Figure 10. Summarily, by providing link-layer unicast faces
for OBSL, NDN-NDP can help reduce the number of broadcast
packets in comparison to NDNLP. For interest packets, NDN-NDP
and NDNLP generate approximately 733.6 ± 181.3 and 1403.6 ±
320.9 packets to receive the same amount of data. For data packets,
NDN-NDP uses 448.0 ± 50.7 packets, while NDNLP uses 1091.5 ±
236.9 packets. This reduction has mitigated the broadcast overhead,
and finally improve overall efficiency. Also, the experimental results
have revealed that the NLUF maintenance messages and NDIs of
NDN-NDP are acceptable overhead for NDN link-layer networks.

6.2.2.  Network throughput

Network throughput is potentially influenced by numbers of
broadcast packets. Figure 11 compares the network throughput

between NDN-NDP and NDNLP for different types of NDN
packets. Experimental results have shown that NDN-NDP and
NDNLP gain throughput of 10.4 ± 1.8 and 7.2 ± 0.6 Mbps respec-
tively. NDN-NDP utilize the link-layer network more efficiently
than NLBF of NDNLP.

6.2.3.  Delay

The delay of NDN-NDP and NDNLP is compared in Figure 12.
The experimental results have shown that NDN-NDP consis-
tently incurs less delay than NDNLP. The delay of NDN-NDP as
compared to NDNLP’s is 5.9 ± 1.2 and 16.5 ± 1.5 ms respectively.
Therefore, the experimental results have pointed that NDN-NDP
can reduce delay, which effectively enhance NDN over link-layer
networks.

6.2.4.  Number of unsatisfied interests

Named data networking unsatisfied interests are the interest packets
that fail to retrieve NDN data packets. From the experiments, the
number of unsatisfied interests of NDN-NDP and NDNLP are com-
paratively counted. As shown in Figure 13, the number of unsatisfied
interests of NDN-NDP is 10.1 ± 4.5, while the number of unsatis-
fied interests of NDNLP is 33.7 ± 13.4. So, the number of NDN-NDP
unsatisfied interests is less than the number of NDNLP unsatisfied
interests. NDN-NDP explicitly outperforms NDNLP for this metric.

74	 T. Chuachan et al. / International Journal of Networked and Distributed Computing 8(2) 67–75

Figure 13 | The number of unsatisfied interests.

7.  RELATED WORK

So far, there have been a few proposed link-layer protocols for
NDN and other ICN architectures. However, most of them still
suffer broadcast overhead and MTU mismatch problems. In this
section, we discuss our work in comparison with other studies in
the literature.

Named data networking link protocol is a link-layer protocol for
NDN, proposed by Shi and Zhang [4]. Currently, it is the most
widely deployed link-layer protocol for NDN. The last version is
NDNLPv2. NDNLP relies on multicasting over ICN-MCAST group
(MAC Address: 01:00:5e:00:17:aa), which is technically broadcasting
to all NDN devices on the link-layer network. Recently, in NFD ver-
sion 0.6, NDNLP has initially supported a unicast face. Yet, it needs a
target MAC address to be mapped with a local network device. So, a
learning protocol is required to add the unicast face. So far, OBSL has
been proposed by Shi et al. [7] for the learning process. OBSL works
in a strategy layer and would be able to turn on to support NDNLP.
However, from our investigation, OBSL can only create a unicast face
over IP. It is not working for the NDN over a link layer network with-
out TCP/IP. So, the broadcast overhead is still a problem for NDNLP
(even with OBSL) for NDN over link layer networks. Furthermore,
NDNLP has no mechanism to solve the MTU mismatch problem.
In contrast, our NDN-NDP has been designed to avoid the MTU
mismatch, and mitigate the broadcast overhead.

A few link-layer protocols have also been proposed for CCN, a
variant of ICN. One is Begin-End-Fragment (BEF) by Mosko
and Tschudin [6] and the other one is FIGOA by Ghali et al. [5]
BEF is the first and most widely deployed link-layer protocol for
CCN. Both BEF and FIGOA also rely on multicasting over the
ICN-MCAST group, and therefore suffer from the broadcast over-
head. In addition, BEF has no mechanism to prevent the MTU mis-
match. So, transmission by BEF could be failed in a heterogeneous
environment with different node’s MTU sizes.

