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Abstract choices and reaction times. In particular, drift diffusion
Drift diffusion (or evidence accumulation) models have found mhodgls .(D.DMS) "’l‘(’_‘d various related mO(_jeIs, which (I:Je_scrlbef
widespread use in the modelling of simple decision tasks. (€ UECISION making process as a noisy accumulation o
Extensions of these models, in which the model’s sensory information to a bound, have been found to very
instantaneous drift rate is not fixed but instead allowed to successfully capture behavioral data across a plethora of
vary over time as a function of a stream of perceptual inputs, experimental tasks (Bogacz, Brown, Moehlis, Holmes, &
have allowed these models to account for more complex Cohen, 2006; Ratcliff, Smith, Brown, & McKoon, 2016)

sensqumotor decision tgsks. However, many real-world tqsks and have shown success in bridging the gap between
seemingly rely on a myriad of even more complex underlying

processes. One interesting example is the task of deciding neurophysiological and behavioral data (Purcell et al.,
whether to cross a road with an approaching vehicle. This 2010)

action decision seemingly depends on sensory information ~DDMs and related models have most commonly been
both about own affordances (whether one can make it across applied to two alternative force choice (2-AFC) tasks, in
before the vehicle) and action intention of others (whether the which people make a decision between two alternative
vehicle is yielding to oneself). Here, we compared three chojces based on perceptual information. Quintessential
extensions of a standard drift diffusion model, with regards to among these is the kinematogram task in which people
their ability to capture timing of pedestrian crossing decisions decide the direction of a random flow of dots (Ratcliff et al

in a virtual reality environment. We find that a single - N
variable-drift diffusion model (S-VDDM) in which the  2016) DDMs have also been successfully applied to more
varying drift rate is determined by visual quantities describing complex sensorimotor tasks, such as determining the action
vehicle approach and deceleration, saturated at an upper andintentions of other people (Koul, Soriano, Tversky, Becchio,
lower bound, can explain multimodal distributions of crossing & Cavallo, 2019) However, standard DDMs and related
times well across a broad range vehicle approach scenarios madels of the evidence accumulation type typically assume

More complex models, which attempt to partition the final . . : .
crossing decision into constituent perceptual decisions that the drift rate (i.e., the rate at which evidence

improve the fit to the human data but further work is needed accumylates toa _b(_)und), IS set to a f_lxed value. Yet many
before firm conclusions can be drawn from this finding. sensorimotor decisions take place in the context of a
continuous stream of varying sensory information. Models
with variable drift rate, which we will refer to here as
variable-drift diffusion models (VDDMs), have been
Introduction successful in the vehicle driving context, accounting well

) o ] ] for driver brake responses to the time varying visual
Sensorimotor decision making, how people decide Wh%oming of an approaching vehicle (Xue, Markkula, Yan, &

motor actions to take and when, has been a key object Rferat, 2018) as well as for steering responses during lane-
research over the past hundred years in the psychologlq@éeping (Markkula, Boer, Romano, & Merat, 2018).
sciences. One area of particular progress has been in thgyowever, further generalization to more complex real

development of mathematical models which predict actionyorig decisions brings additional challenges. Firstly, more

Keywords: complex decision making; road crossing;
variable-drift diffusion models



complex decisions may depend on multiple types of sensory

cues, raising the question of how different cues should Sensory Perceptual Action
contribute to the drift rate. In this paper, we will consider a input decisions decisions
pedestrian’s decision of when to cross at a zebra crossing |50

with an approaching vehicle, a decision relying on at leas T — Tpass make it

two types of cues (Rasouli, Kotseruba, & Tsotsos, 2017) across

(1) Cues regarding own affordances, for example in terms ¢ before

the time to arrival (TTA) of the approaching vehicle, in the car \g _lam

NQaA-2

relation to the width of road to be crossed. (2) Cues L . crzﬂng er
regarding the action intention of the vehicle driver, in the The caris @
form of kinematic cues (e.g., vehicle deceleration) and/o stopping
communicative cues (e.g., flashing headlights). for me
Secondly, when the sensory inputs to the model vary ove
a large magnitude, this may result in undesirable model
behavior. For example, when a vehicle decelerates to a st
its perceptually estimated TTA will go to infinity. If this is | am

