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Abstract—Cooperative Co-evolution (CC) is a promising
framework for solving large-scale optimization problems. How-
ever, the round-robin strategy of CC is not an efficient way of
allocating the available computational resources to components of
imbalanced functions. The imbalance problem happens when the
components of a partially separable function have non-uniform
contributions to the overall objective value. Contribution-Based
Cooperative Co-evolution (CBCC) is a variant of CC that
allocates the available computational resources to the individ-
ual components based on their contributions. CBCC variants
(CBCC1 and CBCC2) have shown better performance than the
standard CC in a variety of cases. In this paper, we show that
over-exploration and over-exploitation are two major sources of
performance loss in the existing CBCC variants. On that basis,
we propose a new contribution-based algorithm that maintains
a better balance between exploration and exploitation. The
empirical results show that the new algorithm is superior to its
predecessors as well as the standard CC.

I. INTRODUCTION

Since their inception, Evolutionary Algorithms (EAs) [1]
have been applied to a multitude of optimization tasks exhibit-
ing very different characteristics, ranging from discrete single-
objective problems to continuous non-linear multi-objective
problems. The derivative-free nature of EAs make them suit-
able for a wide range of complex black-box optimization prob-
lems. Like any other optimization method, the performance of
EAs are affected by the dimensionality of given problems [2].

Divide-and-conquer is a common problem solving tech-
nique in which a complex problem is tackled by being broken
into a set of smaller and simpler subproblems. Cooperative
Co-evolution (CC) [3] is an explicit means of problem de-
composition in evolutionary algorithms. Liu et al. [4] showed
empirical evidence that the CC framework can be an effective
way of solving large-scale continuous optimization problems.

One of the considerations of using CC framework lies in
finding an efficient and effective decomposition for a given
problem. In many applications, the domain knowledge can
help practitioners to identify problem components. One of
the popular examples is the conversion of a multi-objective
optimization problem to a single objective problem where the
new objective function is essentially a weighted sum of all
given objective functions. Even if such domain knowledge is
not available, the advances in the EA allow us to automatically
break down a large-scale problem into smaller components

by the cost of a few function calls. Recent studies show that
new algorithms can decompose most of the existing large-scale
benchmarks with 100% accuracy [5-7].

Another important consideration that greatly affects the
overall optimization performance is the allocation of avail-
able computational resources to various components. In a
classic CC, all components receive an equal share of the
available computational resources through the round-robin
optimization of all components in each cycle. However, it
has been shown that the round-robin strategy can waste a
considerable amount of the available resources on the so called
imbalanced functions [8]. In this context, imbalance refers
to the unequal contribution of different components to the
overall objective value [8—10]. Omidvar et al. [8] have shown
that in the presence of strong imbalance in the contribution
of components to the overall objective value, only a few
components have dominant effect on the overall improvement
of the objective value, making the contributions of the other
components negligible. In such situations, most of the effort in
optimizing the components with a lower contribution is wasted.

To alleviate the imbalance issue, Contribution-Based Co-
operative Co-evolution (CBCC) [8] has been proposed in
which the components with a higher contribution are given a
higher share of the available resources. While the components’
contribution maybe unknown to the optimizer, CBCC adopt
simple rules to approximate these values and dynamically
select the most contributing component for the next round of
optimization. Note that although accurate grouping improves
CBCC performance, having an ideal decomposition is not
a prerequisite. In [11] the authors showed that even in the
presence of significant decomposition noise, CBCC achieves
better results than the classic round-robin CC with the same
computational budget.

CBCC has two major variants: CBCC1 and CBCC2.
CBCCl1 is more exploratory and gives the components an
opportunity to update their contributions more frequently,
whereas CBCC2 is more exploitative and commits to the com-
ponent with the highest contribution until it becomes stagnant.
CBCC showed significant improvement over the classic CC
on the CEC’2010 LSGO benchmark suite [12]. However, the
degree of imbalance in the CEC’2010 benchmarks is limited
since the underlying components of most functions have equal
contributions. The CEC’2013 LSGO benchmark suite has been



proposed with the aim of improving upon the CEC’2010
benchmarks to better resemble the major properties of real-
world problems. One such change is the inclusion of a more
challenging imbalance scheme in the CEC’2013 benchmarks.
The preliminary experimental results on the CEC’2013 bench-
marks showed that the new imbalance scheme poses a serious
challenge to CBCC [10].

