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Cooperative Co-evolution with Differential

Grouping for Large Scale Optimization
Mohammad Nabi Omidvar, Student Member, IEEE, Xiaodong Li, Senior Member, IEEE, Yi Mei, Member, IEEE,

and Xin Yao, Fellow, IEEE

Abstract—Cooperative co-evolution has been introduced into
evolutionary algorithms with the aim of solving increasingly
complex optimization problems through a divide-and-conquer
paradigm. In theory, the idea of co-adapted subcomponents is
desirable for solving large-scale optimization problems. However
in practice, without prior knowledge about the problem, it is not
clear how the problem should be decomposed. In this paper we
propose an automatic decomposition strategy called differential

grouping that can uncover the underlying interaction structure
of the decision variables and form subcomponents such that
the interdependence between them is kept to a minimum. We
show mathematically how such a decomposition strategy can be
derived from a definition of partial separability. The empirical
studies show that such near-optimal decomposition can greatly
improve the solution quality on large-scale global optimization
problems. Finally, we show how such an automated decompo-
sition allows for a better approximation of the contribution of
various subcomponents, leading to a more efficient assignment
of the computational budget to various subcomponents.

Index Terms—cooperative co-evolution, large-scale optimiza-
tion, problem decomposition, non-separability, numerical opti-
mization

I. INTRODUCTION

Optimization problems in science and engineering are often

very complex and solutions cannot be readily found with a

direct approach. As a result, it is imperative to investigate

ways of simplifying a given complex problem. The number

of decision variables is a major contributing factor to the

complexity of an optimization problem [1]. There are a

number of approaches for solving large-scale problems with

a large number of decision variables. One such approach is

to decompose the original large-scale problem into a set of

smaller and simpler subproblems which are more manageable

and easier to solve. Once such a decomposition is realized,

the whole problem can be solved by separately optimizing the

individual subproblems. This so-called “divide-and-conquer”

strategy can be traced back to René Descartes’ famous book

A Discourse on Method [2]. The effectiveness of decompo-

sition has been established in many classical optimization

methods [3], [4], [5].
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The focus of this paper is to examine large-scale global

optimization of real-valued functions, using automatic de-

composition. Evolutionary Algorithms (EAs) [6] are effective

optimization methods and have been extensively used for

solving a wide range of optimization problems [7]. However,

their performance deteriorates rapidly as the dimensionality of

the problem increases [8]. This is referred to as “the curse of

dimensionality” [9]. Cooperative Co-evolution (CC) has been

proposed by Potter and De Jong [10] as an explicit means of

problem decomposition in evolutionary algorithms. A major

difficulty in applying CC is the choice of a good decomposi-

tion strategy. Moreover, the performance of optimization is po-

tentially sensitive to the chosen decomposition. It was shown

by Salomon [11] that interdependence between variables can

greatly affect the performance of optimization algorithms in

continuous domains. In classical Genetic Algorithms research,

these variable interdependencies are referred to as linkage or

epistasis [1], [12] and have been extensively investigated in

the context of binary GAs [13].

The decomposition strategy in CC is very similar to the

problem of ordering genes in the early days of Genetic

Algorithm research [12]. Ordering of genes on a chromosome

can have a significant impact on the performance of EAs. In

an experiment conducted by Goldberg et al. [14], it was shown

that good ordering of genes is the difference between success

and failure of a simple genetic algorithm. The dependence

between ordering of genes and the performance of EAs is

directly related to the gene interaction problem.

Although decomposition plays a crucial role in the perfor-

mance of EAs, there is often insufficient knowledge about the

structure of a given problem to be able to manually devise a

suitable decomposition strategy. It is therefore desirable to de-

sign new procedures capable of exploiting the hidden structure

of a problem to automatically find a suitable decomposition.

In addition to the impact that a near-optimal decomposition

can have on the performance of CC, it has been shown

recently that it is possible to quantify the contribution of

a subcomponent to the global fitness [15]. Once this con-

tribution information is calculated the computational budget

can be divided between the subcomponents according to their

contributions, unlike traditional CC where the computational

budget is equally divided between all subcomponents. It has

been shown that a contribution-based scheme outperforms

traditional CC [15].

