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Abstract—The downlink (DL) of a non-orthogonal-multiple-
access (NOMA)-based cell-free massive multiple-input multiple-
output (MIMO) system is analyzed, where the channel state
information (CSI) is estimated using pilots. It is assumed that the
users are grouped into multiple clusters. The same pilot sequences
are assigned to the users within the same clusters whereas the
pilots allocated to all clusters are mutually orthogonal. First,
a user’s bandwidth efficiency (BE) is derived based on his/her
channel statistics under the assumption of employing successive
interference cancellation (SIC) at the users’ end with no DL
training. Next, the classic max-min optimization framework is
invoked for maximizing the minimum BE of a user under per-
access point (AP) power constraints. The max-min user BE of
NOMA-based cell-free massive MIMO is compared to that of
its orthogonal multiple-access (OMA) counter part, where all
users employ orthogonal pilots. Finally, our numerical results are
presented and an operating mode switching scheme is proposed
based on the average per-user BE of the system, where the mode
set is given by Mode = { OMA, NOMA }. Our numerical results
confirm that the switching point between the NOMA and OMA
modes depends both on the length of the channel’s coherence
time and on the total number of users.

Keywords: Cell-free massive MIMO, convex optimization, max-
min bandwidth efficiency, NOMA.

I. INTRODUCTION

Non-orthogonal-multiple-access (NOMA) is capable of sig-
nificantly increasing the bandwidth efficiency (BE), hence
contributing to the improvements required in fifth generation
(5G) networks over the fourth generation (4G) [2]-[10]. By
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contrast, in orthogonal-multiple-access (OMA), orthogonal re-
sources such as time, frequency, spreading codes and pilots are
assigned to different users for avoiding inter-user interference
at a low complexity [11]. However, NOMA relying on power
domain multiplexing and successive interference cancellation
(SIC) at the receivers is designed to support multiple users in
the same resources [12]-[14].

On the other hand, massive multiple-input multiple-output
(MIMO) is a key technology for next-generation systems
because of the improvement in BE it provides [15]-[17].
However, the low throughput of cell-edge users remains a
limitation in realistic multi-cell massive MIMO systems [18],
[19]. In cell-free massive MIMO, on the other hand, distributed
access points (APs) are connected to a central processing
unit (CPU) and jointly serve distributed users [20]-[26]. This
approach reaps many of the benefits of cloud radio access
network (C-RAN) such as a low pathloss as well as distributed
signal processing. Cell-free massive MIMO and C-RAN may
be viewed as scalable versions of the network-MIMO concept,
or coordinated multipoint processing (CoMP) [27]-[31], both
of which depart from the concept of conventional cells. In
[32]-[35], the authors show that exploiting optimal uniform
quantization and wireless microwave links with capacity 100
Mbits/s, the performance of limited-backhaul cell-free massive
MIMO system closely approaches the performance of cell-free
massive MIMO with perfect backhaul links. Cell-free massive
MIMO may find its way into next-generation networks [36].
In [37], Marzetta characterized the performance of massive
MIMO systems in the context of time division duplexing
(TDD), which has widely inspired the community [38], which
is capable of outperforming frequency division duplexing
(FDD). Since the channel’s coherence time is short, the
users have to resort to non-orthogonal pilot sequences [20].
The analysis in [20] shows that pilot contamination tends
to significantly reduce the performance of cell-free massive
MIMO. On the other hand, the short coherence time does not
allow the system to support a large number of users in cell-free
massive MIMO, as demonstrated in [39].

A practical combination of the aforementioned techniques
is training-based massive MIMO aided NOMA [11], [39]. In
[11], Cheng et al. investigate the effect of NOMA in collocated
massive MIMO systems, where the users are paired based on
their distance from the base station. However, in this paper
we use a different system model and beamforming design.
Moreover, Cheng et al. [11] do not investigate any power
allocation scheme.



The authors of [20], [36] indicate that conjugate beamform-
ing does not need any channel state information (CSI) sharing
between the APs. Hence, it is an attractive beamforming
scheme for cell-free massive MIMO. Note that similar to [20],
[40], we consider the per-AP power constraints. Moreover,
in [41], [42], the authors investigate two different kinds of
conjugate beamforming schemes operating under per-antenna
power constraints: conjugate beamforming subject to long-
term power constraints and normalized conjugate beamform-
ing subject to short-term power constraints. Note that the
average is taken over the codewords for long-term power
constraints and channel fading coefficients, whereas the av-
erage is taken over the codewords in short-term power con-
straints for short-term power constraints [41], [42]. However,
it is not clear, which form of conjugate beamforming and
power constraint should be exploited in NOMA-based cell-
free massive MIMO to achieve the best performance. Hence,
it is important to investigate the effect of short-term and long-
term per-antenna power constraints on the system performance
[41], [42]. The max-min rate performance of OMA cell-free
massive MIMO, relying on conjugate beamforming subject
to long-term average power constraints is studied in [20],
whereas the authors of [42] consider OMA cell-free massive
MIMO, with normalized conjugate beamforming subject to
short-term average power constraints. Note that the authors
in [42] do not consider any optimization problem. Explicitly,
we evaluate the performance of both conjugate beamforming
and normalized conjugate beamforming in the NOMA-based
cell-free massive MIMO system considered. The signal-to-
interference-plus-noise ratio (SINR) formulas are derived for
both beamforming designs.

