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Abstract—A proportional-integral-derivative (PID) controller
is a control loop feedback mechanism widely employed in
industrial control systems. The parameters tuning is a sticking
point, having a great effect on the control performance of a
PID system. There is no perfect rule for designing controllers,
and finding an initial good guess for the parameters of a well-
performing controller is difficult. In this paper, we develop a
knowledge-based particle swarm optimization by incorporating
the dynamic response information of PID into the optimizer. Prior
knowledge not only empowers the particle swarm optimization
algorithm to quickly identify the promising regions, but also
helps the proposed algorithm to increase the solution precision
in the limited running time. To benchmark the performance of
the proposed algorithm, an electric pump drive and an automatic
voltage regulator system are selected from industrial applications.
The simulation results indicate that the proposed algorithm
with a newly proposed performance index has a significant
performance on both test cases and outperforms other algorithms
in terms of overshoot, steady state error, and settling time.

Index Terms—Particle Swarm Optimization, PID Controller,
Knowledge

I. INTRODUCTION

The proportional-integral-derivative (PID) controller is a

common control loop feedback mechanism in industrial con-

trol systems, the origin of which can be traced back to speed

governor design in the 19th century. The parameters tuning

is a hurdle in controller design, having a great effect on

the performance of the industrial control systems, especially

for those controlled plants with high order and time delays.

Ziegler-Nichols (Z-N) [1] and Cohen-Coon [2] are the most

commonly used methods for tuning PID controllers. Several

intelligent methods, such as neural network, fuzzy system, and

neural-fuzzy logic [3], have also been developed to optimize

the parameters of PID controllers. Nature-inspired population-

based metaheuristics [4] have also gained popularity for fine-

tuning the parameters of PID controllers, due to their good

performance and robustness.

Genetic algorithm (GA) [5] is a metaheuristic inspired by

the process of natural selection and belongs to the larger

class of evolutionary algorithms [6]. It was recommended

as an important optimizer for nonlinear PID control systems

[7]. Phillips et al. described the architecture of a helicopter
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fuzzy logic controller and used GAs to discover rules for

effective control of helicopters [8]. Herreros et al. regarded

the design of a PID controller as a multi-objective problem

and proposed a generic multi-objective method for designing

PI and PID controllers [9]. After that, an alternative was

provided by using GA and its flexibility is demonstrated by

tuning an optimal PID in different cases: model errors, noisy

input, Integral of Absolute Error (IAE) minimization, and

following a reference models [10]. Chen et al. presented a

distribution population-based GA, the searching capability of

which was demonstrated by designing optimal parameters of

PID controllers with several examples [11]. The crossover

formula in GA was modified by Chang, who used this method

to determine the gains of PID controller for multivariable

processes [12]. Jan et al. proposed a robust PID control scheme

for the permanent magnet synchronous motor drive by using

a simple GA [13]. Later, the GA-based PID tuning method

was extended to the electro-hydraulic servo actuator system

[14]. Padhee et al. employed GA to carry out the design of

fractional order PID controller, which is a special kind of PID

controller whose derivative and integral order are fractional

rather than integer [15]. A non-dominated sorting GA was

designed and applied to PID-tuning for a robotic manipulator

of two Degree-Of-Freedom (DOF) by Ayala. [16]. Boubertakh

et al. employed a PSO method to design the decentralized PID

controllers for the stabilization of a quadrotor [17].

