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Abstract—In this paper, we tackle large-scale optimization
problems with overlapping components, known as overlapping
problems. Decomposition for overlapping problems are challeng-
ing, as their components depend on one another. Existing methods
typically assign all the decision variables that interact directly
and indirectly into one group, thus cannot reduce the size of
the original large problem. To address this issue, we modify
the Recursive Differential Grouping (RDG) method to decom-
pose overlapping problems, by breaking the linkage at shared
variables between components. To evaluate the efficacy of our
method, we extend the existing overlapping benchmark problems,
considering various level of overlap. Experimental results show
that 1) our method can greatly improve the search efficiency of an
optimization algorithm via divide-and-conquer, and outperforms
RDG, random decomposition as well as other state-of-the-art
methods; 2) Adaptively allocating computational resources to
components based on a typical measure of “contribution” does
not facilitate solving overlapping problems; 3) Our method,
equipped with a component solver, achieves overall the best
solution quality when used to solve the CEC’2013 benchmark
problems.

Index Terms—Cooperative co-evolution, large-scale optimiza-
tion, overlapping problem, variable interaction

I. INTRODUCTION

Many real-world large-scale optimization problems consist

of several small sub-problems (or components) that possibly

interact with each other [1]–[4]. Exploiting module structure

can greatly facilitate solving such a problem [5], [6]. This is

especially useful in a large-scale optimization scenario, where

the size of search space is typically large and the amount

of computational time is limited. The structure of decision

variable interactions can be used to decompose a large-scale

problem into sub-problems, that are solved in a cooperative

way. Such a divide-and-conquer approach is known as Cooper-

ative Co-evolution (CC) [7], and has achieved many successes

in the context of large-scale global optimization [6], [8]–[10].

When tackling problems with separable components (e.g.,

Fig. 1a), it is logical to search for a global optimum by

optimizing each component independently. However in many

real-world applications, e.g., the optimization of wine supply

chain [3] and transportation of water tanks [4], the components

usually interact with each other. In this case where there exists

some linkage, i.e., shared (or overlapped) variable between

components (Fig. 1b), what would be the “best” (or “good”)

strategy to decompose the problem?

In the CC literature, numerous methods has been proposed

to decompose a black-box optimization problem, however

they are typically ineffective when dealing with overlapping

problems. The random grouping (RG) [11] and delta grouping

[12] methods do not explicitly consider the underlying variable

interaction structure in decomposition. The intelligent decom-

position methods, e.g., extended differential grouping (XDG)

[13], global differential grouping (GDG) [14], recursive differ-

ential grouping (RDG) [10], and differential grouping 2 (DG2)

[15], identify and assign all the linked variables (both directly

and indirectly [16]) into one group, thus in many cases can

not reduce the problem size.

Apart from the above methods that decompose decision

variables into mutually exclusive subsets, there have been other

techniques that partition a large-scale problem into overlap-

ping sub-problems [17]–[22]. However it will raise another

challenge; that is how to exchange information for a shared

variable between overlapping components. Furthermore, the

factored evolutionary algorithms [20] require variable inter-

action structure as prior knowledge. The overlapped CC [21]

creates overlap by assigning influential variables to multiple

groups, thus does not explicitly consider problem structure.

The statistical variable interdependence learning [18] identities

a linkage group for each decision variable based on non-

monotonicity detection, thus is computationally inefficient.

In the genetic algorithm research, there have been some

works that construct overlapping building blocks [5], [23]–

[26]. In [23], the linkage groups are identified by non-

monotonicity detection, and loosely linked variables are re-

moved from the linkage groups to handle overlapping prob-

lems. However, examining pairwise variable interactions re-

quires a large number of function evaluations (FEs). In [24],

[25], a Bayesian network is built based on promising candidate

solutions, that implicitly captures the problem structure. In [5],

the pairwise mutual information between decision variables

is calculated based on promising candidate solutions, and a

clustering algorithm is used to group variables into overlapping

linkage groups. However, building a Bayesian network or

linkage model is typically computationally expensive. Further-

more, model building is not directly applicable to CC.
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Fig. 1: An illustration of problems with (a) separable and

(b) overlapping components. In (a) two components are com-

pletely separable from each other; while in (b) two components

share the same decision variable x4.

In this paper, we tackle large-scale overlapping problems

in the context of CC. To this end, we modify the RDG

method to effectively decompose an overlapping problem

into sub-problems. RDG is chosen due to its decomposition

efficiency; it can decompose an n-dimensional problem using

O
(

n log(n)
)

FEs. The rationale of our modification is to break

the linkage at shared variables in an overlapping problem

(see Fig. 3 in Section III for an example). Our modified

RDG recursively identifies the decision variables that directly

interact with a given variable under consideration, and place

them into a group. If and only if the current group size is less

than a given threshold, the interactions between the group and

remaining variables will be further examined. The threshold

is introduced to control the group size.