TR ®
used as a model input then the accumulator will be ) I can crossing > CT
guaranteed to reach its threshold (and initiate a crossing il @ cross @_/. now
immediately when the vehicle stops, when in fact people stop

show a probabilistic delay in crossing times.
Finally, it remains unclear how complex decisions, like

the zebra crossing decisions, are structured in practice. Is tl T~ Tpass

overt behavior the result of only a single action decision (“I ' ° 06 | am T
am crossing now”), or is that action decision underpinned o @ Crzzs\:‘g

by separate, purely perceptual decisions about th T~ Tstop

affordances and action intentions mentioned above (e.g., “I

Ca“,,make it across before the car”; “T he car is stopping for Figure 1: The three variable-drift diffusion models
me”)? There are many examples in the broader literature of (VDDMs)

psychological, cognitive, and robotics models where '

multiple parallel units of activation dynamics akin to modulating the activation level of an action unit. We refer to

evidence accumulators have been interconnected to produges -« the dual variable-drift diffusion model (D-VDDM).
more complex _emergent_behavior (e.g., Cooper & Shallice,jya the C-VDDM, this model ensures that large sensory
2000; Sandamirskaya, Richter, & Schoner, 2011), but DD nputs do not result in the reaction time distribution

type decision models have seemingly not been preViOUSIé(ollapsing to a spike. However, unlike the C-VDDM, this

gelnerarl]llzed in this dwzctlon. ished h odel does not independently represent different underlying
n the current study we wished to test three novel.ision processes.

VDDMs, which aim to address the above three challenges. Finally, we also wanted to test a model consisting of a

Firstly we wished to test a model recently proposed by,qie accumulator unit with a drift rate that varies as a

Markkula, Romano, et aI.,.(20_18), which we refer to as the,,ion of a linear combination of sensory cues (see Figure
connected variable-drift diffusion model (C-VDDM). The 1, bottom). Instead of the WDDM’s intermediate

C-VDDM models action decisions and perceptual decisiong.q,,jator unit, to ensure that high input values did not

as separate but interconnected accumulator UnitS a8q it in rapid termination of the accumulation process, we
discussed above (see Figure 1, top), where the drift rate §f oy the drift rate of this model by saturating the

each perceptual unit is a function of a time varying Sensorkﬂerceptual input, such that it could not have a magnitude

input. In turn, the drift rate of the action unit is a function of reater than a certain value. We refer to this model as the S
the current activation levels of each of the two perceptuag/DDM '

units. The activation of each perceptual unit is bounded to To compare the three models we collected data on

+1 which ensures that large perceptual inputs do nObeqgesirian crossing times, using a virtual reality (VR)
immediately lead to the action unit reaching thresholdy o, qjqet VR allowed us to carefully control the experimental
Markkula, Romano, et al., (2018) showed that this modely;, 1us (i.e., vehicle approach  trajectories) and avoid
could qualitatively account for bimodal distributions of confounding variables that may be present when observing
crossing decision times, as reported for human pedestriang,gging hehavior in the real world (e.g., effects of other
but did not formally test or fit the model with human data. o estrians or additional vehicles on crossing behavior). We

We al_so W'.Shed to test a S|mpllflcat|on_ of the C-VDDM ;e g large range of vehicle approach trajectories, which
mo_del, In .Wh'Ch a smgle_ perceptua_l unit has a dr_|ft ratSyere specifically chosen with the aim of creating different
Wh'c.h varies as a function Of. a linear c_omb|nat_|on Oftypes of situations with respect to pedestrian affordances
multiple sensory cues (see Figure 1, middle), in turn,.q vehicle action intentions.
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Virtual Reality Road Crossing Task
Table 1: Scenario parameters