For FIGOA, the minimum path MTU (m MTU) must be discovered
to define the maximum size of interest and data packets to prevent
intermediate fragmentation. This idea is similar to the path MTU
discovery for IP version 6 [17]. By using the minimum path MTU,
FIGOA would not be vulnerable to the MTU mismatch. However,
we argue that µMTU of FIGOA would be inefficient in compari-
son with aMTU of our NDN-NDP. The aMTU of each hop can be

bigger than µMTU of the whole end-to-end path. So, the bigger
MTU would utilize bandwidth more efficiently. For example, a
producer of the desired contents is an IoT zigbee (IEEE 802.15.4)
device with 127-byte MTU, located somewhere outside the local
network. A consumer is an Ethernet client in our local network,
connected to an Ethernet router (or forwarder). Both consumer
and forwarder have 1500-byte MTU. In this case, FIGOA will use
the µMTU of 127 bytes for all hops. However, for the hop inside the
local network, NDN-NDP will use the aMTU of 1500 bytes, thus
gaining more bandwidth utilization over this link-layer.

The idea of mapping a named prefix to MAC address and utiliz-
ing unicast faces in NDN link-layer has also been introduced by
Kietzmann et al. [25] They have investigated the broadcast over-
head effects on NDN over link-layer networks, especially for IoT
networks. Their study has suggested that “since the broadcast frames
are not filtered by common device drivers of the network interface,
these frames would be processed and heavily consume the limited
hardware resources (such as CPU, memory, energy and so on) of the
end devices” [25]. So, the broadcast overhead of NDN link-layer
would cause a severe problem to IoTs. Furthermore, their exper-
iments have shown that the number of unsatisfied interests would
be reduced by using unicast instead of broadcast in the link-layer.
So, they have finally suggested that a named-prefix to link-layer
mapping is needed. Yet, this study still leaves the design of solu-
tions as an open research question. Furthermore, this study has not
addressed the MTU mismatch issue.

8.  CONCLUSION

Named data networking have played a major role to shape the future
internet architecture. In particular, deploying NDN directly on top
of link-layer networks instead of TCP/IP protocol stack would
remove a huge overhead. This overhead cut-off would enhance an
efficiency for designing modern network applications. However,
NDNLPs are still at their initial phase. Broadcast overhead and
MTU mismatch are still their significant unsolved problems. In this
paper, a new NDN link-layer protocol, named NDN-NDP, has been
proposed to fix the aforementioned problems. By using our HBH
aMTU, the MTU mismatch problem can be solved. Furthermore, a
performance evaluation via the CORE emulator and a network test-
bed have been done on our NDN-NDP in comparison to NDNLP,
the most widely used NDNLP. Experimental results have demon-
strated that NDN-NDP outperforms NDNLP. First, NDN-NDN
can solve the MTU mismatch problem while NDNLP transmission
could be failed when facing the MTU mismatch scenarios. Second,
by introducing a unicast face, NDN-NDP has enhanced NDN over
link-layer networks in many aspects, including throughput, delay,
the number of unsatisfied interests and the number of broadcast
packets. We have also discussed the advantages of our work in
comparison with other ICN link-layer solutions. Summarily, our
proposed NDNLP can solve both MTU mismatch and broadcast
overhead problems, which are significant challenges of NDN/ICN
over link-layer networks.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

	 T. Chuachan et al. / International Journal of Networked and Distributed Computing 8(2) 67–75	 75

ACKNOWLEDGMENTS

This research is funded by the Royal Society Newton Mobility Grant
(No: NI160138) from the UK’s Official Development Assistance
together with Office of Higher Education Commission (OHEC)
Thailand, University of Leeds (UK), and Mahasarakham University
(Thailand). We are also grateful to members of Distributed System
& Services (DSS) research group (University of Leeds, UK) for their
comments and discussions.

REFERENCES

[1]	 V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass,
N.H. Briggs, R.L. Braynard, Networking named content,
Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies, ACM, NY, USA,
2009, pp. 1–12.

[2]	 L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy,
P. Crowley, et al., Named data networking, ACM SIGCOMM
Computer Communication Review, ACM, NY, USA, 2014,
pp. 66–73.