In this paper, we further investigate the cause of CBCC’s
poor performance on the CEC’2013 benchmarks. We show
that the resource allocation policy of CBCC1 and CBCC2
are over-exploratory and over-exploitative, respectively. These
two schemes are biased towards the components that have
an initial good contribution and therefore do not respond
to the local changes in the contribution of each component
in a timely manner. Based on these findings, we propose
an improved version of Contribution-Based Cooperative Co-
evolution, CBCC3, that significantly outperforms the classic
CC as well as CBCCI1 and CBCC2.

The rest of this paper is organized as follows: Section II
reviews the imbalance functions and CBCC algorithms. Sec-
tion III contains analysis of CBCCl and CBCC2 on the
CEC’2013 LSGO benchmarks. Section IV consists of the
details of the new algorithm — CBCC3. Section V presents
the empirical results and an analysis of CBCC3’s performance
with respect to its predecessors. Finally, Section VI concludes
the paper.

II. BACKGROUND
A. The Imbalance Problem

Many real-world problems have a modular nature. This is
often implemented by taking a linear combination of a several
sub-functions (components) [13]. Such weighting mechanism
places a different level of emphasis on each component. This
means that some components may have considerably larger im-
pact on the overall objective value than the other components.
In optimization problems, the issue of unequal contributions is
called the imbalance problem [8—10]. A function that exhibits
the imbalance problem is called an imbalanced function [10].
For optimizing an imbalanced function, under limited re-
sources, it is reasonable to use more resources for solving
the most contributing components. It is therefore obvious
that equal allocation of computational resources among all
components is an inefficient strategy and will waste the limited
resources.

The imbalance issue of real-world problems has been
emphasized in the recent benchmark functions for large-scale
optimization [9, 10]. A very simple yet flexible method to
introduce various levels of imbalance into partially separable
functions is through explicit weighting of components:

F0) = wi fi(xi), ()
=1

where m is the number of components, f;(-) is the ith sub-
function, x; is the decision vector of the 7th sub-function, and
w; is the weight associated to the ¢th sub-function which is
calculated as follows:

w; = 105N(0"1),

Algorithm 1: (z*, f*) = CBCC(f, X, X, 14, 1, I'max, Y, V)

(9,%1,...,%g,I') = grouping(f, x,X,n) ;
P = rand(p, n) ;
fori=1— gdo

| cvi=rand(1,|xi|);

B W R =

5 cv=(cvy,...,Cvg);
o fo=Flev);

7 A = zeros(1l, g) ;
8 I' =zeros (1, qg) ;

9 while >9 | T <Tax —T'— 1 do

10 fori=1—g do

1 fo=rfes

12 (cv,Ty, fc) = optimizer(P,cv,x;,7) ;
13 6= fp— fe:

14 | Ai=A;+5;

15 j =max_index(A);

16 0=Aj;

17 while § # 0 do

18 fo=fe;

19 (cv,Ty, fc) = optimizer(P,cv,x;,7) ;
20 6= fp—fc3

2 Aj=A;46;

22 if v =1 then

23 |_ break ;

u x*=cv; f*=fx*);
return (x*, f*) ;

N
b

where N(0,1) is a Gaussian distribution with zero mean
and unit variance. The parameter s which is specified by
the user controls the level of imbalance. Setting s to zero
removes the explicit weighting, and makes the non-uniformity
of component sizes the only sources of imbalance. In the
CEC’2013 LSGO benchmark suite, s is set to 3.

Beside explicit weighting that was described, there are
other sources of implicit imbalance. For example, non-uniform
subproblem sizes is another source of imbalance [10]. Having
different landscapes (i.e., basis functions) can also cause
imbalance in real-world problems.