In most practical scenarios, the OMA vs NOMA operating
mode, is fixed. However, we achieve the best performance by
adaptively switching between the Modes = {OMA, NOMA}.
A mode switching scheme was proposed in [11], [43] for
massive MIMO systems having collocated antennas. This
mode switching is performed based on the statistics of the
channel. In this paper, a downlink (DL) max-min BE problem
is investigated. Fairness is defined as the equal opportunity for
users to exploit the resources, which is an important aspect in
next-generation systems. In [20], the authors have investigated
the max—min SINR optimization problem in a cell-free mas-
sive MIMO system. Additionally, Li et al. [39] investigate
the performance of NOMA-based cell-free massive MIMO
system using the normalized conjugate beamforming proposed
by Interdonato et al. [42]. Moreover, we conceive beneficial
clustering schemes for NOMA-based cell-free massive MIMO
systems. Explicitly, our clustering schemes are different from
those of [44], [45], since no CSI is available at the APs and
at the CPU. The numerical results reveal that with increasing
the number of users in the cell-free massive MIMO system
results in NOMA outperforms OMA. A similar conclusion
has been made in [46] for collocated massive MIMO. Our
numerical results will demonstrate that switching between
different operating modes is capable of improving the overall
system performance.

Our new contributions and results are summarized as fol-
lows:

Figure 1. A cell-free massive MIMO system with Kio; single-antenna users
and M APs. Each AP is equipped with N antennas. The solid lines denote
the DL channels and the dashed lines present the backhaul links from the
APs to the CPU. The users are grouped into L clusters which are shown by
dotted lines. Each cluster includes K users, and it is assumed K = 2 here.

1. The closed-form SINR of the NOMA-based cell-free
massive MIMO system is derived using both conjugate
beamforming and normalized conjugate beamforming,
taking into account the effects of pilot contamination and
imperfect SIC.

2. A max-min fairness power control problem is formulated
which maximizes the smallest of all user BEs under
per-AP power constraints. Then a bisection scheme is
conceived for optimally solving the optimization problem.
The power minimization problem of conjugate beam-
forming is solved using second order cone programming
(SOCP), whereas for the normalized conjugate beam-
forming standard semidefinite programming (SDP) is
utilized.

3. The complexity analysis of proposed schemes is pre-
sented.

4. A mode switching technique is proposed based on the
average BE, where we define the mode set as Mode =
{OMA, NOMA}. Then simulation results are provided
for validating the superiority of NOMA over OMA in
terms of the max-min BE of cell-free massive MIMO. Fi-
nally, the performance of the proposed clustering schemes
is quantified.

Outline: The rest of the paper is organized as follows. Section
IT describes the system model, while Section III provides our
performance analysis. The proposed max-min BE is presented
in Section IV. Followed by our complexity analysis in Sec-
tion V. Finally, Section VI provides numerical results, while
Section VII concludes the paper.

II. SYSTEM MODEL

We consider DL transmission in a NOMA-based cell-free
massive MIMO system with M APs and K, single-antenna
users randomly distributed in a large area. The users are
grouped into L clusters, supporting K users. Hence, we have
Kot = KL. Furthermore, each AP has N DL transmit antennas.
The channel coefficient vector g, € CNX1 | between the
mth AP and the kth user in the [th cluster, is modeled



as gmik = VBmikhmix, where B denotes the large-scale
fading. The elements of h,,;; are independent and identically
distributed (i.i.d.) CN(0,1) random variables, and represent
the small-scale fading [20].

A. Uplink Channel Estimation

All pilot sequences transmitted by all the K users in the
channel estimation phase are collected in a matrix ® =
(11 b1 @1 dxr] € CP*Ker where [|gpl* = 1,
7, is the length of the pilot sequence for each user and the
kith column, ¢y, represents the pilot sequence used for the
kth user in the [/th cluster. Moreover, it is assumed that the
users in the same cluster employ the same pilot sequences
(1 = ;. Vk), whereas orthogonal pilots are assigned to
different clusters. Note that in [20], the authors exploit uplink
pilots to estimate the channel of users. However, the authors of
[11] claim that estimating a linear combination of the users’
channel in the same cluster provides a better performance.
Hence, an alternative technique of employing the uplink pilots
in NOMA-based massive MIMO systme is to estimate the
following linear combination [11]:

K
£ = Z Sk, V1.
k=1

After performing a de-spreading operation, the minimum mean
square error (MMSE) estimate of the linear combination fi,;
is given by

(D

K
i\.ml =Cml | VTpPp Z 8mik t Wp,m&l s ()
k=1

where W, ,, € CM*K denotes the noise sequence at the mth
AP whose elements are i.i.d. CN(0,1) and p, represents the
normalized signal-to-noise ratio (SNR) of each pilot sequence
(which we define in Section VI). Hence, there is no pilot con-
tamination between clusters. Moreover, the users in the same
cluster employ the same pilot sequences, resulting ¢g¢lk/ =1.
Additionally, c,,; is given by

VTpPp Z]l:l:l Bmik
TpPp 2521 Bir + 1
Note that as in [20], we assume that the large-scale fading,
Bmik, 1s known both at the CPU and at the users. The estimated

channels in (2) are then used by the APs for determining both
the receiver filter coefficients and the power allocations.