To evaluate the efficacy of our proposed method, we extend

two overlapping problems in CEC’2013 benchmark suite [27],

by varying the number of shared variables between com-

ponents. Experimental results show that our method signifi-

cantly improves over RDG, and outperforms other methods

when embedded into a CC framework to solve the extended

overlapping problems. We then try to boost the performance

of CC via adaptively allocating computational resources to

components based on their contributions to the overall fitness

improvement. However, the solution quality generated by a

typical contribution-based CC model [28] is worse than that of

standard CC. We infer the reason may partially attribute to the

dependence of components in overlapping problems. Finally,

we show that our method, equipped with covariance matrix

adaptation – evolutionary strategy (CMA-ES) [29], produces

overall the best solution quality when compared against 9 other

state-of-the-arts on the CEC’2013 benchmark problems.

The paper is organized as follows. In the next section, we

describe CC and briefly review related methods. Our modified

RDG is described in Section III, and evaluated using numerical

Algorithm 1 Cooperative Co-evolution

1: Divide decision variables X into components Xi, 1 ≤ i ≤ m
2: Initialize a context vector x∗ (a complete candidate solution)
3: for j from 1 to max cycles do
4: for i from 1 to m do
5: Sample sub-solutions xis for Xi using an optimizer
6: Evaluate the fitness of each xi, combined with x

∗

7: Update x
∗ if a better sub-solution xi is found

8: end for
9: end for

10: return the best solution found x
∗

experiments in Section IV. In the last section, we conclude the

paper and suggest possible directions for future work.

II. BACKGROUND AND RELATED WORK

In this section, we describe CC [7] that tackles a large-scale

optimization problem via a divide-and-conquer strategy. CC

(Algorithm 1) typically consists of two stages: 1) decomposi-

tion: dividing a given high-dimensional problem into a number

of low-dimensional sub-problems; and 2) optimization: solving

each sub-problem cooperatively using an optimizer.

A. Decomposition Stage

The efficacy of CC heavily relies on a proper problem

decomposition, that is to decompose a problem based on its

underlying variable interaction structure. Two variables inter-

act if they influence each other in the optimization process.

A decomposition is considered as “good” if it minimizes the

inter-group and maximizes the intra-group variable interac-

tions [5], [6]. Generally, there are two different approaches

that can be used to identify variable interactions based on

perturbation: 1) non-monotonicity detection [23], and 2) non-

linearity detection [30].

The non-monotonicity detection method identifies variable

interactions by detecting non-monotonicity in fitness function

when perturbing decision variables. If the monotonicity of

fitness function with respect to variable xi does not change for

different values of xj , xi and xj are independent; otherwise

they interact. Decomposition methods in this category include

variable interaction learning [9], statistical variable interdepen-

dence learning [18], fast variable interdependence searching

[31]. However these methods may require more samples to

identify a non-monotonicity relationship, thus are typically

more computationally expensive than non-linearity detection.

The non-linearity detection method identifies variable inter-

actions by detecting the non-linearity in fitness changes when

perturbing decision variables. If the fitness change induced by

perturbing decision variable xi varies for different values of

xj , xi and xj interact. The decomposition methods in this line

include differential grouping [6], XDG, GDG, DG2 and fast

interdependency identification [32]. These methods typically

require O(n2) FEs when used to decompose an n-dimensional

problem. The RDG method has reduced the decomposition

cost to O(n log(n)). We will further detail RDG in Section

II-C, as our proposition in Section III is closely related to it.



B. Optimization Stage

In the optimization stage, the sub-problems are optimized

iteratively using an optimizer in a cooperative manner. When

optimizing the ith sub-problem, a context vector is used to

assist the evaluation of the individuals in the sub-problem.

The context vector is a complete candidate solution, typically

consisting of the best sub-solutions from each sub-problem.

The context vector (excluding the ith sub-solution) is used

to combine with an individual in the ith sub-problem, so a

complete candidate solution can be formed and evaluated. The

context vector will be updated if a better sub-solution is found

for the ith sub-problem.

The original CC [7] optimizes the sub-problems in a round-

robin fashion, thus computational resources are evenly dis-

tributed to each sub-problem. However if the sub-problems

contribute very differently to the overall fitness value, such

an allocation policy may be inefficient. Thus, there is a

trend recently to adaptively allocate computational resources

to sub-problems based on their contribution to the overall

fitness improvement [28], [33]–[38]. In Section IV-D, we will

empirically investigate the efficacy of such contribution-based

CC on overlapping problems.

C. Recursive Differential Grouping

In this sub-section, we describe the RDG method in detail

and discuss the issues of RDG when dealing with overlapping

problems. The RDG method identifies the interaction between

two subsets of variables X1 and X2 based on a measure of

non-linearity detection (see Fig. 2 for an example):

Theorem 1. (Sun et al. [10]) Let f : Rn → R̄ be an objective

function; X1 ⊂ X and X2 ⊂ X be two mutually exclusive

subsets of decision variables: X1 ∩ X2 = ∅. X1 and X2

interact, if there exist a candidate solution x
∗ and sub-vectors

a1, a2, b1, b2, such that the non-linearity term λ is non-zero:

λ(x,x1,x2) := |∆1 −∆2| 6= 0, (1)

where

∆1 := f(x∗)|x1=a1,x2=b1
− f(x∗)|x1=a2,x2=b1

, (2)

∆2 := f(x∗)|x1=a1,x2=b2
− f(x∗)|x1=a2,x2=b2

. (3)

Here, f(x∗)|x1=ai,x2=bj
calculates the objective value of x∗

when replacing X1 with ai, and X2 with bj .