In this paper we propose a decomposition method called

differential grouping that allows an automatic, near-optimal

decomposition of decision variables. More specifically, we
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have the following research objectives:

1) To provide a theoretical foundation for identifying inter-

acting variables and to propose an algorithm to group the

interacting variables with high accuracy.

2) To design an automatic decomposition mechanism which

is equally applicable to both traditional and evolutionary

optimization algorithms.

3) To show how a near-optimal decomposition is beneficial

in solving large-scale global optimization problems with

up to 1000 decision variables.

4) To show how an automatic near-optimal decomposition

strategy combined with contribution-based cooperative

co-evolution can further improve the performance of an

optimization process, especially on large-scale problems.

The remainder of this paper is organized as follows. In

Section II, a review of variable interaction problem and various

decomposition methods is given. In Section III, the proposed

differential grouping algorithm is derived from a definition

of partial separability. Section IV outlines the benchmark

problems used to evaluate the performance of differential

grouping. In Section V, first the performance of the differential

grouping algorithm is compared to another state-of-the-art de-

composition method, then the effectiveness of the differential

grouping algorithm in improving the optimization performance

of evolutionary algorithms is investigated, and finally the

performance of differential grouping is benchmarked within

a contribution-based framework. Section VI summarizes and

concludes the paper.

II. RELATED WORK

This section defines the notion of non-separability and

provides a survey of cooperative co-evolutionary models and

various decomposition and linkage detection methods.

A. Gene Interaction

In natural genetics, two genes are said to interact with each

other if they collectively represent a feature at the phenotype

level [16]. Another form of interaction happens when the value

taken by one gene activates or deactivates an effect of other

genes [16]. The term epistasis is used to refer to any type

of gene interaction [1], [17], [18]. In the context of genetic

algorithms, this is also referred to as linkage [1], [13]. Non-

separability refers to the same concept, but it is more widely

used in the continuous optimization literature. The formal

definition of separability and non-separability is as follows [1],

[19]:

Definition 1. A function f(x1, . . . , xn) is separable iff:

arg min
(x1,...,xn)

f(x1, . . . , xn) =

(

arg min
x1

f(x1, . . . ), . . . , arg min
xn

f(. . . , xn)
)

, (1)

and non-separable otherwise (assuming minimization).

In other words, if it is possible to find the global optimum of

a function by optimizing one dimension at a time regardless

of the values taken by other dimensions, then the function

is said to be separable. It is non-separable otherwise. One

way of creating a non-separable function is by rotating the

fitness landscape of the original objective function around its

coordinate axes [11].

B. Cooperative Co-evolution

Cooperative Co-evolution (CC) is an effective method for

solving large-scale optimization problems. This effectiveness

is attributed to the decomposition of a large-scale problem

into a set of smaller subproblems. This has been empirically

verified in [8]. However, one drawback of CC is that its per-

formance is sensitive to the choice of decomposition strategy.

Here, we review various decomposition strategies suggested

for CC with more emphasis on techniques proposed in the

context of large-scale global optimization.

In the original implementation of the Cooperative Co-

evolutionary Genetic Algorithm (CCGA), Potter and De

Jong [10] decomposed an n-dimensional problem into n 1-

dimensional problems. Once the subcomponents are identified;

they undergo optimization using an evolutionary optimizer in

a round-robin fashion. It was shown that a variant of CCGA,

CCGA-1, did not perform well on the Griewank function [20],

a non-separable function. Further experiments on the Rosen-

brock function [20], another non-separable function, confirmed

that the poor performance of CCGA-1 on non-separable

problems is due to interdependencies between the decision

variables. In this original CCGA study [10] the problems only

had a maximum of 30 dimensions. Liu et al. [8] made the

first attempt to solve large-scale optimization problems using a

CC framework. They applied Fast Evolutionary Programming

with Cooperative Co-evolution [8] on benchmark problems

with up to 1000 dimensions. The experimental results showed

that a cooperative co-evolutionary approach scales better as

the dimensionality of the problem increases. However, since

they mostly used separable functions for their experiments, it

is unclear how their algorithm will scale up on non-separable

functions.

