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Equivalent circuit parameter extraction of 

low-capacitance high-damping 

piezoelectric transformers 

 
J. Forrester, L. Li, J. N. Davidson, M. P. Foster, D. A. Stone, 

D. C. Sinclair, I. M. Reaney 

 
Abstract: Existing equivalent circuit extraction techniques are inaccurate 

for piezoelectric transformers with low input capacitance or high 

damping. A new method is presented, offering improved accuracy in both 

damping resistance and resonant frequency extraction compared to state-

of-the-art methods. Effectiveness is evaluated on two sample PTs, with 
the proposed method achieving up to 84% decrease in error compared to 

previous methods.  

 

Introduction: Piezoelectric transformers (PTs), which can replace 

multiple passive components in low-power resonant converters, offer 

high power density and efficiency due to their inherent, high-quality 

mechanical resonance. While presently unable to compete on cost with 

traditional designs, PTs are non-magnetic and can be designed to operate 

at high temperature, leading to use in several important applications [1-

2].  

 Most applications of these devices have demanded low damping 

(hence low loss) and low capacitance (hence easier switching). However, 

where efficiency is not the primary objective, such as at high temperature 

or when evaluating multi-modal designs, the assumptions used in existing 

analysis techniques reduce the accuracy of results. This letter thus 

proposes an improved technique. 
 

 
Fig.  1 - BSPT ring-dot PT used in experimental measurements 

 

 Piezoelectric transformers use both the direct and inverse piezoelectric 

effect to transfer energy between the input and output sections of a 

device. The PT input section is driven by an alternating voltage, resulting 

in mechanical vibration at its resonant frequency as a result of the inverse 

piezoelectric effect. This vibration is mechanically coupled with the 

output section of the device, producing an alternating voltage on the 

output electrode(s) by the direct piezoelectric effect. Fig. 1 shows a ring-

dot PT, where the inner dot acts as the input and the outer ring as the 

output with a common electrode covering the whole of the base. 

 

 
Fig. 2 - Mason equivalent circuit 

 

 The Mason equivalent circuit, shown in Fig.2, is used to model the 

electrical behaviour of the PT when it is operated near the resonant 

frequency. Whereas the input and output capacitances exist electrically–

between the electrodes on the input and output sections—the RLC and 

ideal transformer collectively model the mechanical behaviour of the PT. 

An equivalent circuit model is highly beneficial as it allows the 

simulation of PTs using traditional circuit analysis techniques. The 

equivalent circuit also provides insight into the expected performance of 

the PT, with the damping resistance, 𝑅𝑅, describing the expected losses. 

However, unlike traditional discrete components, their values cannot be 

directly measured and, therefore, their values must be estimated.  

 Several authors have presented techniques for extracting the equivalent 

circuit parameter values. Ivensky, et al, published a technique which uses 

separate input and output capacitance measurements, along with 

measurements of the Q-factor, conductance, anti-resonant and resonant 

frequencies [3]. Horsely, et al, used a curve fitting approach with separate 

measurements of 𝑅𝑅 and the input and output capacitances, to fit the 

theoretical gain-frequency curve to the measured curve [4]. Forrester, et 

al, then presented three techniques for parameter extraction [5]. Two of 

these were improvements over both the approaches by Ivensky, et al [3], 

and Horsley, et al [4]. The third was an original method. The three 

methods were compared, and each proved to be beneficial when applied 

to a range of PTs for common applications. However, each of the 

approaches previously published has made the key assumption that 

1
(𝜔𝜔0𝐶𝐶in)� ≫ 𝑅𝑅 when estimating the value of 𝑅𝑅 itself. In cases where this 

assumption is invalid, such as in the case of PTs with elevated damping 

or when analysing modes other than the primary resonance (e.g. spurious 

modes, which typically have higher damping), none of the methods 

presented previously are accurate. This situation also arises in the study 

of dual frequency PTs [6], unoptimised prototype PTs, high temperature 

PTs and in multi-modal studies which parameterise the Mason equivalent 

circuit for each mode. 