In theory, any positive value of the non-linearity term λ
implies an interaction between the subsets of decision variables

under examination. However in practice, the value of λ for

separable decision variables may be non-zero, due to the

computational round-off errors incurred by the floating-point

operations [15]. In [39], we applied the technique suggested by

DG2 [15] to estimate an upper bound on the round-off errors

associated with the calculation of the non-linearity term λ:

ǫ := γ√n+2

(

|f(x∗
1,1)|+|f(x∗

2,1)|+|f(x∗
1,2)|+|f(x∗

2,2)|
)

. (4)
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Fig. 2: The rationale behind the non-linearity detection method

when identifying (a) separable and (b) non-separable subsets

of decision variables. In the separable contour plot (a), the

fitness change induced by perturbing the decision variable

subset X1 is the same for different values of X2. However in

the non-separable contour plot (b), the fitness change induced

by perturbing X1 varies for different values of X2.

Here f(x∗
i,j) stands for f(x∗)|x1=ai,x2=bj

; n is the dimen-

sionality; and γk is defined as

γk :=
kµM

1− kµM

, (5)

where µM is a machine dependent constant. The upper bound

is then used as the threshold value in RDG2 [39] to distinguish

between separable and non-separable variables:

With Theorem 1, the interaction between two subsets of

decision variables (X1 and X2) can be identified by the

following procedure:

1) Set all the decision variables to the lower bounds (lb)

of the search space (xl,l);

2) Perturb the decision variables X1 of xl,l from the lower

bounds to the upper bounds (ub), denoted as xu,l;

3) Calculate the fitness change ∆1 between xl,l and xu,l;

4) Perturb decision variables X2 of xl,l (xu,l) from lb to

the middle of the search space, denoted as xl,m (xu,m);

5) Calculate the fitness change ∆2 between xl,m and xu,m;

6) If the difference (λ) between ∆1 and ∆2 is greater than

the threshold ǫ, X1 and X2 interact.

The two subscripts of x denote the values of X1 and X2

respectively: ‘l’ is lower bound; ‘u’ is upper bound; and ‘m’

is the mean of lower and upper bounds.

The decomposition procedure of RDG can be briefly sum-

marized into three steps: 1) identifying the decision variables

that interact with a selected variable xi, and placing them

into a subset X1; 2) recursively identifying and grouping

the decision variables that interact with any variable in X1,

until X1 is independent of the remaining variables; and 3)

repeating step 1) and 2) until all variables have been grouped.

Thus in an overlapping problem, all decision variables will be

assigned into one group, as they are all linked (either directly

or indirectly). In the next section, we will modify the RDG

method to effectively decompose an overlapping problem.
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Fig. 3: The desired decomposition (a) or (b) for the overlap-

ping problem in Fig 1b. The idea is to break the linkage at

shared variables, such that the level of interaction between

components is low.

III. DECOMPOSITION FOR OVERLAPPING PROBLEMS

In this section, we modify the RDG method to effectively

decompose an overlapping problem. The basic idea is to break

the linkage at shared variables, by placing shared variables in

either of the overlapping components. Considering an example

in Fig. 1b, our desired decomposition is to assign x4 to either

of the two components, as shown in Fig. 3. For simplicity, we

refer to our modification as RDG3, to distinguish it from the

previous versions proposed in [10], [39].

The same as its predecessors, RDG3 begins by identifying

the interaction between the first decision variable x1 and the

remaining decision variables. If no interaction is detected, x1

will be placed in the separable decision variable set S, and the

algorithm will move on to the next decision variable x2. If any

interaction is detected, the remaining decision variables will

be divided into two (nearly) equally-sized groups G1 and G2.

Then the interaction between x1 and G1, x1 and G2 will be

identified respectively. This process is recursively conducted

until all the individual decision variables that interact with x1

are identified and placed in the decision variable subset X1

with x1.

In the next step, a threshold ǫn is imposed on the size

of X1 to handle overlapping problems. If the size of X1

is less than ǫn (|X1| < ǫn), RDG3 further examines the

interaction between X1 and the remaining variables (excluding

X1) to identify the variables that indirectly interact with x1

(linked by other variables). If any interaction is identified, the

interacting decision variables will be placed into X1. This

process is repeated until |X1| ≥ ǫn or no interaction can be

further detected between X1 and the remaining variables. The

variables in X1 will be treated as a non-separable group.