Van den Bergh and Engelbrecht [21] were the first to apply

Particle Swarm Optimization (PSO) [22] to a cooperative co-

evolutionary framework (CPSO). Unlike CCGA, they decom-

posed an n-dimensional problem into k s-dimensional prob-

lems for some s << n. However, CPSO was not tested against

large-scale problems. Cooperative Co-evolution was also used

with Differential Evolution [23] by Shi et al. [24], where

the decision variables were divided into two equally sized

subcomponents. It is clear that this decomposition strategy

does not scale well as the dimensionality increases.

Random grouping is a more recent decomposition strategy

proposed by Yang et al. [25]. Similar to CPSO, random group-

ing decomposes a problem into k s-dimensional subproblems,

but instead of using a static grouping, it randomly allocates the

decision variables to subcomponents in every co-evolutionary

cycle. It was shown mathematically that with random grouping

the probability of placing two interacting variables in the

same subcomponent for several cycles is reasonably high.

Random grouping achieved a good performance on a set of

benchmark functions with up to 1000 variables [25]. Li and
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Yao [26] developed CCPSO2 (an improved version of CPSO)

based on a revised random grouping scheme, and tackled

problems with up to 2000 dimensions. Despite the success of

random grouping, it has been shown that it is ineffective when

the number of interacting variables grows beyond approxi-

mately five variables [27]. An alternative approach called delta

grouping [28] was shown to outperform random grouping

on most functions from a set of 20 large-scale benchmark

problems [20]. However, a drawback of delta grouping is its

low performance when there is more than one non-separable

subcomponent in the objective function.

All of the grouping strategies described so far use a pre-

defined and fixed subcomponent size. For example, random

grouping and delta grouping decompose an n-dimensional

problem into k s-dimensional problems. A major drawback

of these techniques is that the user needs to specify a value

for either k or s. If there are large groups of interacting

variables in the objective function then a small value of s
may degrade the performance of the algorithm. If the problem

contains many small groups of interacting variables then a

large value of s does not utilize the power of a decomposition

approach to its full potential. To alleviate this problem, Yang et

al. proposed a Multilevel Cooperative Co-evolution (MLCC)

algorithm [29]. In MLCC, instead of using a fixed number

for s, a set of possible s values is provided to the algorithm.

During the course of evolution, the performance of each of

using these subcomponent sizes is measured and the values

with better performance are given a higher probability of being

selected in the next co-evolutionary cycle. This technique

partially solves the problem of specifying a single s value.

However, the user still needs to decide about a set of potential

s values. Another drawback of this multilevel scheme is that

once an s value is chosen, the decision variables are divided

into a set of equally sized subcomponents. It is unlikely that in

most real-world problems the sizes of interacting groups will

be equal. Hence it is desirable that a decomposition strategy

can automatically determine the number of subcomponents

and their sizes.

C. Classification of Decomposition Strategies

Decomposition methods have been studied extensively in

the field of binary genetic algorithms [13]. Such algorithms

are commonly referred to as linkage learning algorithms. The

main motivation in classical linkage learning research is to

design crossover operators which take into account the linkage

structure and allow a set of linked genes to be inherited

together in the mating process. More recently, especially in

the context of continuous global optimization, the grouping

which is discovered using an automatic decomposition strategy

is superimposed on a cooperative co-evolutionary framework

to form the co-evolving subcomponents [28], [30].

Linkage learning algorithms were classified by Yu et al. [31]

into three major categories: perturbation, interaction adap-

tation, and model building. Here we include a fourth cat-

egory, random methods, for a more complete treatment of

various decomposition strategies in both conventional and co-

evolutionary algorithms.

Random Methods: These algorithms do not rely on a

systematic or smart procedure to discover the interdependen-

cies. Instead, they randomly permute the decision variables to

increase the probability of placing interacting variables close

to each other for a few evolutionary cycles. The inversion

operator [12], [32], one of the early attempts to overcome

the gene interaction problem, inverts (reverses) the order of

genes on a randomly chosen portion of the chromosome.