Participants
Twenty participants (age 24-60, average 27.9 years; 11 Scenario type Vinit Dini TTAinit Dstop
male) took part in the study and were recruited from a (km/h) — (m) ©) (m)
University participant pool. All participants provided 25 1590 229 N/A
informed consent, and the study was approved by the 50 31.81 2.29 N/A
University Research Ethics committee. Constant 25 31.81 4.58 N/A
velocity 50 63.61 4.58 N/A
Materialsand Design 25 4771 687 N/A
Participants wore an HTC Vive Virtual Reality headset 50 9542 6.87 N/A
while standing. All stimuli were created in Unity 2018. The 25 15.90 2.29 4
stimuli consisted of a straight two lane road (width: 5.85 m) 50 31.81 2.29 4
with a zebra crossing and pavements on either side. The trial 50 3181 2.29 8
started with the participant standing at the edge of the zebra pgcelerate 25 31.81 458 4
crossing, looking directly across it. To start the trial the to a stop 50 63.61 4.58 4
participant turned their head to the right, which 50 63.61 4.58 8
(unbeknownst to the participants) instantiated the o5 4771  6.87 4
approaching car at its initial position and speed for the 50 95'42 6.87 4
scenario in question. For increased experimental control and : :
simplicity, the participants did not physically walk across Decelerate w/o 28 ﬂgg é g

the VR pedestrian crossing, but instead pressed a trigger SPPINg
button on an HTC Vive controller when they decided it was ) ) )
safe to cross, and the participant’s view point in the virtual ~ P@S€d on the instantaneous apparent time to arrival (TTA) of
world then translated across the crossing at 4. the vehicle, disregarding any deceleration. This apparent

Once the participant had crossed the road in VR, the trig TA is visually available, as the relative rate of optical

ended. The time at which the participant initiated thefXPansiore (Lee, 1976). The model input was givendy
crossing, measured from the point at which the vehicl@pass: Wheret,.s; = 2.46 (the time it took to cross the VR

began moving, was the primary outcome measure. road)_. Thus the .model input was positive Whe_n it was
possible to make it across the road before the vehicle (based
Scenarios on apparent TTA), and negative when it was not. The

To preserve as much as possible a natural road-crossifigcond model input was based on the derivative of the

behavior, the number of trials per participant was limited to’hicle’s apparent TTAZ. The input was defined as—

16. Each of these trials used a different vehicle approachpass: With Zpass = —0.5, corresponding to the vehicle

scenario, presented in a pseudo-randomized order to tREPPRING to just exactly touch the participant (Lee, 1976)

participants. The scenarios were defined so as to elicit BhuS, the inputwas positive when the vehicle was

broad range of different crossing situations, and were df€celerating so as to stop before the participant, and

three general types, with parameters as listed in Table 1: Negative when not. , _
“Constant velocity (6 scenarios): The vehicle appeared at For the C-VDDM model these inputs were fed into two

distance D;,;; from the pedestrian, and maintained separate “perceptual decision” u_nits. For the D-VDDM and_
constant velocity;,;;, i.e., it had an initial time to arrival S-VDDM model these were linearly combined and fed into

TTA.. .. a single accumulator unit. For the S-VDDM this combined
it weighted input was also limited such that it could not

“Decelerate to a stdp (8 scenarios): The vehicle X )
exceed a certain magnitude.

appeared at distandg,,;; from the pedestrian, with initial
speedv;,;;, and immediately decelerated at a constant rat e .
SO as to reach zero speed at distdngs; . Kode Spedification -~

“Decelerate without stoppifig2 scenarios): The vehicle The models were all specified on the same general form,
appeared at distand,,;, at speedv;,;; and immediately following I\/_Iarkkule_l, Romano et al., (2018_)f W_h|ch a brief
decelerated at a constant rate until distabgg,, where it ~Summary is provided here. At any point in time the
continued to travel at a final speed of 5 km/h activation level of each of the model’s accumulator units is
described by the vectad, = [A;,, 4, ...,Ault]T, whereU

Variable-Drift Diffusion Models is the number of accumulator units, and each unit’s
We developed three models to capture the road crossir%c“\,/?t_'on “'S !Em'tid“ tcz’—dl = fqirt <1, with 1 'ar;d _Al
times CT) of pedestrians in the VR study, as illustrated jn®18M1yg yes™ and "no™ decision states, respectively. At