Particle swarm optimization (PSO), intended for simulating

social behavior, is another typical population-based meta-

heuristics [18]. Selvan et al. combined PSO with some special

features and applied it to PID controller tuning [19]. Another

design method which integrated the PSO algorithm with a new

time-domain performance criterion was proposed to determine

the parameters of PID controller [20]. Ko and Wu designed

a fuzzy PID controllers for the multivariable seesaw systems

and the PID gains and all other parameters were determined

simultaneously [21]. Mukherjeea and Ghoshal proved crazi-

ness based PSO was more robust than GA for performing

the optimal PID gains even under various nominal operating

conditions [22]. Zamani et al. employed PSO algorithm to

determine the parameters λ (integral order) and µ (derivative

order) apart from the usual PID parameters for fractional order

PID controller for an automatic voltage regulator [23]. Tarique



and Gabbar evaluated the feasibility of the use of PSO method

for fine-tuning PID controllers in the steam turbine control

system [24]. Boubertakh et al. suggested the use of PSO to

solve the PID control design problem for angles and height

stabilization of a quadrotor [25]. Malik et al. described the

design of dynamic control system model with PID controller

and the values of the controlling parameters were computed

by using PSO [26]. Pano and Ouyang proposed a new fitness

function based on the statistics of the contour error and

applied PSO for control gain tuning of a position domain

PID controller for a serial multi-DOF robotic manipulator

[27]. The PSO-based PID tuning method was extended into

the quadrotor’s attitude and trajectory control in a cooperative

aerial robot system [28].

Examples of population-based metaheuristics also include

Ant Colony Optimization (ACO), Shuffled Frog Leaping

Algorithm (SFLA), Bacterial Foraging Optimization (BFO)

and so on. ACO algorithm was applied for optimizing the

parameters in the design of a type of nonlinear PID con-

troller by Duan [29], and then the grid-based ACO algorithm

was designed for solving continual space flight optimiza-

tion question [30]. Huynh introduced a modified SFLA into

optimal tuning of PID gains for multivariable processes in

the Wood-Berry distillation column system [31]. Atashpaz et

al. described a socio-politically inspired colonial competitive

algorithm, which was applied for the problem of designing

a multivariable PID controller [32]. They also designed a

centralized PID controller using covariance matrix adaptation

evolution strategy for the same application of the multiple-

input multiple-output (MIMO) systems [33]. Merheb and

Noura explored a bio-inspired stochastic search algorithm for

offline tuning of the PD controller of a quadrotor UAV by

reference to ecosystem equilibrium [34]. Mohammed et al.

described the PID controller for controlling attitude, Roll,

Pitch and Yaw direction of quadrotor by using PSO, Bacterial

Foraging Optimization (BFO) and the BF-PSO optimization

[35]. Nagaraj et al. explored intelligent PID-tuning techniques

like GA, Evolutionary programming and PSO for the armature

controlled DC motor [36]. Iruthayarajan and Baskar analyzed

performance comparison of several evolutionary algorithms on

decoupled multivariable PI and PID controller, which mainly

included real coded GA, modified PSO, covariance matrix

adaptation evolution strategy and differential evolution (DE)

[37]. Ghosal et al. reviewed the performances of PID tuning

with different metaheuristic techniques, i.e., ACO, PSO, and

BFO, as well as their advantages and disadvantages in proper

tuning [38].

Hybridization is an important approach in search and

optimization, having a great effect on global optimization

performance, e.g., accuracy and convergence speed of meta-

heuristics. A number of publications document the benefits

and great success of hybridizing metaheuristics with each

other and/or with algorithms from other fields [39]. Korani

presented an E coli algorithm for PID controller tuning based

on a combination of the foraging behavior of BFO and PSO

[40]. Kim suggested the hybrid system consisting of GA and

Bacterial Foraging, which was introduced into tuning for PID

controller of AVR system with compared of GA, PSO,and

GA-PSO hybrid algorithm [41]. Gharghory et al. presented

an adaptive hybrid PSO by employing an mutation operator

for local best particles and applied the proposed algorithm

to self-tuning of PID controller in the ball and hoop system

[42]. de Moura Oliveira and Cunha a teaching experiment

in which PSO was blended with classical control techniques

to design PID controllers [43]. Pai et al. developed PID

and Sliding Mode Control methods for an Android-based

quadrotor platform and parameters of optimum controller were

built and implemented by using GA and Tabu Search [44]. For

the purpose of fast tuning controller parameters, Fister et al.

systematically investigated the performances of two reactive

evolutionary algorithms (differential evolution and GA), and

four reactive swarm intelligence-based algorithms (bat, hybrid

bat, PSO and cuckoo search) in tuning the PID controller [45].

In view of the above-mentioned contributions, deliberate

strategies and complex structures of metaheuristics are care-

fully designed to be served as a PID parameters optimizer.