At the time of this writing, there are few algorithms
that address the imbalance issue in the context of large-
scale optimization. These attempts are limited to the original
Contribution-Based Cooperative Co-evolution (CBCC) [5, 8]
and their recent variant called Cooperative Co-evolution with
Adaptive Optimizer Iterations (CCAOI) [14]. All variants of
CBCC (CBCC1, CBCC2 and CCAOI) showed statistically
significant improvements over the standard CC. In Section III
we study the performance of CBCC1 and CBCC2 to show that
without a proper balance between exploration and exploitation
in resource allocation mechanism, the benefit of even an ideal
decomposition cannot be fully realized.

B. Contribution-Based Cooperative Co-evolution

This subsection contains the details of Contribution-Based
Cooperative Co-evolution [8]. Algorithm 1 shows how CBCC
uses the contribution information to select various components
for optimization. Table I contains a brief description of the
variables used in Algorithm 1. After the initialization, each of
the components that were formed using an arbitrary decompo-
sition technique (i.e., grouping function) are optimized in
a round-robin fashion. This step, which was previously called
testing phase, is necessary to measure the initial contributions



Table I: Important variables used in Algorithm 1.

Variable Description

*

the best solution vector found by the algorithm.

the objective value for of x*.

the function handle of the objective function.

vector of lower bound constrains of the decision variables.

vector of the upper bound constrains of the decision variables.

the population size.

the dimensionality of the objective function.

the maximum number of available objective function evaluations.

the number of times that the component optimizer optimizes each component.
the version number of CBCC which is either 1 or 2.

the context vector that is used by the optimizer to construct a complete
solution for evaluation.

*

g
]
*
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of components (Algorithm 1, lines 10-14). In this paper, we
sometimes refer to the testing phase as the exploration phase.
Similar to traditional CC, any arbitrary optimizer can be
adopted in CBCC (i.e., opt imizer function) to optimize the
components. It can be seen that the vector A keeps track of
the changes in the fitness of components.

In the next phase which we call the exploitation phase (Al-
gorithm 1, lines 17-21), the component with the largest entry in
A is selected for further optimization. The difference between
the two versions of the CBCC (i.e. CBCC1 and CBCC2) is in
this phase. In CBCCl1, the selected component is optimized for
only one iteration whereas in CBCC2, the selected component
is optimized for as long as it improves the fitness. When no
improvement is observed, the algorithm enters the exploration
phase to give all of the components another equal chance to
update their contributions in A. This shows that CBCCI is
more conservative than CBCC2 and performs more exploration
to find the component with the highest contribution. On the
other hand, CBCC2 is greedier and commits to a component
as long as its immediate contribution is non-zero. It should be
noted that the contribution information is accumulated from
the first cycle.

III. CASE STUDIES

In this section, we conduct a short empirical study on
the performance of CBCCl and CBCC2 while DECC (a
CC algorithm that uses SaNSDE [15] as the component
optimizer.) is chosen as the baseline. To keep it simple, we
use ideal decomposition for all experiments. Throughout this
paper we limit ourselves to the partially separable functions
of the CEC’2013 LSGO benchmark suite (f4-f11). The other
functions which are not included in this study are either fully
separable ( f1-f3), overlapping (f13-f14), or fully non-separable
(f15), for which there is no unique decomposition. Moreover,
these functions cannot be classified as imbalanced functions.

Table II contains the median, mean, and the standard
deviation of 25 independent runs for DECC, CBCCI and
CBCC2. We used Wilcoxon rank-sum [16] test to compare
both variants of CBCC against the baseline. The highlighted
entries show that CBCC performs significantly better than
DECC using a 95% confidence interval (p-value = 0.05). If
the performance of either version of CBCC is not statically
different from DECC, the entries are marked with the symbol
‘~’. If DECC significantly outperforms either of the CBCC
variants, the symbol ‘|’ is shown next to the entry having the
worse performance.

Table II: Comparison between DECC and CBCC1 and CBCC2
on selected function from the CEC’2013 benchmark suite.
Highlighted entries are significantly better than the baseline
(DECC) based on Wilcoxon rank-sum test (o = 0.05).