 This letter therefore presents an improved method for parameter 

extraction, suitable for situations where 1 (𝜔𝜔0𝐶𝐶in)� ≫ 𝑅𝑅 is invalid.   

 

Limitations of previous approaches: When the output terminals of the PT 

are short-circuited and the PT is driven at the resonant frequency, the 

input impedance of the PT is equal to the input capacitance and the 

damping resistance in parallel:- 

 

 𝑍𝑍0 =
𝑅𝑅𝑍𝑍𝐶𝐶in𝑅𝑅 + 𝑍𝑍𝐶𝐶in�𝜔𝜔=𝜔𝜔0 (1) 

 𝑍𝑍0 is the input impedance of the PT at resonance and Z𝐶𝐶in, a function of 𝜔𝜔, is the impedance of the input capacitor:- 

 

 𝑍𝑍𝐶𝐶in =
−j𝜔𝜔𝐶𝐶in (2) 

 

If 1 (𝜔𝜔0𝐶𝐶in)� ≫ 𝑅𝑅 is a valid assumption, 𝑍𝑍0 is dominated by the damping 

resistance and R can be taken as equal to the input impedance. The 

resonant frequency can also be taken as the frequency at which the input 

impedance is minimal. However, when 1 (𝜔𝜔0𝐶𝐶in)� ≫ 𝑅𝑅 is invalid, 𝑅𝑅 does 

not dominate the input impedance and, as a result, estimation of 𝑅𝑅 using 

existing approaches is prone to error. Additionally, and as a consequence, 

the minimum impedance frequency is no longer the resonant frequency.  

 This limitation can be illustrated by simulating the input impedance of 

a PT model with the output shorted. The model’s damping resistance is 

varied through a range of values, and the apparent resonant frequency and 

damping resistance are extracted using the method employed in [5]. The 

results of the analysis are shown in Table 1.  

 

Table 1: Error in extracted damping resistance and resonant frequency 

with changes in true damping resistance relative to input capacitance 

(L=10mH, C=50pF, 𝐶𝐶𝑖𝑖𝑖𝑖=5nF, Vout short circuited) 

 𝑅𝑅/�𝑍𝑍𝐶𝐶in� 0.1 0.2 1 2 10 

Error in 𝑅𝑅 

% 0.99 3.7 38 61 90 

Ω 0.14 1.05 54 172 1275 

Error in 𝜔𝜔0 

% <0.01 0.019 0.31 0.75 2.3 

Hz 11 43 687 1681 5099 

 

 The results in Table 1 confirm that when 1 (𝜔𝜔0𝐶𝐶in)� ≫ 𝑅𝑅 the error is 

negligible. However, for high 𝑅𝑅, the extracted values show significant 

error.  

 

Proposed method: The proposed extraction method uses, as its 

foundation, method 3 presented by Forrester, et al [5]. This method has 

two elements—component value extraction and 𝜔𝜔0 estimation—both of 

which are executed simultaneously. In our proposal, we initially assume 



𝜔𝜔0 is known before optimising the extracted component values to find 𝜔𝜔0. 

 

Component extraction: The input impedance (output shorted) of the PT 

is measured at two frequencies in the vicinity of the resonant frequency. 

An expression for the impedance at the two chosen frequencies can be 

derived by noting that the input impedance, with the output terminals 

shorted, 𝑍𝑍OS, is made up of the input capacitance in parallel with the 

resonant circuit.  

 

 𝑍𝑍OS =
𝑍𝑍𝐶𝐶in𝑍𝑍𝑅𝑅𝑅𝑅𝐶𝐶𝑍𝑍𝐶𝐶in + 𝑍𝑍𝑅𝑅𝑅𝑅𝐶𝐶  (3) 

 

 𝑍𝑍𝑅𝑅𝑅𝑅𝐶𝐶 = 𝑅𝑅 + j𝛽𝛽 � 𝜔𝜔𝜔𝜔0 −𝜔𝜔0𝜔𝜔 � (4) 

 

Where 𝛽𝛽 is the reactance of both 𝐿𝐿 and 𝐶𝐶 at the resonant frequency, 𝜔𝜔0:- 

 