The RDG3 method moves on to the next decision variable

that has not been grouped (xi), and the above process is

Algorithm 2 RDG3 for Overlapping Problems

Require: f , ub, lb, ǫn, ǫs, n
1: Initialize seps and nonseps as empty groups
2: Initialize S as empty (to store separable variables)
3: Set all decision variables to the lower bounds: xl,l ← lb

4: Calculate the fitness: yl,l ← f(xl,l)
5: Assign the first variable x1 to the variable subset X1

6: Assign the rest of variables to the variable subset X2

7: while X2 is not empty do
8: [X∗

1 ] ← INTERACT(X1, X2, xl,l, yl,l, n)
9: if |X∗

1 | ≥ ǫn or |X∗
1 | = |X1| then

10: if X1 contains one decision variable then
11: Add X1 to S for further decomposition
12: else
13: Add X1 to nonseps as a component
14: end if
15: Empty X1 and X∗

1

16: Assign the first variable of X2 to X1

17: Delete the first variable in X2

18: else
19: X1 ← X∗

1

20: Delete the variables of X1 from X2

21: end if
22: end while
23: while S is not empty do
24: if |S| < ǫs then
25: Add S as a group to seps, and empty S
26: else
27: Add the first ǫs variables in S as a group to seps
28: Delete the first ǫs variables from S
29: end if
30: end while
31: return seps and nonseps

1: function INTERACT(X1, X2, xl,l, yl,l, n)
2: xu,l ← xl,l; xu,l(X1)← ub(X1) //Set X1 to the ub

3: Calculate the fitness of xu,l: yu,l ← f(xu,l)
4: Calculate the fitness change: δ1 ← yl,l − yu,l
5: xl,m ← xl,l; xl,m(X2)←

(

lb(X2) + ub(X2)
)

/2
6: xu,m ← xu,l; xu,m(X2)←

(

lb(X2) + ub(X2)
)

/2
7: Calculate the fitness: yl,m ← f(xl,m); yu,m ← f(xu,m)
8: Calculate the fitness change: δ2 ← yl,m − yu,m
9: Estimate ǫ← γ√n+2

(

|yl,l|+ |yu,l|+ |yl,m|+ |yu,m|
)

10: if |δ1 − δ2| > ǫ then
11: if X2 contains one variable then
12: X1 ← X1 ∪X2

13: else
14: Divide X2 into equally-sized groups G1, G2

15: [X1
1 ] ← INTERACT(X1, G1, xl,l, yl,l, ǫ)

16: [X2
1 ] ← INTERACT(X1, G2, xl,l, yl,l, ǫ)

17: [X1] ← X1
1 ∪X2

1

18: end if
19: end if
20: return X1

21: end function

repeated until all the decision variables have been grouped.

Different from its predecessors, RDG3 further divides the

separable variables in the set S into small groups with an

interval ǫs. That is to break the set S into subsets at the ǫs,

2ǫs, · · · kǫs elements, where k =
⌊

|S|/ǫs
⌋

. Finally, RDG3

returns the identified separable variable groups (seps) and non-

separable variable groups (nonseps) as the outputs.



We introduce the threshold ǫn and ǫs in the hope that a

large-scale problem can be decomposed into reasonably-sized

components. On one hand, it is a waste of computational

resources to optimize a component with very small size.

On the other hand, a large-sized component is typically not

manageable by optimization algorithms. More importantly, by

tuning the threshold ǫn, it is possible to break the linkage

at shared variables for an overlapping problem. Consider the

example in Fig. 1b again, and ǫn = 4. If searching from

x1, the variables {x1, x2, x3, x4} will be placed in a subset

X1 after the first step. As |X1| ≥ ǫn, X1 will be treated as

a component. The remaining variables {x5, x6, x7} will be

identified as another component. The decomposition in this

case is identical to the one shown in Fig. 3a. Similarly, if

starting from x7, the decomposition is identical to Fig. 3b.

Note that the decomposition of RDG3 is dependent on the

order of the variables checked.

IV. EXPERIMENTS

In this section, we use simulation experiments to evaluate

the efficacy of RDG3. All experiments were performed in

MATLAB, and the source codes will be made available online.

A. Benchmarking Overlapping Problems

To systemically evaluate the efficacy of RDG3, we extend

the two CEC’2013 benchmark overlapping problems (f13
and f14) [27], considering various level of overlap between

components.

The CEC’2013 f13 and f14 consist of 20 components, and

the adjacent components are designed to share m (m = 5)

common decision variables to impose overlap. The overlap-

ping effects in f13 and f14 are very different; the former is

conforming and the latter is conflicting [27], [40]. In a problem

with conforming overlapping components, a shared decision

variable has the same optimal value across overlapping com-

ponents. For example, if decision variable xi is in component

C1 and C2, the optimal value of xi in C1 is also optimal

for C2. However in a problem with conflicting overlapping

components, the optimal value of a shared decision variable

may not be the same in different components.

We extend the CEC’2013 f13 and f14, by varying the

parameter m from 1 to 10, resulting in 10 benchmark problems

for each of the conforming and conflicting categories. We

denote the conforming and conflicting problems as fo,m and

fl,m respectively, where m = 1, 2 · · · 10. Therefore, a suite of

20 overlapping benchmark problems are created in total. Each

problem is designed to have 20 components with 1000 decision

variables in total. As adjacent components share m decision

variables, the problem dimension is thus n = 1000 − 19m.