Since the cutting points are selected at random, an arbitrary

ordering of the genes can be achieved by repeatedly applying

the inversion operator. This is why it should be classified as a

random method. In the context of CC, random grouping [25]

randomly permutes the order of the decision variables in every

co-evolutionary cycle to increase the probability of placing two

interacting variables in the same subcomponent for at least a

cycle. This technique has two major drawbacks. Firstly, the

user has to decide about the number and the size of each

subcomponent. Secondly, if there are more than two inter-

acting variables, the probability of placing all of them in one

subcomponent, even for one co-evolutionary cycle, approaches

zero as the number of interacting variables increases [27].

Perturbation: These methods perturb the decision vari-

ables using various heuristics. By monitoring the changes to

the objective function, detection of the interactions between

decision variables is attempted. In most cases, the decompo-

sition stage is performed off-line. When the full interaction

structure is realized, the representation is modified accordingly

and the optimization process starts. Algorithms that rely on

perturbation include mGA [14], fmGA [33], gemGA [34],

LINC [35], and LIMD [36]. These methods are typically

incorporated into a binary GA. A limited number of techniques

have also been developed for real-valued GAs such as LINC-

R [37]. However, the experimental results for LINC-R were

limited to low dimensional functions with up to 40 dimensions.

More techniques have been developed for continuous domains

in the context of cooperative co-evolution such as adaptive co-

evolutionary optimization [38] and Cooperative Co-evolution

with Variable Interaction Learning (CCVIL) [30]. All pertur-

bation techniques mentioned here rely on various heuristics to

identify interacting variables. However, there is a very limited

theoretical basis for these heuristics. The differential grouping

proposed in this paper can be considered as a perturbation

technique.

Interaction Adaptation: These methods incorporate the

interaction detection mechanism into the chromosome and

simultaneously evolve the order of genes and the decision

variables of the original optimization problem. These methods

assign a higher reproduction probability to individuals with a

tighter grouping of interacting variables. Unlike perturbation

methods, adaptive models evolve the decomposition structure

through the evolutionary process. Examples of these methods

include LEGO [39] and LLGA [40].

Model Building: These methods build a probabilistic

model based on promising solutions in the population. This

model is updated iteratively in the evolutionary process, and

the next generation is built from the model. Estimation of Dis-

tribution Algorithms [41], [42] fall into this category. Popular

model building algorithms include cGA [43], BOA [44], and
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hBOA [45]. Some of these algorithms, such as BOA, are also

used for real-valued optimization [46].

In addition to the work in the field of evolutionary opti-

mization, a number of techniques in classical optimization [4],

[3] have been devised to deal with large-scale problems by

using a decomposition strategy. Griewank and Toint proposed

the partitioned quasi-Newton method [3] to deal with large-

scale optimization of partially separable problems. In their

work, instead of approximating the global Hessian matrix,

they approximate smaller partitions of this matrix by applying

the quasi-Newton formula on the component functions. In

other words, the Hessian matrix is partitioned into a set of

block matrices where each block is based on independent sub-

functions, the sum of which forms the value of the global

objective function.

D. Automatic Decomposition in Cooperative Co-evolution

A number of recent studies have focused on develop-

ing automatic decomposition strategies for cooperative co-

evolutionary algorithms. The main driving force behind such

studies is that CC is a suitable framework for large-scale

optimization due to its modular nature. However, a major

difficulty in applying CC lies in the decomposition of the

decision variables into a set of subcomponents. Without any

knowledge of the underlying structure, a given problem can

be decomposed in many different ways without any indication

of the superiority of one decomposition over another. Ideally,

the subcomponents should be formed according to the inter-

action pattern of the decision variables so that the interactions

between the subcomponents are kept to a minimum. Weicker

and Weicker [38] proposed a cooperative co-evolutionary tech-

nique to identify interacting variables. Although this technique

has not been applied to high dimensional problems, to the

best of our knowledge it is the first attempt at automatic

formation of subcomponents in a CC framework. Recently,

Chen et al. [30] improved this technique and applied it to

large-scale global optimization. Delta grouping [28] is another

technique for automatic identification of the interacting vari-

ables. However, delta grouping is more effective when there

is only one group of interacting variables.

III. DIFFERENTIAL GROUPING

This section describes the details of differential grouping,

the decomposition strategy proposed in this paper. Differential

grouping is derived from the definition of partially additively

separable functions. This type of functions conveniently rep-

resent the modular nature of many real-world problems [47].