Figure 1. All models received the same perceptual inputse_ach simulation time step, the activation levels are updated

As in Markkula, Romano et al., (2018) the first input Wasaccordmg to,



Table 2: Log likelihood and Akaike information

iAt = _lAt + £.(W,D(K)I,,n) + W,D(Y)f,(A,) criterion (AIC) for each of the models. *indicates the
dt T model with highest log likelihood estimate
+ WyD(N)fy(Ar)
Apyqe ~ MultiNorm (A, +TdAt, zVat), Model log P(CT|®) N AIC

where I, = [t; — Tpass) Te — Tstop] » IS @ vector of param
perceptual inputsK = [k, k,]T is a vector of relative SY/BBM* g?igzo g 197)2248

ights for th t tual inputsandN ctors ) oL :
weights for these two perceptual inpsandN are ve SVDDM 88204 c 17740

of connection weights for the “yes” and “no” accumulator
output connections respectively ari(x) is a diagonal
matrix with diagonalx. W,, W, and W, are design
matrices which specify accumulator inputs and connection
with elements W, € {0,1}. The function

Table 3: Estimated parameter values for each model
Fixed parameters are shown in italics.

f-(W,D(K)I,,n) limits the perceptual inputs to the Param _C-VDDM D-VDDM S-VDDM
T 0.67 0.26 0.34

accumulators betweetn. In the C-VDDM and D-VDDM K [4.35, 0.46] [0.66,042] [0.47,0.19]
n was fixed at infinity (and so had no effect), while in the S R e A n

) . Y [0, 0.44, 183 [0, 3.25] N/A
VDDM it was a free parameter. This allowed the S N [0, 0.76 0] [0, 10.0] N/A
VDDM’s activation to gradually rise to 1, even when the o 0 ,87. 1 ’03 ' 1.05
inputs were at large values. The functifi(x) limits the n N/A N/A 25

input between 0 and 1, thus returnifig4;.) = 1 for an
accumulator activationd;, =1 (a “yes” state), while

fu(@) = fy(—x), such thatfy(A;,) =1 for A, = -1 (a P(CT|0), but ensured non-zero support over all values of

o, . : ix with all off di | CT. Finally we removed the first'decelerate without
no” state). X is a covariance matrix with all off diagonal o q5hing trial from the analysis. This was because many

elements set to 0, and all diagonal elements sharing the, icinants began crossing while the vehicle was still in
same valueg #, representing noise in the dgqsmn Process font of them, which the models were not designed to
When the activation of the action decision accumulato%apture_

reaches a value df, a decision to cross the road is made, \ye ysed PSO (Wahde, 2008) to fit the models using the
and the time at which this occurs is the crossing t@g,. pseudo-likelihood estimation method described above. A
e swarm of 50 particles was used and optimized for 5
Model Fitting iterations. In all cases the algorithm appeared to converge to
To simplify notation, here we denote all the parametees of some local optimum (pseudo log-likelihood estimates
given VDDM model a¥. Fitting to the VR dataset is made stopped increasing) before the™Steration.

challenging as calculating the likelihood functié®(CT|6),

involves computing a high dimension integral. Results

Instead we estimated the likelihood function using a Iargerame 2 shows the pseudo log-likelihood estimate ar@ Al
number of data simulations, referred to as the pseudqs the VR crossing time data for each of the three models.
likelihood estimationP(CT|6). For eacl_1 trial scenario we \yie can see that the D-VDDM captured the data the best
generated 5000 simulated crossing timeg,,, from the  (highest log likelihood) and had the lowest AIC value. The
model being fitted. We then calculated a numericalg.yppm performed slightly worse, while the C-VDDM

probability distribution b over 80 bins equally spaced performed poorer than both. The parameters returned by the
between 0 and 20 seconds, whbres a vector where each psQ algorithm are shown in Table 3

elementp;, is the relative frequency @f;, falling into the To explore the model fits in more detail we simulated
ith bin. P(CT|6) was then estimated as the valuebofor 5000 crossing times (T;,) for each vehicle approach
the bin corresponding 7. scenario and each fitted models. The left panel of Figure 2