3)

Cml =

B. Downlink Transmission with Conjugate Beamforming

In this subsection, we consider the DL data transmission
relying on conjugate beamforming [20]. The signal transmitted
from the mth AP is represented by

L K
Xm = VPd Z Z Vnmlkf;lslk,

I=1 k=1

“4)

where s (B{|s;x|’} = 1) and 7,x denote the transmitted
symbol and the transmit power at the mth AP, respectively.
Furthermore, p; represents the maximum normalized transmit

power (normalized by the noise power Ny, defined in Section
VI) at the APs. Hence, the normalized transmit power is given
by

L K
B{I%n |2} = paN D )" otk ¥omts

@)
=1 k=1
where
[ Tpop(Ziooy Bk
Yot = {)f H} s NG!
TpPp D=1 Bmik + 1

Moreover, note that v, = /7 pp(Zgzl Btk )cmi- The power
elements 7, are designed to satisfy the following power

constraints:
L K
Z Z MmikYml < — Vm-
=1 k=1

)

The power constraints in (7) are referred to long-term power
constraints, since the expectation is taken both over codewords
and the channel fading coefficients [42].

C. Downlink Transmission with Normalized Conjugate Beam-
forming

Next, we consider the DL data transmission relying on
normalized conjugate beamforming [42]. Explicitly, the beam-
forming vectors are the conjugate of the estimated channels
and they are normalized by their Euclidean norm. The signal
transmitted from the mth AP is represented by

\/_,ZZWIIMII

where x is the DL transmit power at the mth AP. The
normalized transmit power is given by

L K
E{l%nl*} = pa ), ) Homik
=1 k=1

Following the same strategy as in [42], the power elements
Umix are designed to satisfy the following short-term power

constraints:
L K
Z Z Hmik < 1,Vm.
=1 k=1

lhe> ®)

)

(10)

The power constraints in (10) are referred as short-term
power constraints, since the expectation is taken only over
the codewords [42].

D. Received Signal

The signal received at the kth user in the /th cluster is given
by
rll?c = ngqlkxm"‘nlka (11)
m=1
where njx ~ CN(0,1) is the noise at the kth user in the /th
cluster, and the superscript B refers either to CB or NCB for
the cases of conjugate and normalized conjugate beamforming
techniques, respectively.



III. PERFORMANCE ANALYSIS

In this section, we derive the DL BE for the NOMA-based
cell-free massive MIMO system without using any DL training
by following a similar approach to [20]. In particular, it is
assumed that no instantaneous CSI is available at the users,
which is a reasonable assumption in massive MIMO systems
thanks to the channel hardening phenomenon. Therefore, the
users exploit the channel statistics instead of the instantaneous
CSI to perform SIC. In the following subsections, we first
highlight the basic concepts of NOMA in cell-free massive
MIMO. Next, the attainable throughput is derived for the
both conjugate and for the normalized conjugate beamforming
techniques.

A. NOMA without Downlink Training

Again, we assume that the users exploit the channel statistics
to decode data. Since there is no DL training, users rely on
the average of the effective channel gain as an estimate of the
channel gain [11]. We assume that in the /th cluster, “user-
[1” is the strongest user (and hence can decode the signals
intended to other users by using SIC technique) whereas “user-
[K” is the weakest user and he can decode only his signal
and not the other users’ signals. In other words, NOMA
is employed only within each cluster and not between the
clusters. When the instantaneous CSI is available at the users,
the users in each cluster can be ordered based on their effective
channel gain. However, in the absence of DL training, we sort
the users based on their channel statistics, which is discussed
details in Sections III-B and III-C. In order to successfully
implement the SIC at the stronger users to decode the weaker
user signals, the following necessary NOMA condition should
be satisfied [11], [47]:

E flog, (1+SINRY ) > 3 {log, (1+SINRYE )L vj <, v, (12)

where SINR! refers to the effective SINR of user j in cluster
[ when user j in cluster [ is decoding the signal intended for
user k in the same cluster /. Based on this necessary condition,
the achievable rate of the kth user in the /th cluster can be
written as

Lk ,final
RIK-fina (13)

= min (E {log, (1 + SINRJ% )} & {log, (1 + SINRE)}) Vi, &,
where Rﬁz’ﬁnal is the achievable rate of user k in cluster /.
Several clustering schemes are investigated in Section VI-B.

B. Conjugate Beamforming

In this subsection, we derive the achievable SINR of the
user with the aid of conjugate beamforming defined in (4).
We use NOMA, in which the user having a higher received
power detects its signal first, which is then demodulated and
the corresponding signal is subtracted from the composite
received signal, hence leaving behind the uninterfered signal
of the lower-power user. Given the fact that only the statistics
of the channels are available at the users’ ends and exploiting

the analysis in [11], the signal received by the kth user in the
[th cluster is given by
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where DSj; and BUj denote the desired signal (DS) and
beamforming uncertainty (BU) for the kth user in the [/th
cluster, respectively, and IUlj; represents the inter-user-
interference (IUI) caused by the k’th user in the Ith cluster.
Additionally, ISIC;z» accounts for the interference imposed by
the k’’th to the kth user in the /th cluster due to imperfect SIC
(ISIC), and ICI is the inter-cluster-interference (ICI) caused
by the users in clusters !’ # [. Moreover, the superscript CB
in (14) refers to conjugate beamforming.

Proposition 1. The terms DSisk, BUpsk, IUIjesy,
ISIC\k s, and ISICy»six» are mutually uncorrelated.