 𝛽𝛽 = 𝜔𝜔0𝐿𝐿 =
1𝜔𝜔0𝐶𝐶 (5) 

 

Substituting (2) and (4) into (3) allows a closed-form expression for the 

input impedance (output shorted) of a PT (𝑍𝑍OS) to be derived: 

 

𝑍𝑍OS(𝜔𝜔)   =

�𝜔𝜔 − 𝜔𝜔02𝜔𝜔 �𝛽𝛽 − j𝑅𝑅𝜔𝜔0𝑅𝑅Cin𝜔𝜔𝜔𝜔0 + j�(𝜔𝜔2 − 𝜔𝜔02)𝛽𝛽Cin − 𝜔𝜔0� (6) 

 

The impedance is found for two arbitrarily chosen frequencies, 𝜔𝜔1 and 𝜔𝜔2. We can write the impedance at these frequencies as 𝑍𝑍1 and 𝑍𝑍2, 

respectively. 

 

𝑍𝑍1 = 𝑍𝑍OS(𝜔𝜔1)  =

�𝜔𝜔1 − 𝜔𝜔02𝜔𝜔1 �𝛽𝛽 − j𝑅𝑅𝜔𝜔0𝑅𝑅Cin𝜔𝜔1𝜔𝜔0 + j�(𝜔𝜔12 −𝜔𝜔02)𝛽𝛽Cin − 𝜔𝜔0� (7) 

 

𝑍𝑍2 = 𝑍𝑍OS(𝜔𝜔2) =

�𝜔𝜔2 − 𝜔𝜔02𝜔𝜔2 �𝛽𝛽 − j𝑅𝑅𝜔𝜔0𝑅𝑅Cin𝜔𝜔2𝜔𝜔0 + j�(𝜔𝜔22 − 𝜔𝜔02)𝛽𝛽Cin −𝜔𝜔0� (8) 

 

It is difficult to measure 𝑅𝑅 accurately independent of our approach, 

therefore it is beneficial to initially remove it from (7) and (8).  At 

resonance (𝜔𝜔0), the 𝑅𝑅𝐿𝐿𝐶𝐶 reduces to just 𝑅𝑅 and the input impedance 

(output shorted) is equal to the input capacitance and damping resistance 

in parallel (see (1)). Substituting (2) into (1) and rearranging for 𝑅𝑅 yields:- 

 

 𝑅𝑅 =  
𝑍𝑍0

1 − j𝐶𝐶in𝑍𝑍0𝜔𝜔0 (9) 

 

Equation (9) is then substituted into (7) and (8). 

 

𝑍𝑍1 =

�𝜔𝜔1 −𝜔𝜔0
2𝜔𝜔1
�𝛽𝛽− j

𝑍𝑍0

1− j𝐶𝐶in𝑍𝑍0𝜔𝜔0
𝜔𝜔0𝑍𝑍0Cin𝜔𝜔1𝜔𝜔0

1− j𝐶𝐶in𝑍𝑍0𝜔𝜔0
+ j ��𝜔𝜔1

2 −𝜔𝜔0
2�𝛽𝛽Cin −𝜔𝜔0� (10) 

 

𝑍𝑍2 =

�𝜔𝜔2 −𝜔𝜔02𝜔𝜔2 �𝛽𝛽 − j
𝑍𝑍0

1 − j𝐶𝐶in𝑍𝑍0𝜔𝜔0𝜔𝜔0𝑍𝑍0Cin𝜔𝜔2𝜔𝜔0
1 − j𝐶𝐶in𝑍𝑍0𝜔𝜔0 + j�(𝜔𝜔22 − 𝜔𝜔02)𝛽𝛽Cin −𝜔𝜔0� (11) 

 

Equations (10) and (11) are no longer a function of 𝑅𝑅 but, rather, are a 

function of 𝑍𝑍0, which is directly measurable. Equations (10) and (11) can 

be rearranged for 𝛽𝛽. 