Definition 2. A function is partially additively separable if it

has the following general form:

f(~x) =
m
∑

i=1

fi(~xi) , (2)

where ~xi are mutually exclusive decision vectors of fi, ~x =
〈x1, . . . , xn〉 is a global decision vector of n dimensions, and

m is the number of independent subcomponents.

For a function of the above form if all subcomponent func-

tions are 1-dimensional, then it is called completely additively

separable or fully separable for short. Hereafter the phrase

‘additively separable’ is used to refer to ’partially additively

separable’.

Theorem 1. Let f(~x) be an additively separable function.

∀a, b1 6= b2, δ ∈ R, δ 6= 0, if the following condition holds

∆δ,xp
[f ](~x)|xp=a,xq=b1 6= ∆δ,xp

[f ](~x)|xp=a,xq=b2 , (3)

then xp and xq are non-separable, where

∆δ,xp
[f ](~x) = f(. . . , xp + δ, . . . )− f(. . . , xp, . . . ), (4)

refers to the forward difference of f with respect to variable

xp with interval δ.

Theorem 1 simply states that given an additively separable

function f(~x), two variables xp and xq interact if Equation (4)

evaluated with any two different values for xq yields different

results (i.e. inequality of delta values ⇒ non-separability).

In order to prove the theorem it is sufficient to prove its

contrapositive which states that if two variables xp and xq are

separable, then Equation (4) evaluated with any two different

values for xq yields the same answer (i.e. separability ⇒
equality of delta values).

Lemma 1. If f(~x) is additively separable, then for any xp ∈ ~x
we have:

∂f(~x)

∂xp
=

∂fi(~xi)

∂xp
, ∀xp ∈ ~xi. (5)

Proof: Since f(~x) is additively separable, we have

∂f(~x)

∂xp
=

∂
∑m

i=1 fi(~xi)

∂xp
=

∂f1(~x1)

∂xp
+ · · ·+

∂fm(~xm)

∂xp
(6)

∀xp ∈ ~xi

where ~x1, . . . , ~xm are mutually exclusive decision vectors.

Therefore,
∂f(~xj)
∂xp

= 0 , ∀j 6= i. Hence,

∂f(~x)

∂xp
=

∂fi(~xi)

∂xp
, ∀xp ∈ ~xi. (7)

Proof of Theorem 1. According to Lemma 1,

∂f(~x)

∂xp
=

∂fi(~xi)

∂xp
, ∀xp ∈ ~xi.

Then, ∀xq /∈ ~xi we have:

∂f(~x)

∂xp

∣

∣

∣

∣

xq=b1

=
∂f(~x)

∂xp

∣

∣

∣

∣

xq=b2

=
∂fi(~xi)

∂xp
, ∀b1 6= b2.

∫ a+δ

a

∂f(~x)

∂xp
dxp

∣

∣

∣

∣

xq=b1

=

∫ a+δ

a

∂f(~x)

∂xp
dxp

∣

∣

∣

∣

xq=b2

,

∆δ,xp
[f ](~x)|xp=a,xq=b1 = ∆δ,xp

[f ](~x)|xp=a,xq=b2 ,

∀a, b1 6= b2, δ ∈ R, δ 6= 0.
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Example. Consider the non-separable objective function

f(x1, x2) = x2
1 + λx1x2 + x2

2, λ 6= 0. According to Equa-

tion (6) we have:

∂f(x1, x2)

∂x1
= 2x1 + λx2.

This clearly shows that the change in the global objective

function with respect to x1 is a function of x1 and x2. Now

by applying Equation (4) we have:

∆δ,x1
[f ] =

[

(x1 + δ)2 + λ(x1 + δ)x2 + x2
2

]

−
[

x2
1 + λx1x2 + x2

2

]

= δ2 + 2δx1 + λx2δ.

It can be seen that the difference equation ∆δ,x1
[f ] is a

function of both x1 and x2. Therefore, evaluating ∆δ,x1
[f ] for

two different values of x2 does not give the same answer. So

according to Theorem 1 we conclude that x1 and x2 interact

(they are non-separable). Note that λ reflects the strength of

non-separability. Setting λ to zero makes the function fully

separable.