The achievable rate can be defined as RT® = logy(1 +
SINRleB). Based on the analysis in [17] and exploiting Propo-
sition 1, SINRS{B is given by (15). The closed-form expression
for the achievable DL rate of the kth user in the /th cluster is
given in the following theorems:

Theorem 1. Having the channel statistics at the users and
employing conjugate beamforming at the APs, the closed-form
expression for the achievable DL rate of the kth user in the [th
cluster is given by RleB = log,(1 +SINRleB ), where the SINRICkB
is given by (16).

Proof: Please refer to Appendix A. [

Theorem 2. Having the channel statistics at the users and
employing conjugate beamforming at the APs, the closed-form
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expression for the achievable DL rate of the kth user (weaker ~beamforming at the APs is given by
user) at the jth user (stronger user) in the Ilth cluster is given K #
1k,CB 1k,CB 1k,CB
by R = log,(1 +SINR ), where the SINR is given rllll?NCB —rlNkCB—\/P_d Z E Z \/m"Tgmlk ml Stk
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Proof: Proof follows steps similar to the steps in Appendix = VPd Z Z Z VHmIk S I ||SI k' Tk
A and is omitted due to the space limit. [ m=1U=1k'=1 mAl
. — VPd i i VHmik” gmlk f*
1) User Ordering: By the assumption that users are ordered k,,:k R ] (18,111
based on their channel quality, NOMA uses the power domain f‘*
to transmit multiple signals over the same resource, and per- = /p,E Z N K8l
forms SIC at the receivers to decode the corresponding signals ||fm I
[14]. Considering the expression in (16) we take the term ;
DSk
by = ny” Bk ny” -Boik - - /3 ,BMlk] Vi k, as P
the virtual ¢ channel of the kth user at the lth cluster. Next we (Z Vlmik gmlk {Z Vimik gmlk })
sort the users based on the quality of this virtual channel, i.e., ||fm || m £l
||hV“||2 > ||hV”||2 > 2> ||hv”||2,Vl Note that determining o
the optlmal user ordering is a NP-hard combinatorial problem, 1k
which is beyond the scope of this work.
y P +Z VPd Z VHmik gmlk .
fEk mel ||f lll
UI,
f
+ Z VPd ZV#mlk ngk ZV#mlk"gmlk” e })Slk"
k7=k+1 mi
ISIClk//
C. Normalized Conjugate Beamforming + Z Z VP Z VHml'k gmlk Sy + Ny, (13)

In this section, we consider the achievable rate with nor-
malized conjugate beamforming given in (8). Exploiting the
NOMA scheme of Section III-A, the signal received for the
kth user in the Ith cluster using the normalized conjugate

U+l k'=

IClr g

where the superscript NCB refers to normalized conjugate
beamforming.

Proposition 2. The terms DSy, BUy, IULy, ISICy», and
ICIpy are mutually uncorrelated.
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The closed-form expression for the achievable DL rate of
the kth user in the /th cluster is given in the following theorem:

Theorem 3. Exploiting the channel statistics at the users and
employing normalized conjugate beamforming at the APs, the
closed-form expression for the achievable DL rate of the kth
user in the lth cluster is given by RNCB log, (1 + SINRNCB ,
where the SINRN CB s given by:

A
SINle NCB _ aAy (19
a(Ag—Ag—A4—A6)+NA5+ —
where a = Nz‘r,,p,, and
& Bumik o VHmike Bmik
m m
= |25 v o_’” 2= ), (Z ) (200
=1 k'#k
K
Mmlk’ ﬁmlk ( VHmik Bmlk)
Z Z A= 0 1D . (20b)
k'+k m= k"=k+1 \m=
L K M B2
As= Z Z Z#mz 'k Bmiks Ae= Zﬂmzk ik, (20c)
=1k'=1m=1
where the term o, is given by (21).
Proof: Please refer to Appendix B. [ ]

Theorem 4. Having the channel statistics at the users and
employing conjugate beamforming at the APs, the closed-form
expression for the achievable DL rate of the kth user (weaker
user) at the jth user (stronger user) in the lth cluster is given
by R);NP = logy(1 + SINR:™P), where the SINR); " is

Cl’B]

SINR)NE = — (22
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where
ﬂml Vi lkﬁ 1j
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(23b)
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Proof: Proof follows the steps similar to the steps in
Appendix B and is omitted due to the space limit. [ ]

1) User Ordering: Using the SINR formula grven in (22)
and (23), we take the term hVlr Buk Pk . Bmid v/ [ as the

g1 02 OM1 . .
virtual channel of the kth user at the Ith cluster. Following this,
we sort the users based on the quality of this virtual channel,

ies ()l = (Rl > - > |hjE b, VL.

D. Bandwidth Efficiency

Based on [16], the BE is measured in terms of bits/s/Hz
sum-rate. In this paper, we consider the smallest BE of the
users as the performance metric to characterise our cell-free
massive MIMO system. The BE (in bit/s/Hz) of the kth user
in the /th cluster can be defined by

1k final,B _ Tp 1k final,B
s = (1- Z)1og2 (1+ SINR}E ™),

(24)
where 7. denotes the number of samples for each coherence
interval, and the superscript B refers either to CB or NCB for
the cases of conjugate and normalized conjugate beamforming
techniques, respectively. Finally, note that

SINR}-™! = min (SINRIS, SINRIE) VL.k.  (25)

IV. MAX-MIN BANDWIDTH EFFICIENCY

In this section, we consider the max-min user BE problem in
cell-free massive MIMO, where the minimum user DL BE is
maximized, while satisfying per-AP power constraints. In the
following subsections, we show that the max-min BE problem
of both conjugate and normalized conjugate beamforming
may be found by a bisection search method. Furthermore,
it is shown that SOCP can be exploited for solving the
power minimization problem in each iteration of the bisection
search method for conjugate beamforming, while SDP for the
normalized conjugate beamforming designs.