Due to the finite number of model simulations, with thisshows the realT (top panel), and simulatedT;,, (bottom
method it is possible that a bin is assigned zero probabilitanel) for one of théconstant velocity scenarios. We also
(no values ofCT,, fell within that bin), despite the model plot the model activations for the S-VDDM (black traces,
having support over this region. If CT falls within such a binbottom panel). In this trial the vehicle starts far enough
then P(CT|6) = 0, which can cause issues for the modelaway that the participant has time to successfully cross the
fitting. To avoid this, we ensured that all bins had a nonroad, if this decision is made relatively quickly. However,
zero probability by adjusting by a constantk, to bA+  the vehicle soon comes too close for a successful crossing to
z(1 - 1), whereld = .98. z was set as the probability of take place. Some participants crossed eiartjie vehicle’s
drawing a value from any given bin when sampling from arajectory, while some waited for the vehicle to pass. All of
uniform distribution with bounds 0 and 20. In practice thisthe models were able to capture this trend. However, it
had almost no discernible effect on the estimate o&ppears that the S-VDDM (blue line; bottom panel) and
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Figure 2: Human and model behavior in three example scenarios. Telp paow the observed human crossing tingés |
in the virtual reality experiment, and the second and third rowaméls show the sensory input cues to the models. Darl
regions indicate that the vehicle has come to a stop or has passed the participagteizigegions indicate that the vehiide

passing the participant. The bottom panels show the simulated crossingTip)ddr the C-VDDM (red lines)D-VDDM
(orange lines), and S-VDDM (blue lines). The black traces show example acswvattitre S-VDDM accumulator unit.

especially the G/DDM (red line; bottom panel) showed a parameter search range, we obtained slightly different
larger peak around the early crossings, while the D-VDDMparameterizations, but for the C-VDDM these never
(orange line; bottom panel) showed a larger peak after theerformed better than either the D-VDDM or S-VDDM.
vehicle had crossed, which better matckiedparticipants’ Assuming that the G&DDM’s poor relative performance
behavior. is not the result of challenges in finding the global optimum,

The middle panels of Figure 2 shows the same plots fowe wondered whether one issue might be that the connected
one of the “decelerate to a stop” scenarios. Again, we accumulator models all share a singlparameter. Thus we
observed a bimodal distribution of crossing times (toprefit the C-VDDM model with a separate parameter for
panel), with some participants crossing early in the vehicle’s each accumulator unit. This improved the model fit,
trajectory, and others waiting until the vehicle had nearly oachieving a log likelihood of -874.17 (AIC 1766,3)better
completely stopped. Here both the D-VDDM and S-VDDMf(fit than for the S-VDDM and approaching the performance
captured this trend rather well, with a larger mode at thef the D-VDDM. For completeness, we also tested a version
early crossing times and a smaller mode after the vehiclef the D-VDDM with separater parameters for its two
stopped. However, the C-VDDM was not able to capture theaccumulator units, achieving a log likelihood of -924.66
later crossing mode. (AIC 1863.3), i.e., a worse fit than the singteD-VDDM.

The right panels of Figure 2 show the same plots for onhis is clearly a local optimum, since the better-performing
of the “decelerate without stopping trials. Here, beyond the  singles D-VDDM is actually present in the parameter
bimodal pattern already described for the “decelerate to a search space of the dualvDDM (along the line where
stop” scenario, a small number of participants also waitedpotho are equal).
for the vehicle to completely pass before crossing. Thus the
observedCT showed a tri-modal distribution. Both the D- Discussion

VDDM and S-VDDM models reproduced these three mode o . e e
well (the third mode is rather flat, but its presence can bﬂere we explored the ability of variable-drift diffusion