 𝛽𝛽 =  
�𝐶𝐶in(𝜔𝜔1 −𝜔𝜔0)𝑍𝑍1𝑍𝑍0 + j(𝑍𝑍0 − 𝑍𝑍1)�𝜔𝜔0𝜔𝜔1�1 − 𝐶𝐶in2 𝑍𝑍0𝑍𝑍1𝜔𝜔0𝜔𝜔1 + j𝐶𝐶in(𝑍𝑍0𝜔𝜔0 −  𝑍𝑍1𝜔𝜔2)�(𝜔𝜔12 −𝜔𝜔02)

 (12) 

 𝛽𝛽 =  
�𝐶𝐶in(𝜔𝜔2 − 𝜔𝜔0)𝑍𝑍2𝑍𝑍0 + j(𝑍𝑍0 − 𝑍𝑍2)�𝜔𝜔0𝜔𝜔2�1− 𝐶𝐶in2 𝑍𝑍0𝑍𝑍2𝜔𝜔0𝜔𝜔2 + j𝐶𝐶in(𝑍𝑍0𝜔𝜔0 −  𝑍𝑍2𝜔𝜔2)�(𝜔𝜔22 − 𝜔𝜔02)

 (13) 

 Equating (12) and (13) then rearranging yields a polynomial 

containing 𝐶𝐶in. After excluding trivial solutions, a quadratic equation 

remains and is in the form, 𝑎𝑎𝐶𝐶in2 + 𝑏𝑏𝐶𝐶in + 𝑐𝑐 = 0. When solved, there are 

two solutions for 𝐶𝐶in in the form 𝑑𝑑 ± √𝑒𝑒, only one of which is valid. 

These solutions have been omitted due to length. Because both 𝑑𝑑 and 𝑒𝑒 

are complex, which solution is valid is affected by the location of the 

complex number branch points and changes dynamically with 𝜔𝜔0.  
 Therefore, we will consider 𝐶𝐶in to have two potentially valid solutions, 𝐶̂𝐶in ∈ {𝐶𝐶in<1>,𝐶𝐶in<2>},  and determine the correct solution using the 

method described in the next section.  

 Given experimental input impedance measurements at the resonant 

frequency and two neighbouring frequencies (𝑍𝑍0, 𝑍𝑍1 and 𝑍𝑍2 

respectively), using 𝐶̂𝐶in leads to two solutions for 𝑅𝑅 from (9), thus 𝑅𝑅� ∈
{𝑅𝑅<1>,𝑅𝑅<2>}. Using (12) now provides 𝛽̂𝛽 ∈ {𝛽𝛽<1>,𝛽𝛽<2>}. Where, due to 

measurement error in 𝑍𝑍0, 𝑍𝑍1 and 𝑍𝑍2, any of 𝐶𝐶in, 𝛽𝛽 or 𝑅𝑅 has an imaginary 

part, only the real part should be used for solutions.  

 To determine the correct solution set, the two possibilities are 

evaluated using an integral sum of squares cost function, 𝐽𝐽(𝜔𝜔0), which 

has dependency on the unknown resonant frequency 𝜔𝜔0. 

 

 
min 𝐽𝐽𝜔𝜔0,𝑥𝑥 = � �|𝑍𝑍measured(𝜔𝜔)| −  |𝑍𝑍OS(𝜔𝜔,𝜔𝜔0,𝑥𝑥)|

|𝑍𝑍measured(𝜔𝜔)|
�2  d𝜔𝜔𝜔𝜔0+Δ𝜔𝜔

𝜔𝜔0−Δ𝜔𝜔  (14) 

 

Where 𝑥𝑥 ∈ {𝐶̂𝐶in,𝑅𝑅�, 𝛽̂𝛽} and 𝑍𝑍measured is the measured input impedance of 

the PT, with the output shorted, at a range of frequencies in the vicinity 

of the expected resonance (Δ𝜔𝜔 is typically around 15% of 𝜔𝜔0). Using 

(14) and (6) with both possible solution sets for 𝛽𝛽, 𝐶𝐶in and 𝑅𝑅, and 

experimental measurements of the input impedance over the range of 

frequencies, yields 𝐽𝐽. The set of parameters with the lowest cost, yields 

the best model parameters for a particular value of 𝜔𝜔0. 