A. Max-Min BE with Conjugate Beamforming

The max-min BE of conjugate beamforming is presented in
this subsection. This problem under per-AP power constraints
can be formulated as follows:

Py : max min Slk final CB (26a)
Mmlk k=1---K,I=1---L
L K
ZZ NmlkYml < — Vm, (26b)
I=
Nk = 0, Vm,VI,Vk. (26¢)

Since log(.) is a monotonically increasing function, Problem
P, can be re-written as Problem P, as (27).

By defining new slack variables vy, ¥, oj, and Quek,
Problem P; can be re-formulated as (28), where ¢uix = \mik-
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Note that this problem cannot be directly solved in its
present form, rather a series of power minimization problems
has to be solved with the same target rate for all users,
where the corresponding target rate is updated in the next
iteration according to the feasibility condition of the power
minimization problem [48]. The feasibility of the following
power minimization problem is examined for a given target
SINR ¢ at all users in each iteration of the bisection search
(29).

Problem P, can be formulated as a standard SOCP. More
precisely, for a given ¢, Problem P4 can be reformulated as

T
. LA T T 1

Problem Ps5 in 30), WhereTzlj = [Nvlj,l VNsz,z W] ,and
_ _ T

viji = long - om-i;] - vija = WBujvi - Buvml” .

T
5 T T 1 <
e = [Nvlk,l VNV, , \/T—d] , and Vi =

Gk - Bk Ve = [VBuxv -+ \/,lmVM]T- It
can be seen that (30) represents a second order cone (SOC)
[48]. Hence, Problem Ps is a standard SOCP, which is a
convex problem. The bisection search method imposed for
maximizing the donwlink max-min SINR is exploited to find
the optimal solution [48]. In this bisection search approach,
first the upper and lower bounds of the achievable SINR are
set to tmax and fpin, respectively and the initial target SINR
t is chosen as (tmax + fmin)/2. If Problem Ps is feasible for a
given target SINR ¢, then the lower bound 7, will be set to
t and a new target SINR is chosen as (fpax + tmin)/2 for the
next iteration. This procedure is continued until the difference
between the upper and the lower bounds becomes smaller
than a predefined threshold e. This bisection based search
method based aided max-min DL BE scheme is summarized
in Algorithm 1, which provides the optimal solution [48].

Algorithm 1 Bisection search method to solve Problem P;

1. Initialize ., tmax and €

2. repeat

3. Solve Problem Ps, with ¢ = W

4 if Problem Pjs is feasible, then #,;, = ¢
5. else, tnax =t

6. until (t.x — tmin) < €

B. Max-Min BE of Normalized Conjugate Beamforming

This section investigates the max-min DL BE of normalized
conjugate beamforming. The max-min DL BE problem can be
formulated under per-AP power constraints as follows:

Pot iy ST G
L K
s.t. ZZ tmik < 1,Ym,  ppur > 0, ¥m,VI,Vk.
=1 k=1
(31b)

Problem Pg may also be expressed in an equivalent form
as Problem P; in (32). By introducing new slack variables
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Wik = Vfmik, We have Problem Pg, defined in (33), where
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Then the classic bisection search method can be used for
finding the optimal solution of the original Problem Pg by
iteratively solving the power minimization problem Py for a
given target SINR ¢ at all users. Problem Py is defined as Py
in (35). Note that due to the negative terms in the denominator
in (35a), Problem Py cannot be formulated as a standard
SOCEP, as it was in Problem Ps. However, in the following,
we impose semidefinite relaxation (SDR) for solving this non-
convex problem [49]. First, we introduce the new variable
Wiy = Wlle];c, which enables us to reformulate Problem
Py into a standard SDP using SDR. By utilising the identity
w/ Rw = Tr [RWWT] = Tr [RW], Problem Py can be rewritten
as Pjg in (36).

Note that again Wy > 0 means that Wy is a positive
semidefinite matrix. By relaxing all rank-one constraints in
Problem P9, we arrive at a standard SDP, which can be
optimally solved by convex optimization software. In par-
ticular, if the solutions of Pjy are rank-one matrices (i.e.,
rank[Wy | = 1,V1, k), then it is the solution to Py. Otherwise,
the randomization techniques of [49] can be utilised for
determining a set of rank-one solutions. Using [49, Theorem
3.1], if Pyo is feasible, then it has at least one solution
with rank[W;] = 1,V[,k. The power allocation wy; can be
determined from a rank-one Wy solution using wix = VAjrusk
where vAjx and uy; denote the maximum eigenvalue and the
corresponding eigenvector of Wy, respectively. This bisection
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Algorithm 2 Bisection search method to solve Problem Pg

1. Initialize ., tmax and €

2. repeat

3. Solve Problem Pjq, with ¢t = W

4 if Problem P is feasible, then #,;, = ¢
5. else, tax =t

6. until (t.x — fmin) < €

method based on SDP is imposed for finding the optimal
solution of Problem Pg. Based on the analysis in [48, Chapter
4], we set the threshold € used for terminating Algorithms
1 and 2 to a small value. The iterative procedure of these
algorithms is terminated, once the difference between the
upper and lower bounds of the SINR becomes lower than the
predefined threshold e. In the simulations, we set € = 0.0001,
hence the difference between the optimal solution and the
solution achieved by the proposed schemes is less than 0.0001.