Pfhodels (VDDMs) to capture complex sensorimotor

. ) Gecisions based on a continuous stream of multiple sensory
again the C-VDDM appeared to place too much welgh_t OV€lLes. Our initial hypothesis was that a complex model

observedCT and model simulation&T,,, for all scenarios decision time distributions exhibited by humans in the zebra
However, we were concerned that the more complex C:

; . crossing situation. Instead, we found that a relatively simple
VDDM’s poor performance might be caused by the PSO 1y 4e) \ith just a single VDDM unit (the S-VDDM) and
algorlthm getting stuck in a local - optimum. . Indeed’five free parameters was able to reproduce multimodal
rerunning the fitting of the different VDDMs with new

intial d q a4/ dditional traint th robability distributions of human crossing times, across 15
Initial random: seeds, andior additional constraints on eparate scenarios with a diverse range of vehicle approach
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Figure 3: Observed crossing times versus predictions by the C-VDDM (red lind4dpM (orange), and S-VDDM (blu
for all scenarios. Y-axis scale varies between panels. The text shows dstisigte log-likelihoods for the three model

trajectories. This is arguably the most striking finding fromVDDM, larger datasets with even more diverse scenarios
this work. would be useful, and more stringent methods than AIC for

One important insight here, and seemingly a main reasoeontrolling for overfitting, such as hold-out validation on
behind the good performance of the S-VDDM, is thatithe parts of the dataset.
variable (the apparent time to arrival; TTA), can in itself Exactly the same argument applies to the D-VDDM,
help explain the observed human behavior to a large extenhich was the model for which the overall best fit was
As seen in Figure 2, with more positive—1,,, Obtained. The D-VDDM was adopted here as an
participants became more likely to initiate crossing, and thétermediate-complexity model, in practice replacing the
non-trivial variation ofr over time during each scenario static input saturation step of the S-VDDM with a time-
seemed to drive the number and location of peaks in thdynamic accumulator. Again, for the same reasons as
crossing time distribution. The VDDM provides a potentialmentioned above, further work is needed to shed light on
mechanistic explanation for how the observed crossing timghether the improved fits for this model over the S-VDDM
distribution arises from this timearying perceptual input. ~ have some theoretical relevance

Another critical aspect of the S-VDDM model was that These difficulties in drawing conclusions from the fits of
while the drift rate was allowed to vary as a function of thehe more complex models are exacerbated by the apparent
perceptual inputs, we also limited its magnitude with atendency of the PSO algorithm to get stuck in local optima.
saturation threshold parameter. This ensured that largEhis was evidenced clearly when the PSO found a provably
inputs, arising when the vehicle decelerated to a stop, diguboptimal parameterization for the twob-VDDM, but
not result in the drift rate immediately trending to a verymay also be part of the reason for the somewhat surprising
large value. This enabled the model to capture th&nding that the relatively complex singte-C-VDDM
distribution of crossing times that are observed after yielded the poorest goodness of fit across all tested models.
vehicle comes to a stop or passes. Existing methods for efficient DDM fitting are based on the

With respect to the more complex model variants, it isconventional assumption of constant drift rate (e.g.,
difficult to draw firm conclusions from the present results. If Vandekerckhove, Tuerlinckx, & Lee, 2011); good methods
the C-VDDM model had been able to capture qualitativgor fitting also VDDMs would be a valuable future pursuit.
aspects of the human data that the S-VDDM was unable to, In summary, we demonstrate that already simple VDDMs
this could have been taken as tentative evidence for the @re able to capture sensorimotor decision making behavior
VDDM’s hypothesized partition of the decision process into ~ in a task that is more complex, and arguably of higher
constituent perceptual and action decisions. However, sin@pplied relevance, than the laboratory decision-making tasks
the best version of the C-VDDM, with three separate typically modelled with DDMs. We suspect that VDDMs
parameters, simply improved the goodness of fit withougould be applied to a wide range of non-trivial real world
changing the qualitative nature of the model behavior, isensorimotor decision making tasks, but methodological
cannot be excluded that the added model complexity simplg§evelopments are needed to efficiently and reliably fit these
led to overfitting to the present data. To further investigaténodels to data.
whether there is some merit to the hypotheses behind the C-
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