The global optimum for a conforming problem is 0, as all

components can be minimized to 0 simultaneously. However

the optimal value for a conflicting problem is unknown. As a

shared decision variable may have different optimal values in

overlapping components, it is not possible to simultaneously

solve each component to optimality 0. In this case, the global

optimum of the whole problem is thus greater than 0.

B. Decomposition Effects on Overlapping Problems

Methodology: The RDG3 method is used to decompose the

20 overlapping benchmark problems designed in Section IV-A.

Different threshold values ǫn = 0, 50, 100, 1000 are tested.

As the dimensions of all the benchmark problems are less

than 1000, RDG3 with ǫn = 1000 is expected to group all

variables into a component. The value of ǫs is set to 100. The

number of components generated (nc), the average component

size (s̄) and the number of FEs used are reported in Table

I. We then use CMA-ES [29] to solve the components in a

round-robin fashion. The parameter setting for CMA-ES is

consistent with the original paper. The computational budget

for the decomposition and optimization stages is set to 3×106

FEs in total. The mean of best solutions (ȳ) generated from

40 independent runs is reported in Table I; the best results are

determined using Wilcoxon rank-sum test (significance level

= 0.05) with Holm p-value correction [41].

Results: We observe in Table I: 1) As ǫn increases, the

number of components (nc) generated by RDG3 decreases;

the average component size s̄ increases; and the number of

FEs used in decomposition is roughly the same. 2) RDG3

with ǫn = 1000 is significantly outperformed by the ones with

other parameter settings. In fact, when ǫn = 1000, RDG3 is

effectively equivalent to the RDG (or RDG2) method, that

groups all linked variables into one component. The results

suggest that overlapping problems can benefit from a divide-

and-conquer strategy, and can potentially be solved in a more

effective way. 3) ǫn = 50 is a robust parameter setting

for RDG3. It significantly outperforms the other parameter

settings on conforming problems (fo,1 to fo,10); and generates

comparable solution quality with ǫn = 0 on conflicting

problems (fl,0 to fl,10). 4) The threshold value used to identify

variable interactions (Eq. 4) is very conservative, resulting in

some non-separable variables being classified as separable.

This is why RDG3 with ǫn = 1000 generates more than one

component for some benchmark problems.

C. Comparison on Overlapping Problems

Methodology: We compare the performance of RDG3

against DG2, RG, and delta grouping when incorporated with

CMA-ES to solve the overlapping benchmark problems. DG2

is a state-of-the-art method, however similar to RDG, it cannot

effectively decompose overlapping problems. The RG method

groups decision variables randomly in each evolutionary cycle,

while delta grouping groups variables based on a measure of

averaged variable differences. As a baseline, we also compare

RDG3 to a variant of RG, denoted as RG2, that randomly

groups decision variables in the first iteration, and remains

unchanged until the end of an optimization run. For RDG3,

ǫn is set to 50 and ǫs is 100; for RG, RG2, and delta grouping

the maximal component size is set to 100. The mean and

standard deviation of the best solutions generated in 40 runs

are reported in Table II. The same statistical tests are used as

before to identify the best results.

Results: RDG3 significantly outperforms the DG2 method

across the benchmark suite. DG2 aims at grouping all linked



TABLE I: Decomposition and optimization results of RDG3 with different ǫn values on the overlapping benchmark problems.

nc is the number of components generated; s̄ is the average component size; FEs is the number of function evaluations used

in decomposition; and ȳ is the mean of best solution quality generated by a CC algorithm from 40 independent runs. The best

solution quality is in bold, according to the Wilcoxon rank-sum tests (significance level = 0.05) with Holm p-value correction.

Fun
ǫn = 0 ǫn = 50 ǫn = 100 ǫn = 1000

nc s̄ FEs ȳ nc s̄ FEs ȳ nc s̄ FEs ȳ nc s̄ FEs ȳ

fo,1 28 35 18778 5.30e+05 18 54 19108 1.31e+04 17 57 19111 2.16e+04 8 122 18037 8.12e+06
fo,2 21 45 18220 3.78e+05 14 68 18112 1.46e+04 9 106 17482 7.20e+04 3 320 16930 5.32e+06
fo,3 28 33 17965 9.90e+05 13 72 17431 3.65e+03 11 85 16633 1.20e+04 1 943 15454 1.91e+06
fo,4 24 38 17644 1.40e+05 13 71 17293 6.45e+03 10 92 17044 5.84e+03 3 308 15937 2.59e+06
fo,5 18 50 16339 1.27e+04 14 64 15988 8.27e+03 8 113 15913 7.98e+04 2 452 15187 9.24e+05
fo,6 26 34 16546 1.02e+04 16 55 16876 3.17e+03 14 63 16972 7.49e+04 3 295 14602 1.48e+06
fo,7 20 43 15532 4.07e+05 15 57 15622 5.03e+04 10 86 15025 9.28e+05 1 867 14554 1.78e+06
fo,8 21 40 15814 2.91e+06 14 60 14893 4.34e+05 8 106 14296 5.42e+04 1 848 13192 1.20e+06
fo,9 18 46 14464 1.77e+03 13 63 14476 1.90e+03 9 92 14218 2.24e+04 1 829 14218 1.25e+06
fo,10 27 30 13969 1.24e+06 15 54 14503 1.29e+05 12 67 14185 2.47e+05 4 202 12979 1.35e+06