Function Stats DECC CBCCl1 CBCC2

Median  1.53¢+08  6.54e+07  9.03e+10%

fa  Mean 1.97e+08  7.71e+07 8.77e+10
StDev  1.51e+08  4.05e+07 1.14e+10
Median 2.65e+06 2.29e+06~  2.06e+06

fs  Mean 2.66e+06  2.28e+06 2.09e+06
StDev ~ 7.12e+05  3.55e+05 3.52e+05
Median 8.74e+04 8.74e+04~  8.35e+047~

fe Mean 8.57e+04  8.85e+04 8.39¢+04
StDev  1.95e+04  2.88e+04 2.36e+04

Median 4.53e+07 6.23e+07~  7.85e+077~

fr Mean  5.12e+07  6.38e+07 8.82e+07
StDev  3.67e+07  4.01e+07 6.78e+07
Median 5.43e+13  1.09e+13 1.90e+12
fs Mean 7.19e+13  1.38e+13 1.88e+12
StDev  6.07e+13  1.14e+13 2.80e+11
Median 2.95¢+08  2.34e+08 2.00e+08
fo  Mean  2.85e+08  2.32e+08 2.03e+08
StDev  6.20e+07  4.85e+07 2.45e+07

Median 7.05e+01 7.51e+01%  7.17e+017~

fio Mean 6.90e+01  7.44e+01 7.16e+01
StDev  1.68e+01  9.97e+00 1.36e+01
Median 1.51e+10 1.41e+09% 1.44e+09~
fi1 Mean 2.62e+10  1.58e+10 1.63e+10
StDev  3.10e+10  2.26e+10 2.76e+10

We can see from Table II that both CBCC1 and CBCC2
perform statistically similar to DECC on most functions
(62.5%), and perform significantly better on only three func-
tions (37.5%). Comparing this with the success rate of CBCC
on the CEC’2010 LSGO benchmarks based on the results
reported in [5], we can clearly see that CBCC’s performance
drops significantly on the CEC’2013 LSGO benchmarks (the
success rate drops from 60% to 37.5%).

To get a better insight into the behavior of CBCC1 and
CBCC2, we have included four plots in Figure 1 that show
how the budget has been allocated to various components with
respect to their weight. In this set of figures, each bar represents
a non-separable component. The z-axis shows the weight
associated to each component (in logarithmic scale). The
height of each bar represents the total number of evaluations
allocated to each component. It should be noted that weights
are not the only measures of contribution. Other factors such
as component sizes, convergence behavior and stagnation can
also have considerable effects. However, considering their
magnitudes, weights have a strong relationship to components’
contributions.

CBCC is designed to optimize the components with higher
contribution more frequently. Therefore, we expect to see
longer bars towards the right side of each figure (i.e., larger
weights). Figure 1 shows that components with the highest
weight is evaluated more often than the other components. It
is also clear that in CBCC2 the component with the highest
contribution is emphasized more than the same component
when CBCCI1 is adopted. The equal length of most of the
other bars suggests that the remaining budget is equally divided
among the rest of components.
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Figure 1: Number of evaluations used to optimize components for CBCC1 and CBCC2 on f; and f5 (CEC’2013 LSGO)
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Figure 2: Convergence plots of individual components for DECC, CBCC1 and CBCC2 on f; and fs (CEC’2013 LSGO).

Two lessons that we can learn from Figure 1 are: a) The
component with the highest weight is predominantly selected
for optimization. This is a good strategy as long as the selected
component maintains its high contribution during optimization.
Later we will see that this is not necessarily the case, and in
several cases CBCC2 fails to switch to another component
that just became the most contributing component. ) Due to
dominance of one component, equal allocation of resources
through the exploration phase wastes a considerable amount
of objective function evaluations. This can be the main reason
that CBCC1 cannot outperform DECC in f — 5 (see Table II),
although it spent more resources on the optimization of the
component with the largest weight (see Figure 1).

With respect to CBCC2, we see that the component with
the largest weight is given the largest share of the available
resources. However, it is unexpected to see that on f; its
overall performance is significantly worse than both CBCCl1
and DECC. The reason for this type of behavior can be seen
by inspecting the convergence plot of individual components,
which are shown in Figure 2 for two selected functions.