A. The Differential Grouping Algorithm

Algorithm 1 shows how Theorem 1 can be used to identify

and group the interacting variables into common subcompo-

nents. The algorithm starts by examining the interaction of

the first decision variable with all other decision variables in

a pairwise fashion by applying Theorem 1. If the algorithm

detects an interaction between the first variable and any other

variable, it excludes that variable from the set of all decision

variables and places it in a subcomponent. This process is

repeated until all the variables that interact with the first

variable are detected and the first subcomponent is formed. If

no interaction is detected, then the variable under examination

is considered to be a separable variable. This process is

repeated for the remaining variables until there are no more

decision variables left. Lines 10, 13 and 14 of Algorithm 1

show how Theorem 1 is used to identify the interacting

variables. Note that all the variables are initialized to the lower

bound of the function in vector ~p1 (line 7). In order to check

for interaction between the ith and the jth dimensions, the

vector ~p2 is set to be equal to ~p1 except for the ith dimension.

The ith element of vector ~p2 is set to the upper bound of the

domain. This allows us to calculate the value of ∆1. Then the

jth element of ~p2 is set to the center of the search space for

that dimension and ∆2 is calculated. If the quantity |∆1−∆2|
is greater than a small number ǫ, then it is concluded that

the ith and the jth dimensions interact with each other (lines

7-16). The jth dimension is then removed from the set of

decision variables and is grouped with the ith dimension in

a common subcomponent. The same process is repeated until

all variables interacting with the ith dimension are extracted.

The algorithm then identifies all variables interacting with the

(i+ 1)th dimension until there are no more dimensions to be

examined. It should be noted that the choices of upper bound,

lower bound and the center of the search space to construct ~p1
and ~p2 are arbitrary. These points can be generated randomly

as long as they do not coincide with each other to give a

difference value of zero.

Algorithm 1: allgroups←grouping(func, lbounds, ubounds, n)

1. dims← {1, 2, ..., n}
2. seps← {}
3. allgroups← {} // contains a set of all identified groups.

4. for i ∈ dims do

5. group← {i}
6. for j ∈ dims ∧ i 6= j do

7. ~p1 ← lbound × ones(1, n)
8. ~p2 ← ~p1

9. ~p2(i) ← ubound
10. ∆1 ← func(~p1)− func(~p2)
11. ~p1(j) ← 0
12. ~p2(j) ← 0
13. ∆2 ← func(~p1)− func(~p2)
14. if |∆1 −∆2| > ǫ then

15. group← group ∪ j
16. end if

17. end for

18. dims← dims− group
19. if length(group) = 1 then

20. seps← seps ∪ group
21. else

22. allgroups← allgroups ∪ {group}
23. end if

24. end for

25. allgroups← allgroups ∪ {seps}

The choice of ǫ in Algorithm 1 affects the sensitivity of the

algorithm in detecting the interactions between the variables.

A smaller ǫ makes the algorithm more sensitive to very weak

interactions between the decision variables.

In Section II it was mentioned that perturbation methods

such as LINC-R [37] lack a theoretical basis. Using the

interpretation given in this section, we can show that the

heuristic used in LINC-R [37] can be derived by applying

Theorem 1.

In LINC-R an interaction between two variables xi and xj is

identified by comparing the difference values calculated from

the following equations:

∆xi,xj
[f ] = f(xi + δi, xj + δj)− f(xi, xj) (8)

∆xi
[f ] = f(xi + δi, xj)− f(xi, xj) (9)

∆xj
[f ] = f(xi, xj + δj)− f(xi, xj) . (10)

Given these difference values, two variables interact if the

following condition holds:

∣

∣∆xi,xj
[f ]−

(

∆xi
[f ] + ∆xj

[f ]
)
∣

∣ > ǫ ,

or similarly:

∆xi,xj
[f ] 6= ∆xi

[f ] + ∆xj
[f ] . (11)

By substituting ∆xi,xj
[f ], ∆xi

[f ], and ∆xj
[f ] from Equa-

tions (8)-(10) into Equation (11) and reordering the terms we

get:

f(xi + δi, xj + δj) 6= f(xi + δi, xj) (12)

+ f(xi, xj + δj)− f(xi, xj) .