However, the tuning knowledge that has been identified and

summarized in practice is seldom employed in the design

of the PID controller. He et al. observed that the heuristic

knowledge is useful for the Evolutionary Algorithms to find

the optimal solutions for the node covering problem [46]. In

this paper, the PSO algorithm is combined with the PID tuning

rules, which help the algorithm to identify the promising

regions quickly and increase the solution precision rapidly.

The rest of this paper is organized as follows. In Section II,

the basic tuning theory is reviewed. In Section III, the rela-

tionship between PID parameters and response characteristics

is analyzed and a knowledge-based particle swarm optimizer

is proposed, followed by experimental simulation and result

discussion on the industrial processes in Section IV. Finally,

our concluding remarks are presented in Section V.

II. PID TUNING THEORY

For simplicity, we focus on a PID controller in a closed-loop

system using the schematic shown in Fig. 1 and expressed as

Equation (1). The input r (t) is the desired process value or

“set point”, and the output y (t) is the actual output measured

by detection equipment. The variable e (t) = r (t) − y (t)
represents the tracking error, which will be sent to the PID

controller, and the controller computes both the proportion,

derivative and the integral of this error signal.

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
. (1)

The control signal u(t) sent to the plant, is equal to the

proportional gain (kp) times the magnitude of the error plus

the integral gain (ki) times the integral of the error plus the

derivative gain (kd) times the derivative of the error.

It is generally known that the dynamic performance of a

control system is often measured by four major characteristics

of the closed-loop step response, i.e., Rise Time (tr), Over-

shoot (σ%), Settling Time (ts) and Steady-state Error (ess).
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Fig. 1. A block diagram of a PID controller in a feedback loop.

More specifically, ess of the system under the step response

is the difference between the input u(t) and the output y(t)
when t → ∞. tr is the time it takes for the output signal y(t)
to go form 10% to 90% of its steady-state value. ts is time that

y(t) enters and stays in the interval [y(∞)−∆y, y(∞)+∆y],
where the ∆y is usually defined as either 2% or 5% of the

steady-state value y(∞). The overshoot σ is defined using the

following ratio:

σ =
yM − y (∞)

y (∞)
, (2)

where yM is the peak value.

When we design a controller, it is expected to have a

short starting time, high response speed, small overshoot and

tracking error, and good robustness. Typical plants are selected

from the practical applications which are System 1 formulated

by Equations (3) and (4), and System 2 expressed as Equations

(5) and (6).

Plant 1 : G1 (s) =
0.5

0.08s2 + 0.68s+ 1.45
e−0.2s. (3)

Feedback 1 : H1 (s) = 1. (4)

Plant 2 : G2 (s) =
10

0.04s3 + 0.54s2 + 1.5s+ 1
. (5)

Feedback 2 : H2 (s) =
1

0.01s+ 1
. (6)

The controlled plant G1 in system 1 is a unit feedback

model with time delay for an electric pump drive in a marine

system [47]. The plant 2 is an automatic voltage regulator

[20], which is often described as a four-order model (G2) with

a non-unit feedback (H2). It is typical to solve the non-unit

feedback problems by converting them to unit feedback using

the forward-access model. However, in this paper we directly

solve plants with non-unit feedback models. Fig. 2 shows the

step responses of the plants without PID controllers. It can be

seen roughly that the plant 1 has a large steady-state errors,

while the plant 2 has a high overshoot and settling time.

III. KNOWLEDGE-BASED PARTICLE SWARM OPTIMIZER

There is a tendency in the metaheuristics community to

design sophisticated search strategies which are not problem-

specific and blind to the acquired information and prior

knowledge. The specific knowledge about the problem to
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Fig. 2. The step responses of the plants without PID controller.

be solved has contributed to the development of population-

based metaheuristic algorithms. The prior knowledge not only

empowers metaheuristic algorithms to quickly identify the

regions in the search space with high quality solutions, but

it also helps metaheuristics to increase the solution precision

in the limited running time. In other words, the information

that we have already known about PID parameter tuning and

optimizing will serve to guide further search and could be

incorporated into heuristic algorithms, which is overlooked in

the current metaheuristics development process.