fl,1 21 46 18793 7.84e+05 15 65 17971 8.57e+05 12 81 17632 4.12e+06 2 490 17035 1.50e+07
fl,2 21 45 18682 1.08e+07 12 80 17854 1.14e+07 8 120 16978 2.70e+07 1 962 17026 4.00e+07
fl,3 21 44 17872 1.03e+07 13 72 17605 1.18e+07 10 94 17482 1.10e+07 2 471 16951 5.75e+07
fl,4 19 48 17047 1.11e+07 14 66 16273 1.15e+07 10 92 15799 3.02e+07 1 924 15010 3.46e+07
fl,5 21 43 16669 4.45e+06 13 69 16288 5.56e+06 9 100 16438 4.94e+06 1 905 16150 2.74e+07
fl,6 17 52 14932 1.14e+08 13 68 14902 1.13e+08 11 80 14848 1.11e+08 1 886 16216 1.44e+08
fl,7 23 37 16324 1.58e+09 12 72 16198 1.60e+09 8 108 16123 1.62e+09 1 867 16582 1.76e+09
fl,8 17 49 14848 2.11e+07 14 60 14887 2.22e+07 8 106 14812 2.51e+07 1 848 14614 4.81e+07
fl,9 18 46 14701 1.06e+08 13 63 14962 1.05e+08 9 92 14926 1.12e+08 1 829 14647 1.64e+08
fl,10 21 38 14698 8.03e+07 10 81 14863 8.26e+07 8 101 14881 8.16e+07 1 810 13381 1.02e+08

TABLE II: Optimization results of CC-DG2, RG, RG2, Delta and RDG3, as well as CBCC-RDG3 when use to solve the 20

overlapping benchmark problems. CC-RDG3 significantly outperforms the other algorithms across the benchmark suite.

Fun
CC-DG2 CC-RG CC-RG2 CC-Delta CC-RDG3 CBCC-RDG3

mean std mean std mean std mean std mean std mean std

fo,1 3.00e+06 4.74e+05 1.94e+11 2.68e+11 4.59e+06 1.64e+07 2.99e+11 1.67e+11 1.31e+04 4.56e+03 8.39e+06 1.52e+07
fo,2 3.20e+06 3.22e+05 7.27e+10 2.77e+10 2.84e+06 7.74e+06 8.71e+10 1.64e+10 1.46e+04 8.61e+03 3.46e+07 2.67e+07
fo,3 3.18e+06 3.80e+05 8.46e+10 2.03e+10 1.16e+06 1.40e+06 5.67e+10 8.03e+09 3.83e+03 3.41e+03 1.07e+06 2.78e+05
fo,4 4.22e+06 4.54e+05 6.78e+10 1.62e+10 8.59e+05 3.44e+05 5.56e+10 1.10e+10 6.72e+03 5.24e+03 2.48e+05 1.53e+05
fo,5 2.39e+06 2.36e+05 6.81e+10 1.83e+10 3.15e+08 7.94e+08 8.19e+10 2.01e+10 8.24e+03 3.09e+03 6.28e+04 2.83e+04
fo,6 4.05e+06 4.75e+05 7.83e+10 4.09e+10 7.95e+07 3.63e+08 4.91e+10 1.29e+10 2.92e+03 2.76e+03 2.76e+05 1.45e+05
fo,7 1.93e+06 2.52e+05 9.91e+10 9.81e+10 1.89e+06 5.81e+06 7.45e+10 1.56e+10 5.17e+04 2.99e+04 2.87e+08 1.49e+08
fo,8 1.93e+06 2.92e+05 7.12e+10 2.32e+10 3.25e+08 1.49e+09 1.15e+11 2.15e+10 4.84e+05 4.76e+05 9.42e+08 4.66e+08
fo,9 1.81e+06 2.70e+05 7.97e+10 2.79e+10 7.38e+05 4.94e+05 6.07e+10 1.42e+10 2.01e+03 1.08e+03 6.74e+07 2.55e+07
fo,10 3.51e+06 5.13e+05 1.11e+11 4.28e+10 2.11e+07 5.64e+07 2.42e+11 1.24e+11 1.23e+05 8.28e+04 8.63e+07 5.83e+07