V. COMPLEXITY ANALYSIS

In this section, we provide the computational complexity
analysis for the proposed schemes with conjugate beamform-
ing and normalized conjugate beamforming.

A. Computational Complexity of Solving Problem P

The iterative bisection search method solves a SOCP at each
iteration with O (n2n,) arithmetic operations, where n,, is the
number of optimization variables and n. refers to the total
number of SOC constraints [50]. Moreover, note that the total
number of iterations required is given by logz(@) [48].
In Problem Ps, the total number of variables is n, = LMK,
and there are n. = LK SOC constraints. Hence, the number
of arithmetic operations required for for solving Problem P
is log,(fmazinn) x O (M2LK?).

B. Computational Complexity of of Solving Problem Py

The complexity of solving a SDP under n. semidefinite

constraints and a ng X ng dimensional semidefinite cone is

O(ncn + n2n2 + n3) [51]. In Problem P, we have n. = LK



semidefinite constraints and the dimension of the semidefi-
nite cone is M X M (i.e., ng = M). The bisection search
scheme solves a SDP at each iteration. Hence, based on
[48], the computational complexity of solving Problem Pg is
log, (fmtun) 5 (LKM? + L*K*M? + (LK)?).

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results to validate the
performance of the proposed max-min rate scheme relying
on different parameters. A cell-free massive MIMO system
relying on M APs and Ky single-antenna users is considered
in a D X D coverage area, where both APs and users are
uniformly distributed at random. In the following subsections,
we define the simulation parameters and then present the
corresponding simulation results.

A. Simulation Parameters

The channel coefficients between users and APs are mod-
elled in Section II, where the coefficient SB,,;x is given by
Bmlk = PLmlkIO(TSh o2tk , and PL,;x is the path loss from the
kth user in the /th cluster to the mth AP, while the second term
107%™ denotes the shadow fading with standard deviation
osp = 8 dB, and z, ~ N(0,1) [20]. In the simulations,
an uncorrelated shadowing model and a three-slope path loss
model similar to [20] are considered. The noise power is given
by pn = BW X kg X Ty X W, where BW = 20 MHz denotes
the bandwidth, kz = 1.381 x 1072* represents the Boltzmann
constant, and Ty = 290 (Kelvin) is the noise temperature.
Moreover, the W = 9dB, and denotes the noise figure. It
is assumed that p, and p,; denote the power of the pilot
Pp

Pn

sequence and of the DL data, respectively, where p, =

and pg = p—d. In our simulations, we set o, = 100 mW and

Pa =200 rﬁ{lV Similar to [20], we assume that the simulation
area is wrapped around at the edges, which can simulate an
area without boundaries. Hence, the square simulation area
has eight neighbours. We evaluate the max-min BE of the
system over 200 random realizations of the locations of APs,
users and shadow fading. Finally, note that after solving the
max-min optimization problem, all users will achieve the same
per-user throughput.

B. Clustering Schemes

Since there are a large number of users in massive MIMO
systems it is not practically feasible to simultaneously ac-
commodate all users in a single cluster, while performing
SIC at the users’ ends [11], [43], [52]. Note that in [44],
[45], [53], [54], the authors proposed to group the users
into small clusters, where NOMA was employed within each
cluster with the aid of SIC. To reduce the computational
complexity introduced by SIC at the users’ ends, the users
can be divided into multiple clusters, and the NOMA principle
can be employed within each clusters [10]. Based on [55], user
pairing is a key technique in NOMA systems, which facilitates
the practical implementation of NOMA for many users by
reducing the complexity of SIC. Hence, following a similar

approach to those in [10], [55], [56], we propose to pair the
users into clusters. However, in contrast to [44], [45], the CSI
is not available at the CPU and the receiver. Hence, it is not
possible to exploit the user pairing schemes proposed in [44],
[45]. The investigation of clustering algorithms with more than
two users per cluster will be considered in our future work.
Three different user pairing schemes are compared. Based on
[44], the computational complexity of optimal clustering in
the DL NOMA system is extremely high, and therefore not
suitable for practical implementation in real-time systems. In
[11], [39], the authors propose to pair the users based on their
position. The clustering schemes proposed in this paper are
different from those of [11], [39]. We propose three different
clustering schemes as follows: 1) In the first scheme, the users
who have the smallest distance from each other are paired. We
continue to pair the closest users until all the users are grouped
into clusters; 2) In the second scheme, the users who have
the largest distance from each other, are paired. We continue
to pair the farthest users until all the users are grouped into
clusters; 3) Finally, we compare these schemes to the choice
of randomly pairing the users.

C. Mode Selection

For OMA, there is no pilot contamination thanks to the
orthogonal pilots assigned to the users. However, the length
of pilot sequences has to be equal to the total number of users
(¢ = Kior)- But long pilot sequences leave less time for data
transmission, hence reducing the overall throughput. On the
other hand, in NOMA, the length of pilots only has to be equal
to the number of clusters. Having two users per-cluster, we get
Te > Kior/2. Hence, compared to OMA, there is more time left
for payload data transmission. Moreover, within each cluster,
the user having a higher received signal power performs SIC,
while the other users still suffers from some residual inter-
user interference. As a result, the system performance can be
improved by switching between OMA and NOMA modes,
depending both on the number of users and on the length of
the channel’s coherence time. The mode set is defined as Mode
= {OMA, NOMA}. Then, the aim of the proposed design is
to select the optimal mode maximizing the throughput of the
system.