For the specific problem of tuning PID controllers, the

effects of increasing each of the control parameters kp ,

ki, and kd can be summarized into meaningful knowledge

about the relationship between PID parameters and response

characteristics for designing a PID controller (as shown in

Table I). First, the proportional gain kp can be used for

decreasing the rise time. Second, the derivative gain kd can

regulate the overshoot and settling time. Third, the integral

gain ki contributes to eliminating the steady-state error.

TABLE I
RELATIONSHIPS BETWEEN PID PARAMETERS AND RESPONSE

CHARACTERISTICS [48]

Para. Rise Time Overshoot Settling Time Error

kp Decrease Increase Small change Decrease
ki Decrease Increase Increase Eliminate
kd Minor change Decrease Decrease No Effect

In this paper, we discard the complex search strategies

and combine useful dynamic response knowledge into the

PSO algorithm. The basic PSO contains a swarm of particles

whose movements are not only influenced by their local best

known positions, but also guided toward the global best known

positions in the search-space. After finding the two best values,

the particles update their velocity and positions based on the

following equations.



vt+1

i = ωvti + c1r
t
1

(

pti − xt
i

)

+ c2r
t
2

(

gti − xt
i

)

, (7)

xt+1

i = xt
i + vt+1

i , (8)

where ω is a parameter called inertia weight, the parameters c1
and c2 are called acceleration coefficients, and rt1 and rt2 are

two n× n diagonal matrices in which the entries are random

numbers uniformly distributed in the interval [0, 1). At each

iteration, these matrices are regenerated. pti and gti are the

personal best solution of the i-th particle and the global best

solution ever found by any particle in the swarm, respectively.

Generally speaking, the value of inertia weight is linearly

decreased over the generations to favor exploration in initial

generations and exploitation in the later generations. The

following equation is used to update the value of inertia

weight.

ω = ωmax −
ωmax − ωmin

itermax

× iter, (9)

where ωmax and ωmin are respectively the lower and upper

boundaries of the inertia weight ω. The argument itermax is

the maximum number of iterations and the variable iter is the

current iteration.

According to the above analyses, this paper proposes the

knowledge-based Particle Swarm Optimization (KPSO) by a

careful combination of the original PSO algorithm and the

response characteristics. More specifically, the improvements

mainly concern three aspects: the constitution of solution

components, parameter setting based on prior knowledge, and

evaluation function definition.

First, three controller parameters are defined to compose

an individual ~x = (kp, kd, ki), therefore, there are only three

members in an individual. Each member is assigned as a

real value. If there are n individuals in a population, then a

population X can be expressed as the following matrix form.

X =











~x1

~x2

...

~xn











=











kp1 kd1 ki1
kp2 kd2 ki2

...
...

...

kpn kdn kin











, (10)

where the ~xj is a vector, j = 1, 2, · · · , n.

Second, some parameter settings are associated with the

prior knowledge extracted from Table I. As the proportional

gain kp is related to the overshoot and steady-state error, the

key parameter ω in (7) is extended from a scalar to a vector,

expressed as ~ω = (ωp, ωd, ωi). The element ωp is fined as a

nonlinear piece-wise function:

wp=







ωmax, if |σ − 1| ≥ ǫ or |ess| ≥ τ

1

ǫ2
[

(ωmax−ωmin)(σ−1)2 + ωmin

]

otherwise,
(11)

where ǫ and τ are thresholds of overshoot and steady-state

error, respectively. According to general definitions, ǫ can be

defined as 0.2 and τ is 0.1.

Fig. 3 shows the inertia weight ωp according to the over-

shoot and steady-state error, where the τ = 0.1 and ǫ = 0.2.

The argument ωp increases non-linearly with (σ − 1) in the

interval [−0.2, 0.2].
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Fig. 3. The inertia weight ωp.

A minor modification is made to the position update equa-

tion (8) to meet the requirements of the special cases.

xt+1

j,p =

{

xt
j,p −

∣

∣vt+1

j,p

∣

∣ ess ≥ 0.1

xt
j,p +

∣

∣vt+1

j,p

∣

∣ ess ≤ −0.1,
(12)

where xt+1

j,p = kt+1

p,j , j = 1, 2, · · · , n. The superscript t is

indicated the variable iter.