As can be seen in Figure 2, the component with the largest
weight has an initial large objective value. Therefore, CBCC
optimizes this component more frequently than the remaining
components. This causes a rapid drop in the objective value
of this particular component. This behavior can be clearly
seen in Figures 2(c) and 2(f). When the objective value of the

selected component drops below those of other components,
CBCC should stop optimizing that component in order to give
a chance to other components.

It is clear from Figures 2(c) and 2(f) that CBCC2 fails to
detect this event, which is the reason behind its poor perfor-
mance. This happens because in Algorithm 1, the termination
condition of the inner while loop on line 17 is total stagnation
of the selected component (§ = 0). In other words, as long as
the selected component improves, it will be optimized even if
its immediate contribution is less than all other components.
Note that even if we force CBCC2 to break out of the
inner loop, it is highly likely that the same component be
selected after the exploration phase, due to accumulation of its
contributions from the very beginning rounds of optimization
(Algorithm 1 lines 14 and 21). It should be noted CBCCI is
also prone to this error, but it takes more time for the error to
become evident on the convergence plots.

In general, two major drawbacks of CBCC1 and CBCC2
can be summarized as follows:

e CBCC’s slow response to local changes in the fitness
value and its strong reliance on the information accumu-
lated form the early stages of evolution. This is more
evident in CBCC2.

e Over exploration by frequent application of the explo-
ration phase in Algorithm 1. This is an inefficient use



Algorithm 2: (z*, f*) = CBCC3(f, X, X, it, 7, I'max, Y, Pt)

(gvxlv s 7x97F) = grouping(‘f7§7§7 n) 5
P = rand(y,n) ;
fori=1— gdo

| evi=rand(l, |x;|);

B W RN =

5 cv=(cvy,...,cvg);
6 fo=flev):

7 A =zeros(1l, g);
8 I' =zeros (1, qg) ;

9 while >7 | Ty <Tpax —T'—1 do

10 if Z?:l I'; =0or rand() < p: then

11 fori=1—g do

12 fo="fc:

13 (cv,Ty, fc) = optimizer(P,cv,x4,7) ;
14 §=fp— fo;

15 if 5 # 0 then

16 |_ A; =6

17 (C,I) = sort(A,descending);

18 i=I;

19 while C; > Coand > Y Ty <Tmax —I'—1 do
20 fo=fes

21 (cv, Ty, fc) = optimizer(P,cv,x;,7) ;
22 0= fp— fo;

23 if § # 0 then

24 |_ Aj = Cl =4 ;

5 X* =cv; f* = f(x*);
return (x*, f*) ;

1)
N

of the limited resources. This behavior is more evident
in CBCC1 and is the main reason behind the similar
performance of CBCC to DECC.

In the next section, we explain how these issues can be
alleviated by a more immediate feedback mechanism as well
as a simple probabilistic exploration mechanism, which are
built into CBCC3.

IV. THE PROPOSED FRAMEWORK

In the previous section, we identified two major short-
comings of CBCC1 and CBCC2. This section contains the
details of a new version of contribution-based cooperative co-
evolution, CBCC3, that addresses these shortcomings. Algo-
rithm 2 shows the details of CBCC3. We can see that CBCC3,
to a large extent, resembles CBCC1 and CBCC2. However,
unlike its predecessors, it does not run the exploration phase in
every co-evolutionary cycle. As line 10 of Algorithm 2 shows,
the exploration phase happens with probability p; while at
least one execution of this phase is guaranteed at the first
cycle. Based on our observations in the previous section,
the exploration phase should happen with a relatively low
probability. The sensitivity analysis of CBCC3 to p; will be
postponed to Section V.

The other major difference of CBCC3 is its reliance on
more recent contribution information to select a component
for further optimization (eliminating the use of historical
information in CBCC1 and CBCC2). On lines 14-16 and 22-24
of Algorithm 2, we can see that the last non-zero difference in
the objective value of two consecutive iterations is recorded as
the contribution of a given component (A;). As was mentioned
earlier, the parameter y of opt imizer determines the number

of iterations that it optimizes a component. A larger +y stabilizes
the value of § to a non-zero value.