D. Simulation Results

In this subsection, we evaluate the performance of the
proposed DL max-min BE schemes. First, to assess the per-
formance, a NOMA-based cell-free massive MIMO system
relying on 20 APs (M = 20) and supporting 100 users
(Kot = 100) is considered who are randomly distributed
over the coverage area of size 1 x 1 km? and 7. = 110.
Fig. 2a presents the cumulative distribution of the achievable
DL BE of both conjugate and of the normalized conju-
gate beamforming techniques, where the schemes proposed
in Subsection IV-A and IV-B are used for determining the
max-min bandwidth efficiency, respectively. As seen in Fig.
2a, in the NOMA scheme, random clustering has the better
performance, while the scenario in which the far users are
clustered has a performance as good as random clustering.
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By contrast, the scenario supporting users that are clustered
in each others proximity has poor performance. As the figure
shows, the performance of conjugate beamforming is superior
to that normalized conjugate beamforming. Moreover, NOMA
outperforms OMA using conjugate beamforming, whereas the
performance gap between NOMA and OMA with normalized
conjugate beamforming is small. Given the above-mentioned
parameters, as Fig. 2a demonstrates, NOMA-based cell-free
massive MIMO provides a better performance than that of
the system using OMA in terms of its per-user BE. Next,
to investigate the effect of the channel’s coherence time, the
average BE of cell-free massive MIMO is plotted versus 7.
in Fig. 2b, while the other system parameters are the same
as those used in Fig. 2b. Based on the results of Fig. 2b,
one could find an optimal mode switching point depending
on the length of the channel’s coherence time to maximize
the system performance. As Fig. 2b shows by increasing the

length of the channel’s coherence time, OMA outperforms
NOMA in terms of its user BE. Let us now assume that
there are Ky, = 140 users in the area and M = 20 APs are
uniformly distributed, where each AP has N = 15 antennas
with 7. = 150. The cumulative distribution of the achievable
DL BE with conjugate beamforming and normalized conjugate
beamforming is plotted in Fig. 3a. As the figure shows,
the average DL BE of the cell-free massive MIMO system
relying on conjugate beamforming is better than that of the
system having normalized conjugate beamforming. Next, Fig.
3b quantifies the average BE (having solved the max-min
bandwidth efficiency problems) versus the channel’s coherence
time 7.. As shown in Fig. 3b, 7. = 158 is the mode switching
point between OMA and NOMA for improving the throughput
of conjugate beamforming, while for normalized conjugate
beamforming 7. = 140 is the mode switching point. As it
is stated in Subsection VI-C, when the number of users is
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high, the time left for payload data transmission is short, hence
resulting in low BE.

Next, we consider conjugate beamforming in conjunction
with M = 60 APs, each equipped with N = 5 antennas, where
there are Ky, = 100 users in the area. Fig. 4 investigates the
average BE to solve the max-min BE problem of conjugate
beamforming. The mode switching point is 7. = 120.

We investigate the impact of the total number of users in
the area on the system’s performance. In Fig. 5, we consider
conjugate beamforming having M = 20, N = 15, and two
different coherence times, namely 7. = 150,200. As indicated
in the figure, the solid and dashed lines denote 7. = 200 and
7. = 150, respectively. As Fig. 5 shows, by increasing the
total number of users, the NOMA scheme outperforms the
OMA scheme in terms of the average DL BE. Finally, we
investigate the signal and interference power of both conju-
gate beamforming and of normalized conjugate beamforming.
Based on the analysis in [42], and to draw a fair comparison,

1 ﬁ __________________________
4 -
9
A 05} |
© —NCB
---CB
0 ‘ |
0 500 . 1000 1500
Signal power
—NCB]|
0 ---CB
0 50 100 150 200 250 300

Interference power

Figure 6. CDF of DL signal power and DL interference power of cell-free
massive MIMO for the OMA scheme with equal power allocation, i.e., (k. =
_ Ymk .4 Nk =

szle Ymk’ ff;l Ymk’
We set M =20 APs, each equipped with N = 15 antennas, where there are
Kiot = 100 users in the area. Moreover, note that D = 1 km, 5, = 100 mW
and pg =200 mW.

, for NCB and CB, respectively.

Algorithm 3 Proposed Scheme for the Cell-free massive
MIMO Operation

1. Initialize Kyor, 7, N, M, D, p, and pq.

2. Solve the optimization Problems P\ and P using Algorithms
1 and 2.

3. Calculate the average DL BE of the system with optimal
power elements obtained in Step 2 using (24).

4. Choose the optimal operating mode from the set Mode = {
OMA, NOMA }, and define the operating region. An example
of the operating region is provided in Fig. 7.

5. Set the optimal operational mode based on using the
operating region.

Ymk

we set Uk = and 7,k = % for nor-

K
. . N X1 Ymk' ) V' Zifr=1 Ymk’ )
malized conjugate beamforming and conjugate beamforming,

respectively. Fig. 6 shows the cumulative distribution function
(CDF) of the signal and interference power in the DL of cell-
free massive MIMO for the OMA scheme associated with
M =20, N =15, Kot = 100, D = 1 km, p, = 100 mW and
Pa =200 mW. As Fig. 6 demonstrates, the normalized conju-
gate beamforming introduces a similar interference power to
that of the conjugate beamforming, however at a lower signal
power. Furthermore, based on the results in Fig. 6, one could
conclude that the signal power of cell-free massive MIMO is
much higher than the interference power for both conjugate
and normalized conjugate beamforming. This explains the
performance gap between the systems using conjugate and
normalized conjugate beamforming.