[3]	 D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D.
Saucez, et al., Information-centric networking (ICN) Research
challenges, IETF, RFC 7927, 2016.

[4]	 J. Shi, B. Zhang, NDNLP: a link protocol for NDN, NDN
Technical Report NDN-0006, Tucson, AZ, USA, 2012.

[5]	 C. Ghali, A. Narayanan, D. Oran, G. Tsudik, C.A. Wood,
Secure fragmentation for content-centric networks, 2015 IEEE
14th International Symposium on Network Computing and
Applications, IEEE, Cambridge, MA, USA, 2015, pp. 47–56.

[6]	 M. Mosko, C. Tschudin, ICN “begin-end” hop by hop fragmenta-
tion, IRTF, Internet Draft 02, 2016. Available from: draft-mosko-
icnrg-beginendfragment–02.

[7]	 J. Shi, E. Newberry, B. Zhang, On broadcast-based self-learning
in named data networking, IFIP Networking Conference (IFIP
Networking) and Workshops, Stockholm, Sweden, 2017, pp. 1–9.

[8]	 A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, et
al., NFD Developer’s Guide, NDN Technical Report NDN-0021,
2016, pp. 1–72. Available from: https://named-data.net/wpcon-
tent/uploads/2016/10/ndn-0021-7-nfddeveloper-guide.pdf.

[9]	 J. Ahrenholz, Comparison of CORE network emulation plat-
forms, MILCOM 2010 Military Communications Conference,
San Jose, CA, USA, 2010, pp. 166–171.

[10]	 T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, K.H.
Kim, S. Shenker, et al., A data-oriented (and beyond) net-
work architecture, Proceedings of the 2007 conference on
Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM ’07), ACM, NY, USA,
2007, pp. 181–192.

[11]	 C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren,
H. Karl, Network of Information (NetInf) – An information-centric
networking architecture. Comput. Commun. 36 (2013), 721–735.

[12]	 C.A. Kent, J.C. Mogul, Fragmentation considered harmful.
SIGCOMM Comput. Commun. Rev. 25 (1995), 75–87.

[13]	 W. Shang, Y. Yu, R. Droms, L. Zhang, Challenges in IoT networking
via TCP/IP architecture, NDN Technical Report NDN-0038, 2016.
Available from: https://nameddata.net/publications/techreports/
ndn-0038-1-challenges-iot/

[14]	 C. DeSanti, C. Carlson, R. Nixon, Transmission of IPv6, IPv4,
and address resolution protocol (ARP) packets over fibre chan-
nel, IETF, RFC 4338, 2006.

[15]	 W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev,
et al., Named data networking of things (invited paper), 2016 IEEE
First International Conference on Internet-of-Things Design and
Implementation (IoTDI), IEEE, Berlin, Germany, 2016, pp. 117–128.

[16]	 IEEE Working Group, IEEE Standard for Low-Rate Wireless
Networks Std 802.15.4– 2015, IEEE, New York, USA, 2015.

[17]	 J. McCann, S. Deering, J. Mogul, Path MTU Discovery for IP
version 6, IETF, RFC 8201, 2017.

[18]	 N. Kushalnagar, G. Montenegro, C. Schumacher, IPv6 over low-
power wireless personal area networks (6LoWPANs): overview,
assumptions, problem statement, and goals, IETF, RFC 4919, 2007.

[19]	 J.J. Garcia-Luna-Aceves, ADN: an information-centric networking
architecture for the internet of things, Proceedings of the IEEE/
ACM Second International Conference on Internet-of-Things
Design and Implementation, IEEE, NY, USA, 2017, pp. 27–36.

[20]	 D. Murray, T. Koziniec, K. Lee, M. Dixon, Large MTUs and
internet performance, Proceedings of the 13th International
Conference on High Performance Switching and Routing, IEEE,
Belgrade, Serbia, 2012, pp. 82–87.

[21]	 S. Puangpronpitag, N. Masusai, An efficient and feasible solu-
tion to ARP spoof problem, Proceedings of the Sixth Internal
Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology, IEEE, Pattaya,
Chonburi, Thailand, 2009, pp. 910–913.