After the exploration phase (Algorithm 2, lines 9-16), the
contribution of components are sorted (Algorithm 2, lines 17-
18) and the component with the largest contribution is selected
for further optimization in the exploitation phase (Algorithm 2,
lines 19-24). The vector I contains the indices of components
after being sorted with respect to their contributions. The
vector C, like A, contains the contribution information in
descending order. Therefore, C; is the largest contribution that
is associated to the component I, and Cs is the second largest
contribution that is associated to the component I5. In the next
phase, which forms the basis of CBCC, the component with the
largest contribution is optimized further (Algorithm 2, lines 19-
24). We can see that CBCC3 optimizes the selected component
(I,) for as long as its contribution (C) is greater than the last
recorded contribution of the second most important component
(C2). This ensures that the crossing behavior that was observed
in CBCC2 (as shown in Figures 2(c) and 2(f)) does not happen
in CBCC3. In other words, when two or more components
have similar contributions, the condition of the inner while
loop (Algorithm 2, line 19) ensures that all components with
non-zero contributions will be given an equal chance to be
optimized.

V. EXPERIMENTS AND ANALYSIS

In this section, we present the experimental results of
CBCC3 and compare them with DECC, CBCC1 and CBCC2
using a subset of the CEC’2013 LSGO benchmark suite.
The total number of fitness evaluations is set to 3 x 10° as
suggested in [9]. The component optimizer that we used for
our experiments is SaNSDE [15]. The parameter v is set to
100, and the population size () is set to 50.

Table III contains the median, mean and standard deviation
of 25 independent runs for the aforementioned algorithms us-
ing ideal grouping. For the statistical significance test, we first
use Kruskal-Wallis [16], which is a non-parametric equivalent
of ANOVA, with a 95% confidence interval. If a significant
difference is identified among the given algorithms, we run
a series of pair-wise Wilcoxon rank-sum tests using Holm p-
value correction to account for the family-wise error rate [16].
An entry for an algorithm is highlighted if it is not outper-
formed by any other algorithm on a given function. In order
to test the sensitivity of CBCC3 to the parameter p;, CBCC3
was tested with the following p; values: {0,0.05,1}. Table III
clearly shows that CBCC3 is superior to its predecessors
(CBCC1 and CBC2) as well as traditional CC (DECC).

For a better understanding of CBCC3’s behavior, we have
included a series of plots in Figure 3 to show how the
computational resources are allocated to various components
with respect to their weights (similar to Figure 1). We can see
that when p; = 1, which means the exploration phase occurs
at every cycle, the allocation pattern is very similar to that
of CBCCI. For a clearer comparison between variations of
CBCC3 and other algorithms, the number of wins, losses, and
ties are reported in Table IV using a pair-wise Wilcoxon rank-
sum with 95% confidence interval without Holm correction.
Holm correction is only needed when performing multiple
hypothesis testing. Here, all algorithms are tested with CBCC3
as the baseline.
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Figure 3: Number of evaluations CBCC3 used to optimize each component of fy, f5, fs, and fg (CEC’2013 LSGO benchmarks).

Table III: Comparison between variants of CBCC3 and
CBCCl, 2 and DECC on f4-f1; from the CEC’2013 LSGO
benchmarks suite. The highlighted entries are significantly
better based on pair-wise Wilcoxon rank-sum with Holm p-
value correction (o = 0.05).