fl,1 4.40e+07 3.90e+06 9.69e+11 3.20e+11 4.15e+06 9.66e+05 9.04e+11 2.28e+11 8.64e+05 5.13e+04 4.32e+10 1.49e+09
fl,2 5.12e+07 4.31e+06 1.36e+12 4.57e+11 1.55e+07 1.97e+06 1.09e+12 2.26e+11 1.14e+07 5.30e+05 6.55e+08 4.79e+08
fl,3 4.57e+07 2.52e+06 3.90e+12 4.95e+12 1.44e+07 2.17e+06 2.39e+12 5.03e+11 1.17e+07 4.51e+05 1.76e+10 4.30e+09
fl,4 7.92e+07 7.68e+06 1.11e+12 3.55e+11 1.47e+07 1.58e+06 1.18e+12 2.31e+11 1.15e+07 4.27e+05 1.23e+07 6.49e+05
fl,5 3.58e+07 2.49e+06 8.43e+11 2.49e+11 1.53e+09 6.81e+09 7.85e+11 1.98e+11 5.57e+06 2.83e+05 1.62e+09 2.06e+09
fl,6 1.51e+08 3.09e+06 9.92e+11 3.64e+11 1.18e+08 2.26e+06 7.71e+11 1.69e+11 1.13e+08 2.25e+06 6.80e+09 1.22e+10
fl,7 1.76e+09 1.21e+08 1.24e+12 5.15e+11 1.67e+09 1.08e+08 9.84e+11 2.30e+11 1.59e+09 7.11e+07 1.75e+09 1.38e+08
fl,8 5.64e+07 2.73e+06 1.76e+12 8.62e+11 2.52e+07 1.36e+06 3.38e+12 1.50e+12 2.22e+07 1.48e+06 1.88e+08 1.32e+08
fl,9 1.69e+08 1.55e+07 1.16e+12 3.32e+11 1.11e+08 4.10e+06 1.33e+12 2.19e+11 1.05e+08 5.30e+06 3.26e+08 2.60e+08
fl,10 1.07e+08 3.10e+06 1.45e+12 4.33e+11 2.01e+09 6.03e+09 1.80e+12 3.31e+11 8.27e+07 2.49e+06 2.27e+09 2.53e+09

variables into one component, thus all decision variables result

in one group for overlapping problems. By decomposing

overlapping problems into components that are optimized

cooperatively, RDG3 is able to greatly improve the solution

quality. However, a “blind” decomposition, i.e., not explicitly

considering variable interaction structure, is detrimental to

optimization for overlapping problems. This can be inferred

from the results generated by RG, RG2 and delta grouping.

D. Contribution-Based CC on Overlapping Problems

Methodology: A contribution-based CC (CBCC) allocates

computational resources to components based on their contri-

bution to the overall fitness improvement. A number of studies

has reported that CBCC is more effective than CC when used

to solve problems with separable components [28], [33]–[38].

Here, we evaluate the efficacy of a CBCC algorithm when used

to solve overlapping problems. In each evolutionary cycle,

the component that contributes the most to overall fitness

improvement is selected and evolved. We use the exponential

smoothing method to measure the contribution of a component

[28]:

U = αÛ + (1− α)(ŷb − yb)/ŷb, (6)

where ŷb and yb are the best fitness values found before and

after evolving a component; Û is the previous contribution



TABLE III: Optimization results of CC-GDG, DG2, RDG, RDG2, RDG3 as well as CBCC-RDG3 when used to solve the

CEC’2013 benchmark problems. The best solution quality is in bold, determined by Wilcoxon rank-sum tests (significance

level = 0.05) with Holm p-value correction.

Fun
CC-GDG CC-DG2 CC-RDG CC-RDG2 CC-RDG3 CBCC-RDG3

mean std mean std mean std mean std mean std mean std

f1 1.04e-20 9.90e-22 5.52e+05 5.88e+04 2.90e+05 3.28e+04 2.78e+05 3.17e+04 9.67e-19 1.23e-19 1.14e-18 1.27e-19
f2 1.54e+03 7.52e+01 4.69e+03 1.81e+02 4.69e+03 1.78e+02 4.71e+03 2.05e+02 2.36e+03 1.11e+02 2.31e+03 1.06e+02
f3 2.04e+01 4.28e-02 2.04e+01 5.21e-02 2.04e+01 4.96e-02 2.04e+01 4.35e-02 2.04e+01 6.21e-02 2.04e+01 5.95e-02
f4 7.31e+04 3.72e+04 8.52e+06 8.54e+05 5.83e+06 6.32e+05 5.83e+06 6.32e+05 1.61e+04 9.06e+03 4.29e+04 7.21e+04
f5 2.23e+06 4.24e+05 2.19e+06 3.51e+05 2.40e+06 4.36e+05 2.23e+06 3.23e+05 2.27e+06 3.02e+05 2.04e+06 3.13e+05
f6 9.96e+05 1.70e+03 9.96e+05 3.31e+02 9.96e+05 1.48e+02 9.96e+05 6.55e+01 9.96e+05 4.71e+02 1.00e+06 2.48e+04
f7 3.73e+07 1.30e+07 1.05e+03 2.79e+02 8.12e-17 2.17e-16 4.05e-16 1.49e-15 1.01e-03 3.26e-03 1.71e-21 2.39e-22
f8 1.28e+08 3.52e+07 3.85e+07 1.09e+07 8.51e+06 2.92e+06 8.70e+06 3.61e+06 1.24e+07 5.01e+06 7.11e+03 2.30e+03
f9 1.67e+08 3.88e+07 1.51e+08 2.87e+07 1.65e+08 4.16e+07 1.67e+08 2.66e+07 1.45e+08 3.15e+07 1.57e+08 2.90e+07
f10 9.11e+07 1.20e+06 9.13e+07 1.51e+06 9.10e+07 1.29e+06 9.11e+07 1.31e+06 9.11e+07 1.43e+06 9.16e+07 2.18e+06
f11 2.53e+07 2.69e+06 2.47e+05 2.37e+05 1.67e+07 1.62e+06 8.69e+03 1.24e+04 9.71e+03 1.46e+04 2.18e-13 1.02e-12
f12 1.00e+03 3.91e+01 1.01e+03 5.81e+01 9.81e+02 7.30e+01 9.81e+02 7.30e+01 9.88e+02 9.31e+00 7.00e+02 1.46e+02
f13 2.36e+06 3.38e+05 2.43e+06 3.70e+05 2.47e+06 3.83e+05 9.31e+05 1.60e+05 8.24e+03 3.09e+03 6.43e+04 4.40e+04
f14 3.63e+07 3.18e+06 3.59e+07 2.85e+06 2.77e+07 1.80e+06 2.68e+07 1.89e+06 5.57e+06 2.83e+05 1.65e+09 1.33e+09
f15 3.05e+06 3.35e+05 3.02e+06 3.30e+05 2.19e+06 2.28e+05 2.26e+06 2.45e+05 2.37e+06 6.94e+05 2.30e+06 2.17e+05