E. Proposed Off-line Method for Cell-free Massive MIMO to
Achieve the Best System Performance

Since there are many system parameters, we do not provide
any analysis to determine the optimal mode switching point.
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These parameters include: the number of users K, and APs
M, the number of antennas per-AP N, the channel coherence
time 7., and the size of area D. It is set aside for future
research to find the optimal switching point in terms of the
above-mentioned parameters. The numerical results show that
we require a high-flexibility system to switch between the
NOMA and OMA modes, depending on the system param-
eters. Similar conclusions have been reached in [11], [43],
where the authors indicated that a massive MIMO system hav-
ing collocated antennas and switching between the OMA and
NOMA operating modes has the best performance. Finding
the optimal switching point between the OMA and NOMA
modes was done based on off-line simulations in [11]. In bold
contrast to [11], we propose an off-line algorithm to achieve
the best performance in the context of cell-free massive MIMO
systems. In the proposed scheme, we determine the average
DL BE of the system for the given parameters and find
the optimum operating region, which maximises the average
DL BE from the set Mode = { OMA, NOMA }. Next, the
operational mode is fixed for a given set of parameters. To
provide an example, we present the operating region of the
pair of different modes for different values of K, as well
as 7. and for fixed values of M, N, and D in Fig. 7, where
the symbols N and O refer to the NOMA and OMA mode,
respectively. Moreover, N=0O represents the scenario where the
performance of the NOMA mode matches that of the OMA
mode. Hence, given the operating region seen in Fig. 7, the
wireless operator could fix the operational mode based on the
values of Ky, and 7.. The details of proposed scheme are
summarized in Algorithm 3.

Note that we have to run Algorithm 3 for every system pa-
rameters to define the operating region. A practical technique
of implementing this is considering a user-birth/death process.
In this case, a Markov model allows the system’s evaluation
from supporting Ky users to either supporting (Kot + 1) or
(Kot — 1) users on a near-instantaneous basis [57], which will
be considered in our future work.

VII. CONCLUSIONS

We have considered a NOMA-based cell-free massive
MIMO system relying on both conjugate and normalized
conjugate beamforming techniques, in which the users are
grouped into clusters. In the NOMA technique, the non-
orthogonality is due to assigning the same pilots to users
within the same cluster. Moreover, it is assumed that orthog-
onal pilots are assigned to different clusters avoiding inter-
cluster interference. We have also assumed there is no DL

training, since the SIC must be performed only relying on
the statistics of the channel, which imposes errors on the
received signals. A closed-form expression of the BE has been
derived. We have then studied the problem of max-min BE
under per-AP power constraints, where the minimum BE of
all users is maximized. We have developed a SOCP and used
SDP to efficiently solve the non-convex optimization prob-
lems of conjugate beamforming and of normalized conjugate
beamforming, respectively. Additionally, the complexity of the
proposed schemes has been investigated. Finally, we have
investigated the effect of the channel’s coherence time and of
the length of pilots on the system’s performance and proposed
an OMA/NOMA mode switching scheme for maximizing the
average per-user BE of the system assuming the max-min
optimization. Based on the numerical results, the switching
point depends both on the channel’s coherence time and on
the total number of users.

APPENDIX A: PROOF OF THEOREM 1

The desired signal of the kth user in the /th cluster is given
by

DSy
M K
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E{IBUKI*} = paN S0 tutscBmticYmi- Next, E {|IUL [} is
calculated as follows:

2

E {0 I’} = paE

M
T =
Z Vimik ik
m=1

)

M K A
= pdEﬂ Z Vnmlk’gzn[kcm(VTppp Z gmli + Wp,m¢lk)
m=1 i=1 —
Winik
2

M
=pa E Z W]mlk’cmlgilkwjnlk
m=1
A
K 2
+ pa TpppE Umlk’cmlngnlk (Z g;li) ’ (40)
i=1

where the third equality in (40) is due to the fact that for two
independent random variables X and Y and E{X} = 0, we
have E{|X + Y|’} = E{|X|*} + E{|Y|*} [20]. Since W =
¢f,€Wp,m is independent from the term g%, the term A in
(40) immediately is given by A = N3 Ntk €2y Bmik- The
term B in (40) can be obtained as
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The second term in (41) can be obtained as
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In the next step, we calculate the term E{|ICI;¢|?} as follows:
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where the term E is obtained by E = N X0 nrirc2,, Bmiks
and the term F can be calculated as

M M
2
F =tpN § Ntk Cntt Btk Bmrkr — N E N’k oy Brmlke
m=1 m=1

M M
=N Zﬂml'k'ﬁmlwml' -N Z Ttk oy Bk -

(46)
m=1 m=1
Finally, we have
M
E{|ICLyx|*} = Npa Z Ntk Btk Yl - 47)
m=1
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This completes the proof of Theorem 1. ]

APPENDIX B: PROOF OF THEOREM 3

The desired signal for the kth user in the /th cluster can be
derived as follows:
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where in step (@), we use the analysis in [42]. Moreover, note
that using [58, Corollary 1] we have:
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where @; = N7,p,0mi,1 < i < K and wgy; = N. For
the case of K = 2, the term o, is given in (21). Hence,
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where step (b) comes from the following fact:
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and
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