Third, a more comprehensive performance index is designed

not only based on integral error, but also based on the control

input, rise time, settling time, etc. The four commonly used

measures are Integral of Absolute Error (IAE), Integral of

Time multiply Absolute Error (ITAE), Integral of Squared

Error (ISE) and Integral of Time Multiply Squared Error

(ITSE) [20], which are defined based on the integral error

for a step set-point response:

IAE =

∫

∞

0

|e (t)|dt (13)

ITAE =

∫

∞

0

t |e (t)|dt (14)

ISE =

∫

∞

0

e(t)
2
dt (15)

ITSE =

∫

∞

0

te(t)
2
dt (16)

All the measures require a fixed experiment to be performed

on the system and the integrals are evaluated over a fixed

time period (in theory to infinity, but usually until a time

long enough for the responses to settle). These performance

criteria in the frequency domain have advantages as well

as disadvantages. For example, control systems specified to

minimize ISE will tend to eliminate large errors quickly, but



will tolerate small errors persisting for a long period of time.

Often this leads to fast responses, but with considerable low

amplitude oscillation. IAE does not add weight to any of

the errors, which tends to produce slower response than ISE
optimal systems, but usually with less sustained oscillation.

ITAE and ITSE integrate the absolute error or squared error

weighted by the time and is integrated over time. The effect

of this is to weight the errors. The downside of this is that

ITAE/ITSE tuning also produces systems with sluggish initial

response.

Another reason that these measures cannot be used in

practical system comparisons is that they require a carefully

controlled experiment. Although it may sometimes be possible

to perform experiments on real plant, it is impossible to

stop random disturbances affecting the process during an

experiment.

In this paper, the time integral of absolute error is em-

ployed as a part of the performance index to achieve the

satisfactory dynamic characteristics in the transition process

and the squared controlled variable is adopted to avoid the high

control outputs. Additionally, a weighted function is designed

to eliminate the longtime adjusting phenomenon. Therefore,

a new performance criterion (Integral of Absolute Error and

Control Signal IAEU). is defined as follows:

IAEU=

∫

∞

0

(|e (t)|+θ1 |u (t)|)dt+θ2σ+θ3 (tr+ts) , (17)

where θ1, θ2, and θ3 are the weighting factor. The perfor-

mance index can satisfy the designer’s various requirements

by changing the weighting factors. This paper presents a

prior knowledge-based PSO-PID controller for searching the

optimal or near optimal controller parameters for the PID

control Systems. Real number encoding technique is employed

to describe each individual. The searching procedures of the

proposed prior knowledge-based PSO algorithm is described

as Algorithm 1.

IV. SIMULATION EXPERIMENTS AND PERFORMANCE

ANALYSIS

For better understanding the search behavior of the proposed

KPSO, a set of simulation experiments are performed for the

algorithm investigations, performance analysis, and compar-

isons. The parameters of each algorithm are provided and the

empirical results are reported and discussed in this section.

A. Parameter Setting

Simulation Experiments are carried out on PC with Intel

Core i7 4510U CPU with 2.6GHz and 8.00GB memory

capacity. To verify the effectiveness of the proposed algo-

rithm, standard GA and PSO algorithms are selected as the

competitors. In all the following experiments, the population

size is all set to 30, i.e., n = 30 and the maximum iteration is

itermax = 50. The search scopes of individuals are specified as

kp ∈ [0, 10], kd ∈ [0, 2], and ki ∈ [0, 10] for the electric pump

drive system, and they are limited as kp ∈ [0, 5], kd ∈ [0, 2],

Algorithm 1: The Prior Knowledge-based PSO Algorithm.

1 Initialize the population uniformly and calculate the initial
fitness.

2 while stopping criteria is not reached do
3 Test the closed-loop system stability and reinitialize the

unstable particles.
4 Calculate tr , σ%, ts, and ess for each particle.
5 Update ω and ωp according to (9), and (11).
6 Update particles’ velocity according to (7).