CBCC3

Stats DECC CBCCl CBCC2 p¢=1 ps =0 ps=0.05

3.61e+07 2.18e+07
4.08e+07 2.20e+07
2.09e+07 8.05e+06

2.23e+06 2.16e+06
2.34e+06 2.13e+06
4.70e+05 3.49e+05

8.74e+04 8.74e+04
8.65e+04 8.45e+04
1.88e+04 1.92e+04

4.68e+07 3.86e+05
4.75e+07 2.09e+07
3.38e+07 3.04e+07

2.51e+07
2.97e+07
1.56e+07

Median
fa  Mean
StDev

1.53e+08
1.97e+08
1.51e+08

6.54e+07
7.71e+07
4.05e+07

9.03e+10
8.77e+10
1.14e+10

2.06e+06
2.09e+06
3.52e+05

1.97e+06
1.99e+06
3.61e+05

Median
f5 Mean
StDev

2.65e+06
2.66e+06
7.12e+05

2.29e+06
2.28e+06
3.55e+05

8.35e+04
7.94e+04
3.43e+04

3.27e+05
1.42e+07
2.18e+07

Median
fe Mean
StDev

8.74e+04
8.57e+04
1.95e+04

8.74e+04
8.85e+04
2.88e+04

8.35e+04
8.39e+04
2.36e+04

Median
f7  Mean
StDev

4.53e+07
5.12e+07
3.67e+07

6.23e+07
6.38e+07
4.01e+07

7.85e+07
8.82e+07
6.78e+07

5.47e+09
8.23e+09
1.03e+10

1.58e+08
1.56e+08
3.51e+07

Median
fs Mean
StDev

5.43e+13
7.19e+13
6.07e+13

1.09e+13
1.38e+13
1.14e+13

1.90e+12
1.88e+12
2.80e+11

7.29e+10 2.28e+09
1.51e+11 1.21e+10
2.87e+11 2.40e+10

2.08¢+08 1.42e+08
2.02e+08 1.40e+08
5.09e+07 1.55e+07

7.68e+01 7.46e+01
7.66e+01 7.44e+01
1.24e+01 1.07e+01

1.07e+09 4.49¢+08
1.33e+09 4.74e+08
1.41e+09 2.95e+08

Median
fo Mean
StDev

2.95e+08
2.85e+08
6.20e+07

2.34e+08
2.32e+08
4.85e+07

2.00e+08
2.03e+08
2.45e+07

7.30e+01
7.15e+01
1.49e+01

Median
Mean
StDev

7.05e+01
6.90e+01
1.68e+01

7.51e+01
7.44e+01
9.97e+00

1.41e+09
1.58e+10
2.26e+10

7.17e+01
7.16e+01
1.36e+01

6.31e+08
6.24e+08
3.47e+08

Median 1.51e+10
Mean 2.62e+10
StDev  3.10e+10

1.44e+09
1.63e+10
2.76e+10

We can see that all versions of CBCC3 outperform DECC,
CBCC1 and CBCC2. When p; = 1, CBCC3 has more ties with
the other algorithms. This is consistent with our observations
from Figure 3. When p; = 1, the difference between CBCC3

Table IV: Number of wins, loses and ties (w/l/t) between all
pairs of algorithms using Wilcoxon rank-sum (a = 0.05).

CBCC3

DECC CBCCl CBCC2 p; =0 p¢ = 0.05 py = 1

DECC - 404 323 503 6002 4/0/4

CBCCl 0/44  — 314 SI03 6I012  4/0/4

CBCC2 233 134 - 503 5053 4/13

CBCC3,p, =0  0/53 053 053 - 0058 0553

CBCC3, p; = 0.05 0/62 0/6/2  0/53  0/0/8 - 0/6/2
CBCC3,p, =1  O/4/4 OM4/4 143 5063  6/0/2 -

and other algorithms comes from the way the contributions
are quantified as well as the termination criteria of the inner
loop in Algorithm 2 (line 19). Table IV clearly shows that
the new approach, in which more immediate feedback is used,
is more reliable and improves the overall performance. The
performance of CBCC3 with p, = 0 (only one exploration
phase at the beginning of a run) is better than CBCC3 with
p¢ = 1. This also shows that over-exploration is detrimental to
the performance of the algorithm.

Figure 4 shows the convergence plots of individual compo-
nents of CBCC3 using various p; values on f; and fs. We can
see that the crossing behavior of CBCC2 (Figure 2(c)) does
not happen for CBCC3. We can also see that the convergence
plots are more concentrated. This is very clear on fg. To show
this behavior quantitatively, we reported the standard deviation
among the final objective values of all components in Table V.

It is expected that an efficient contribution-based algorithm
minimizes the variation between the objective value of individ-
ual components. With respect to the convergence plots, such as
those shown in Figures 4, we expect to see that a contribution-
based algorithm forces the objective value of all components
to converge close to a particular value. Assuming that none
of the components becomes stagnant, if the objective value



of one component drops below those of other components, its
contribution to the overall objective value becomes negligible
relative to other components. For this reason, the algorithm
should force the objective value of all components close to
each other and maintain this trend thereafter. If this does not
happen, it means that CBCC is not successful in selecting the
best component for optimization at every cycle.