 

Determination of 𝜔𝜔0: In the methods presented by Ivensky, et al [3], 

Horsley, et al [4], and Forrester, et al [5],  the resonant frequency (𝜔𝜔0) is 

taken as the frequency at which input impedance is minimised. This is 

inaccurate if 𝑅𝑅 is large. However, without prior knowledge of 𝐿𝐿 and 𝐶𝐶, it 

is not possible to precisely calculate the resonant frequency and therefore 

its value has to be estimated.  

In our proposal, the minimum impedance frequency is a first 

approximation for 𝜔𝜔0. The value of 𝜔𝜔0 is then optimised using (14). The 𝜔𝜔0 value with the overall minimum cost will be the best approximation 

to 𝛽𝛽, 𝐶𝐶in, 𝑅𝑅 and 𝜔𝜔0. The values of 𝐿𝐿 and 𝐶𝐶 are then calculated using (5). 

 
Fig. 3 – Typical output of the cost function 𝐽𝐽 for both solution sets (𝑥𝑥) 

across the range of  𝜔𝜔0 tested. This is the output from the parameter 

extraction of the BSPT PT discussed in the experimental results and 

shown in Fig. 4. The discontinuity in the solution is due to the branch 

point selection in the principal solution for complex square roots.  

 

The range of possible values for 𝜔𝜔0 is constrained since 𝜔𝜔0 must lie 

between the local minimum and maximum impedances for the mode of 

interest. Many methods may be used to minimise 𝐽𝐽; in our 

implementation, an exhaustive search was used. An example of the 

typical output of  𝐽𝐽, for both sets of 𝑥𝑥, across the range of 𝜔𝜔0 values 

examined, is shown in Fig. 3. The overall minimum point on Fig. 3 

corresponds to the best model parameters. 
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Determination of 𝐶𝐶out and 𝑁𝑁: The remaining equivalent circuit 

parameters, 𝐶𝐶out and 𝑁𝑁 can be found by repeating the same extraction 

process but with experimental measurements from the output terminals 

(input shorted) and with 𝐶𝐶out replacing 𝐶𝐶in in all relevant equations. 

 Finally, 𝑁𝑁 can be determined by recognising that:- 

  

 𝑁𝑁 = � 𝛽𝛽in𝛽𝛽out  (15) 

 𝛽𝛽in and 𝛽𝛽out are the 𝛽𝛽 values found from parameter extraction using input 

and output impedance measurements respectively.  

 

Experimental Results: The equivalent circuit parameters of two sample 

PTs are extracted to verify the accuracy of the proposed method. Method 

3 presented in [5] is also compared. The accuracy of each method is 

quantified by calculating the root-mean-square error (RMSE) between 

the theoretical impedance spectra of the parameterised model and the 

experimentally measured spectra. We calculate error using both linear 

frequency and impedance.  

 The first PT under test is a ring-dot PT made from BiScO3–PbTiO3 

(BSPT), shown in Fig. 1. The PT has a dot radius of 3mm, an inner ring 

radius of 5mm, an outer radius of 8mm and a thickness of 1mm. The 

measured and theoretical output impedance spectra (input shorted) 

produced from both extraction methods are shown in Fig. 4.   

 

 
Fig. 4 - Measured and simulated output impedance spectra from the 

BSPT PT 

 

 From the results in Fig. 4, it is clear the proposed method produces a 

theoretical impedance which is a closer match to the measured response 

than the state of the art. Whilst the previous method exhibits 180.7 Ω 

RMSE, the proposed method only exhibits 29.3 Ω RMSE between 

simulated and measured impedance spectra.   

 A second PT is also tested. This time, extraction is performed on a 

spurious resonant mode. The PT under test (TI-PP0361) is a radial mode 

Transoner PT made from APC841, with dimensions as shown in Fig. 7b 

of [7]. Extraction is performed on the lowest frequency resonance 

exhibited by the PT (36 kHz). The resulting measured and simulated 

input impedance spectra are shown in Fig. 5.  

 Again, the proposed method produces a more accurate extraction, with 

the theoretical impedance spectra produced by previous and proposed 

methods having 114.6 Ω and 22.2 Ω RMSE compared to the measured 

spectra, respectively.   