7 if v
(t+1)
i,j > v

max
j then

8 v
(t+1)
i,j = v

max
j ;

9 if v
(t+1)
i,j < v

min
j then

10 v
(t+1)
i,j = v

min
j ;

11 if ess ≥ 0.2 then

12 x
t+1
i,p = x

t
i,p −

∣

∣v
t+1
i,p

∣

∣;

13 else if ess ≤ −0.2 then

14 x
t+1
i,p = x

t
i,p +

∣

∣v
t+1
i,p

∣

∣;

15 else
16 Modify particles’ position according to (8).

17 Use IAEU (17) to calculate the quality of particles.
18 Update the particles’ personal best and the global best.

19 return the best solution found.

and ki ∈ [0, 2] in the automatic voltage regulator. The other

parameter and strategies involved in these algorithm are listed

as follows.

For the GA algorithm [49]:

• Elitist strategy.

• Non-linear ranking selection with the probability ps =
0.10.

• Single point uniform crossover with the probability pc =
0.75.

• Non-uniform mutation with the probability pm = 0.10.

For the PSO algorithm [49]:

• Inertia weight ω decreasing linearly over the iterations.

• ωmax = 0.9 and ωmin = 0.2.

• Acceleration coefficients c1 = c2 = 2.

• Maximum velocity vmax = (xmax − xmin)/5.

For the KPSO algorithm

• ωmax = 0.5 and ωmin = 0.2.

• Acceleration coefficients c1 = c2 = 2
• Maximum velocity vmax = (xmax − xmin)/5.

• θ1 = 0.1, θ2 = 10, θ3 = 2.

B. Performance Analysis

Each algorithm is tested 30 times independently to obtain

reasonable statistical results for each testing system. Table

II gives the best and median results of three gains, i.e.,

proportional gain kp, derivative gain kd and integral gain

ki. Table III shows the statistical results of performance

indicators for system 1 and system 2 by using Ziegler-Nichols

(Z-N), GA-PID, PSO-PID and KPSO-PID tuning algorithms

with the proposed performance index IAEU. To check the

significance of the results, a series of Wilcoxon rank-sum test



has been conducted with Holm p-value adjustment using a

95% confidence interval. The median of the best performing

algorithm is shown in bold. Fig. 4 and 5 are the step responses

of System 1 and System 2 optimized by GA, PSO, and KPSO

with different performance criteria, respectively.

TABLE II
COMPARISON IN THE BEST AND MEDIAN PARAMETERS OF DIFFERENT PID

CONTROLLERS

System para. stats. Z-N GA PSO KPSO

System 1

kp
median 5.2973 4.9941 4.8478 4.2002
best 5.2973 4.8794 4.8611 3.2140

kd
median 0.6554 0.7184 0.6542 0.6568
best 0.6554 0.6677 0.6179 0.3841

ki
median 10.276 6.5111 6.2057 6.5194
best 10.276 6.9635 6.1794 6.7106

System 2

kp
median 1.1550 0.7162 0.6622 0.6337
best 1.1550 0.8861 0.6748 0.6248

kd
median 0.1422 0.5694 0.3452 0.2939
best 0.1422 0.3158 0.2590 0.2190

ki
median 2.2514 0.7550 0.6543 0.4894
best 2.2514 0.7984 0.6100 0.4600

From Table III, the PID controller by the Z-N tuning

method is based on Nyquist frequency response. It can be

seen that the Z-N PID controller has large overshoot and

even poor stability in the control of plants. The KPSO-PID

controller has an advantage on performance of overshoot,

rising and settling time as compared to GA-PID and PSO-

PID controllers, although it has a slightly long in rising and

settling time in System 2.