Table V clearly shows the strong correlation between the
performance of CBCC and the variability among the objective
values of components. For simplicity, the medians of 25
independent runs from Table III are replicated in Table V.
Here, without a reference to any statistical significance test, the
entry for the algorithm with the smallest median is highlighted.
The last three columns of Table V report the standard deviation
among the final objective values of individual components
across all the 25 independent runs, and the smallest standard
deviation is highlighted. It should be noted that these are
different from the standard deviations of the 25 independent
runs reported in Table III. With the exception of fg, fs, fi0,
we see a strong correlation between low variability among
the objective value of individual components and the overall
objective value. According to Table III we know that all algo-
rithms perform similarly on functions fg and fio. Therefore,
the only exceptions is function fg. Here the conclusion is that
CBCC3 with a low p; value results in lower variability among
among its components, which has a direct relationship with
the concentration of convergence curves in Figure 4 and its
overall good performance as reported in Table III.

Although CBCC3 shows significant improvement over its
predecessors and the standard CC, its similar performance on
fe and f1o requires further investigation. The convergence
plots of CBCC3 on fgs shows that the objective value of
several components have an initial improvement and stays
unchanged throughout the optimization process. Since the
magnitude of the objective value of these components is
relatively larger than other components, we expect that CBCC3
allocates a considerable portion of the available computational
resources to these components. We know from Algorithm 2
that the exploration phase happens with probability p; only
if the algorithm breaks out of the exploitation phase. The
convergence plots do not show whether this happens because
of natural stagnation of these components or because of lack
of exploration due to dominance of particular components. A
drawback of CBCC3 is that it only relies on the magnitude
of components’ contributions for its selection policy and does
not approximate the likelihood of their realization. This can be
treated as an online learning problem. One way of taking both
the likelihood and the magnitude of contribution is to treat the
problem as an online learning problem. In general, the goal
of contribution-based cooperative co-evolutionary algorithms
is to maximize a long term profit which, in this case, is
the final solution quality of an optimization problem through
systematic selection and optimization of its components based
on an immediate feedback mechanism (contributions). Such
studies require a separate in-depth study which is beyond the
scope of this work.

VI. CONCLUSION

In this paper, we have proposed the CBCC3 algorithm
which is an improved version of CBCC1 and CBCC2 that

performs significantly better than the traditional cooperative
co-evolution on imbalanced functions. We have shown that
CBCCl suffers from over-exploration by excessive application
of a exploration phase in which the contribution of all com-
ponents is re-estimated. Contrary to CBCC1, CBCC2 suffers
from over-exploitation by greedily optimizing the component
with the highest contribution until it becomes stagnant. In both
CBCCl1 and CBCC2, the contributions of all components are
accumulated from the first cycle and is used to identify the
component with the highest contribution to the overall fitness.
We have shown that the accumulation of contributions from
the first cycle biases the selection mechanism of CBCCI1 and
CBCC2 towards the components that have an initial good
contribution. To alleviate these issues, in CBCC3 a component
is optimized as long as its immediate contribution drops
below the last recorded contribution of other components.
Additionally, CBCC3 completely eliminates the accumulation
of contributions and selects a component based on its more
recent contribution. Moreover, the exploration phase occurs
with some probability p;. The experimental results have shown
that CBCC3 performs significantly better than the traditional
DECC as well as CBCC1 and CBCC2 with a wide range of p;
values including the extreme values such as 0 or 1. However,
a relatively low probability such as 0.05 works the best.

One known shortcoming of CBCC3 is that it only relies
on the magnitude of components’ contributions and does
not approximate the likelihood of their realization. In the
future, we are interested in using sequential decision making
techniques such as reinforcement learning methods to propose
a more robust contribution-based cooperative co-evolutionary
algorithm. We are also interested in conducting an in-depth
exploration/exploitation analysis based on the methods used
by LaTorre et al. [17], as well as a comparative study with the
state-of-the-art [17, 18].
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