 

Discussion: The proposed method produces a more accurate parameter 

extraction than previous methods. This is particularly clear in the first 

test, as 𝑅𝑅 is similar in magnitude to 1 (𝜔𝜔0Cout)⁄ . In the second test, the 

proposed method again showed improvement over the state of the art, 

albeit less significant. However, in both cases the simulated impedance 

from the proposed method still showed some error. This error is 

inevitable due to model and measurement shortcomings, including non-

linearity in the PT and instrumentation noise. However, in the cases we 

have presented, the effect was small.  

 

 
Fig. 5 - Measured and simulated input impedance spectra from the            

TI-PP0361 PT   

 

Conclusion: An improved method for equivalent circuit parameter 

extraction from high damping/low capacitance PTs was presented. The 

proposed method removes a key assumption that is widely used in the 

literature. The method is experimentally verified against the state of the 

art and shows increased accuracy of parameter extractions, particularly 

for PTs with high damping.  

 

J. Forrester, L. Li, J. N. Davidson, M. P. Foster, D. A. Stone, D. C. 

Sinclair, I. M. Reaney (University of Sheffield, Sheffield, United 

Kingdom) 

 

Acknowledgement: Supported by the Engineering and Physical Sciences 

Research Council (EP/P015859/1) 

 

Email: jforrester1@sheffield.ac.uk 

 

References 

[1] M. Ekhtiari, T. G. Zsurzsan, M. A. E. Andersen, and Z. Zhang, 

“Optimum Phase Shift in the Self-Oscillating Loop for 

Piezoelectric-Transformer-Based Power Converters,” IEEE Trans. 

Power Electron., vol. 33, no. 9, pp. 8101–8109, Sep. 2018. 

[2] T. Martinez, G. Pillonnet, and F. Costa, “A 15 mV Inductorless 

Start-up Converter Using a Piezoelectric Transformer for Energy 

Harvesting Applications,” IEEE Trans. Power Electron., vol. 33, 

no. 3, pp. 2241-2253, 2017. 
[3] G. Ivensky, I. Zafrany, and S. Ben-Yaakov, “Generic operational 

characteristics of piezoelectric transformers,” IEEE Trans. Power 

Electron., 2002, vol. 17, no. 6, pp. 1049–1057, doi: 

10.1109/TPEL.2002.805602 

[4] E. L. Horsley, M. P. Foster, and D. A. Stone, “A frequency-

response-based characterisation methodology for piezoelectric 

transformers,” in 2008 2nd Electronics System-Integration 

Technology Conference, London, United Kingdom, September 

2008, pp. 959–962, doi:10.1109/ESTC.2008.4684481 

[5] J. Forrester, J. Davidson, M. Foster, and D. Stone, “Equivalent 

Circuit Parameter Extraction Methods for Piezoelectric 

Transformers”, presented at the EPE’19 ECCE Europe, Genoa, 

Italy, September 2019, pp. 1–10. 

[6] P. Valenta, V. Koucký, and J. Hammerbauer, “Simultaneous 

power transfer and information transfer via piezoelectric 

transformer,” in 2017 25th Telecommunication Forum (TELFOR), 

Belgrade, Serbia, Novermber 2017, pp. 1–4, 

doi:10.110TELFOR.2017.8249412 

[7] M. P. Foster, J. N. Davidson, E. L. Horsley, and D. A. Stone, 

“Critical Design Criterion for Achieving Zero Voltage Switching 

in Inductorless Half-Bridge-Driven Piezoelectric-Transformer-

Based Power Supplies,” IEEE Trans. Power Electron., vol. 31, no. 

7, pp. 5057–5066, Jul. 2016. 

 

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

frequency, Hz 10
5

500

1000

1500

2000

o
u
tp

u
t 
im

p
e
d
a
n
c
e
, 

measured data

method 3 from [5]

proposed method

1.36 1.38 1.4

10
5

400

500

600

700

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

frequency, Hz 10
4

10
3

10
4

im
p
e
d
a
n
c
e
, 

measured data

method 3 from [5]

proposed method

3.59 3.6

10
4

260

280

300