[22]	 J. Tian, K.R.B. Butler, P.D. McDaniel, P. Krishnaswamy, Securing
ARP from the ground up, Proceedings of the Fifth ACM
Conference on Data and Application Security and Privacy, ACM,
New York, NY, USA, 2015, pp. 305–312.

[23]	 ESPRESSIF SYSTEMS, ESP8266, 2018. Available from: https://
www.espressif.com/en/products/hardware/esp8266ex/overview
(accessed November 6, 2017).

[24]	 D.P. George, P. Sokolovsky, MicroPython, 2017. Available from:
http://micropython.org (accessed November 6, 2017).

[25]	 P. Kietzmann, C. Gündoğan, T.C. Schmidt, O. Hahm, M.
Wählisch, The need for a name to MAC address mapping in
NDN: towards quantifying the resource gain, Proceedings of
the 4th ACM Conference on Information-Centric Networking,
ACM, New York, NY, USA, 2017, pp. 36–42.

https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.17487/rfc7927
https://doi.org/10.17487/rfc7927
https://doi.org/10.17487/rfc7927
https://doi.org/10.1109/nca.2015.34
https://doi.org/10.1109/nca.2015.34
https://doi.org/10.1109/nca.2015.34
https://doi.org/10.1109/nca.2015.34
https://doi.org/10.23919/IFIPNetworking.2017.8264832
https://doi.org/10.23919/IFIPNetworking.2017.8264832
https://doi.org/10.23919/IFIPNetworking.2017.8264832
https://doi.org/10.1109/milcom.2010.5680218
https://doi.org/10.1109/milcom.2010.5680218
https://doi.org/10.1109/milcom.2010.5680218
https://doi.org/10.1145/1282427.1282402
https://doi.org/10.1145/1282427.1282402
https://doi.org/10.1145/1282427.1282402
https://doi.org/10.1145/1282427.1282402
https://doi.org/10.1145/1282427.1282402
https://doi.org/10.1145/1282427.1282402
https://doi.org/10.1016/j.comcom.2013.01.009
https://doi.org/10.1016/j.comcom.2013.01.009
https://doi.org/10.1016/j.comcom.2013.01.009
https://doi.org/10.1145/205447.205456
https://doi.org/10.1145/205447.205456
https://nameddata.net/publications/techreports/ndn-0038-1-challenges-iot/
https://nameddata.net/publications/techreports/ndn-0038-1-challenges-iot/
https://doi.org/10.17487/rfc4338
https://doi.org/10.17487/rfc4338
https://doi.org/10.17487/rfc4338
https://doi.org/10.1109/IoTDI.2015.44
https://doi.org/10.1109/IoTDI.2015.44
https://doi.org/10.1109/IoTDI.2015.44
https://doi.org/10.1109/IoTDI.2015.44
https://doi.org/10.17487/rfc8201
https://doi.org/10.17487/rfc8201
https://doi.org/10.17487/rfc4919
https://doi.org/10.17487/rfc4919
https://doi.org/10.17487/rfc4919
https://doi.org/10.1145/3054977.3054995
https://doi.org/10.1145/3054977.3054995
https://doi.org/10.1145/3054977.3054995
https://doi.org/10.1145/3054977.3054995
https://doi.org/10.1109/HPSR.2012.6260832
https://doi.org/10.1109/HPSR.2012.6260832
https://doi.org/10.1109/HPSR.2012.6260832
https://doi.org/10.1109/HPSR.2012.6260832
https://doi.org/10.1109/ECTICON.2009.5137193
https://doi.org/10.1109/ECTICON.2009.5137193
https://doi.org/10.1109/ECTICON.2009.5137193
https://doi.org/10.1109/ECTICON.2009.5137193
https://doi.org/10.1109/ECTICON.2009.5137193
https://doi.org/10.1145/2699026.2699123
https://doi.org/10.1145/2699026.2699123
https://doi.org/10.1145/2699026.2699123
https://doi.org/10.1145/2699026.2699123
https://doi.org/10.1145/3125719.3125737
https://doi.org/10.1145/3125719.3125737
https://doi.org/10.1145/3125719.3125737
https://doi.org/10.1145/3125719.3125737
https://doi.org/10.1145/3125719.3125737