of the component; and α is the smoothing factor, set to

0.5 in this paper. The calculation of U considers all fitness

improvements in previous cycles, with the weight decaying

exponentially. We set the number of FEs in each cycle to 1000.

The decomposition method used is RDG3 with ǫn = 50 and

ǫs = 100, and the component solver is CMA-ES. CBCC-

RDG3 is compared against CC-RDG3, and the results are

reported in Table II.

Results: The CBCC model used in the paper is consistently

outperformed by the conventional CC across the benchmark

problems. This may indicate that adaptively allocating com-

putational resources is inefficient when tackling overlapping

problems. We infer the reason is rooted in the interaction

between components; the optimization state (how close to opti-

mality) of a component is highly dependent on others, making

the contribution of a component unpredictable, especially for

conflicting problems. However, more research needs to be

done (e.g., evaluating other CBCC models on overlapping

problems) before drawing any conclusion.

E. Comparison on CEC’2013 Benchmark Problems

Methodology: In this sub-section, we perform three sets of

comparisons on the CEC’2013 benchmark problems: 1) RDG3

(with ǫn = 50 and ǫs = 100) versus RDG, RDG2, DG2 and

GDG; 2) CC versus CBCC (used in Section IV-D), with RDG3

as the decomposition method; and 4) CC-RDG3 versus 9 state-

of-the-arts listed in the TACO website.1

Results: We observe in Table III that RDG3 significantly

outperforms the other four decomposition methods on overlap-

ping problems f13 and f14. RDG3 can generate significantly

better solution quality than RDG2 for problems with separable

variables e.g., f1, f2 and f4, suggesting it is useful to further

decompose separable variables into small components. CBCC-

RDG3 significantly improves over CC-RDG3 on problems

with separable components e.g., f7, f8 and f11; however is

1https://tacolab.org

outperformed on problems with overlapping components f13
and f14. It confirms our previous observation that adaptive

allocation of computational resources is not helpful when

dealing with overlapping problems. Finally, our algorithm CC-

RDG3 generates the best solution quality for 7 out of 15
benchmark problems, when compared against the results of

9 other algorithms available in the TACO website.1

V. CONCLUSION

We tackled large-scale optimization problems with overlap-

ping components using a divide-and-conquer approach. We

modified the RDG method, denoted as RDG3, such that it

can effectively decompose overlapping problems by breaking

the linkage at shared (overlapped) variables. To systemically

evaluate the efficacy of RDG3, we extended the two CEC’2013

overlapping problems by considering various level of overlap.

Experimental results showed our decomposition method fa-

cilitated problem solving, and outperformed random decom-

position as well as other methods on overlapping problems.

We also observed that a CBCC algorithm, that adaptively

allocates computational resources to components, is ineffective

when used to solve overlapping problems. Finally, we showed

RDG3, when equipped with CMA-ES, is one of the most

competitive solvers for the CEC’2013 benchmark problems.

We suggest three potential research directions for future

work: 1) In the existing overlapping benchmark problems,

the overlapping effect is generated by adjacent components

sharing some decision variables. Designing benchmark prob-

lems with more flexible variable interaction structure and

richer source of overlap is desired. 2) We presented some

preliminary results showing that overlapping problems are

challenging for a CBCC algorithm to solve. It would be useful

to test more CBCC models on overlapping problems. 3) The

strength of variable interactions may be very different in a

given overlapping problem. Breaking weak linkage may be an

alternative approach to decompose overlapping problems.
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