From Figures 4(a), 4(b) and 5(a), 5(b), it is hard to judge

which performance criteria is better that the other ones. For

example, the GA-PID controller evaluated by IAE has an

overshoot advantage on system 1, but do not perform well

on system 2. The PSO-PID controller evaluated by ISE has a

quick start, but there is a little defect in the overshoot. The GA-

PID and PSO-PID controllers with IAEU performs slightly

better than the controller with other performance criteria in

overshoot and steady state error. From Figure 4(c) and 5(c),

we can see that the KPSO-PID controller with the performance

index IAEU has an impressive performance in overshoot and

steady state error and settling time, despite its imperfection

in the rising time. It is worth pointing out that the these

population-based metaheuristic are heuristic algorithms, which

performance can be affected by various factors, i.e., search

strategies, initial distribution of solutions, parameter values,

and maximum iteration involved in algorithms.

V. CONCLUSIONS

A PID controller is a generic controller widely used in

over 90 percent of industrial control systems. The control

equation involves three separate parameters (the Proportional,

the Integral and Derivative terms), the tuning of which is still

a open issue. In this paper, knowledge-based PSO algorithm

is proposed based on the analysis of the relationships between

TABLE III
STATISTICAL COMPARISON OF PERFORMANCE INDICATORS BY USING

Z-N, GA-PID, PSO-PID AND KPSO-PID ALGORITHMS. THE

HIGHLIGHTED ENTRIES ARE BASED ON A SERIES OF WILCOXON

RANK-SUM TEST USING THE HOLM p-VALUE ADJUSTMENT.

System para. stats. Z-N GA PSO KPSO

System 1

σ

median 0.2333 0.0863 0.0512 0.0132

best 0.2333 0.0553 0.0357 0.0000
mean 0.2333 0.0751 0.0502 0.0171
std. 0.0000 0.0441 0.0057 0.0180

tr

median 0.2200 0.2050 0.2350 0.2750
best 0.2200 0.1700 0.2100 0.2000
mean 0.2200 0.3583 0.2327 0.2970
std. 0.0000 0.4792 0.0087 0.0843

ts

median 2.8000 1.7500 1.4500 1.3000

best 2.8000 1.3400 1.3400 0.6900
mean 2.8000 1.9433 1.4617 1.2503
std. 0.0000 0.6324 0.1343 0.3638

ess

median 0.0000 0.0000 0.0000 0.0000
best 0.0000 0.0000 0.0000 0.0000
mean 0.0000 0.0000 0.0000 0.0000
std. 0.0000 0.0000 0.0000 0.0000

System 2

σ

median 0.5888 0.0934 0.0226 0.0076

best 0.5888 0.0317 0.0190 0.0001
mean 0.5888 0.0976 0.0237 0.0095
std. 0.0000 0.0388 0.0036 0.0079

tr

median 0.2200 0.1400 0.2150 0.2500
best 0.2200 0.1000 0.1900 0.1900
mean 0.2200 0.1430 0.2173 0.2540
std. 0.0000 0.0314 0.0153 0.0340

ts

median 2.8000 1.1150 0.8100 0.8150
best 2.8000 0.4200 0.3100 0.3500
mean 2.8000 1.5057 0.7240 0.6730
std. 0.0000 1.2106 0.2061 0.2779

ess

median 0.0000 0.0000 0.0000 0.0000
best 0.0000 0.0000 0.0000 0.0000
mean 0.0000 0.0000 0.0000 0.0000
std. 0.0000 0.0000 0.0000 0.0000

PID parameters and response characteristics. The dynamic re-

sponse information is fully utilized for the search in progress,

including the monitoring of the stability for generating the new

solution to replace the unstable ones; designing new update

rules of inertia weight with respect to the values of σ% and

ess; adding the position modification; and integrating the new

time-domain performance criterion.

Through the simulation of the marine system and automatic

voltage regulator system, the results show that the proposed

controller can nearly perform an efficient search for the

optimal PID controller parameters in comparison with GA-

PID controller and PSO-PID controller. In addition, different

performance estimation schemes are performed in order to

verify the superiority of the proposed criterion. It is clear from

the results that the proposed method can solve the searching

and tuning problems of PID controller parameters more easily

and quickly than the GA and PSO method.
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(c) KPSO-PID controller.

Fig. 4. The step responses of PID controller of System 1 optimized using GA, PSO, and KPSO with different performance criteria.
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Fig. 5. The step responses of PID controller of System 2 optimized using GA, PSO, and KPSO with different performance criteria.
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