Now Theorem 1 can be used to show the equivalence

of the method used in LINC-R and differential grouping.

According to Theorem 1, the ith and jth dimensions interact

if Equation (4) evaluated at two different xj yields different
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results, i.e.

f(xi + δi, xj)− f(xi, xj) 6=

f(xi + δi, xj + δj)− f(xi, xj + δj) . (13)

By rearranging the terms it can be seen that this equation

is identical to Equation (12), showing how LINC-R and

differential grouping are related. However, as mentioned in

Section II, LINC-R was tested on a very limited set of

low dimensional benchmark functions. The real benefit of

such automatic decomposition methods is realized only when

they are applied to large-scale optimization problems. More-

over, the LINC-R algorithm does not use a cooperative co-

evolutionary framework. Instead, it uses an island model with

periodic migration of individuals between islands [37]. This

island model is constructed from the discovered interaction

groups. A disadvantage of this approach is that the periodic

migration of individuals requires re-evaluation of individuals

in all islands after each migration, which is not an effective

use of computational resources. In Section III-C we show how

a cooperative co-evolutionary framework can be used more

efficiently in conjunction with differential grouping to solve

large-scale optimization problems.

B. Time Complexity

This section describes how to calculate an upper bound

for the total number of fitness evaluations (FE) required by

differential grouping under the assumption that there are n
m

non-separable subcomponents, each with m variables. As

shown in Algorithm 1 after each successful application of

differential grouping, m variables are removed from the set

of remaining decision variables. Based on the sum of an

arithmetic progression, an upper bound (S) can be calculated

for the number of times that the inner loop of Algorithm 1 is

executed:

S = (n− 1) + (n−m− 1) + · · ·+
(

n−
( n

m
− 1
)

m− 1
)

= (n− 1) + (n−m− 1) + · · ·+ (m− 1)

=
n

2m
(n+m− 2) . (14)

Since there are four fitness evaluations in the inner loop

(Algorithm 1 lines 10 and 13), a perfect grouping will require

a total of 4S fitness evaluations. However, Algorithm 1 can be

optimized further by realizing that ∆1 is not changed during

the execution of the inner loop and can be moved outside. The

total number of required fitness evaluations therefore reduces

to 2(S + n
m ). As an example, for n = 1000 and m = 50, the

following number of fitness evaluations is required:

FE = 2(S+
n

m
) = 2

[1000

100
(1000+ 50− 2)+ 20

]

= 21000 .

Similarly for a fully separable function with n = 1000 and

m = 1, the number of fitness evaluations is:

FE = 2(S +
n

m
) = 2

[1000

2
(1000− 1) + 1000

]

= 1001000 .

Algorithm 2: CC(func, lbounds, ubounds, n)

1. groups← grouping(func, lbounds, ubounds, n) //grouping stage.

2. pop← rand(popsize, n) //optimization stage.

3. (best, best val)← min(func(pop))
4. for i← 1 to cycles do

5. for j ← 1 to size(groups) do

6. indicies← groups[j]
7. subpop← pop[:, indicies]
8. subpop← optimizer(best, subpop, FE)
9. pop[:, indicies] ← subpop

10. (best, best val)← min(func(pop))
11. end for

12. end for

The time complexity of differential grouping with respect to

the maximum number of fitness evaluations is as follows:

O(FE) = O

(

2
(

S +
n

m

)

)

= O

(

n2

m

)

. (15)

C. Differential Grouping Algorithm with CC

This section explains how the differential grouping algo-

rithm is used in a cooperative co-evolutionary framework for

solving large-scale global optimization problems.

Algorithm 2 shows the Cooperative Co-evolutionary (CC)

framework used for this research. Note that the algorithm has

two major stages, a grouping stage (line 1) and an optimization

stage (lines 4-12). During the grouping stage the underlying

interaction structure of the decision variables is discovered by

the grouping function, and the subcomponents are formed

accordingly. Note that the grouping function can refer to any

off-line grouping procedure, but in this paper it refers to the

differential grouping procedure introduced in Algorithm 1. In

the optimization stage the subcomponents that are formed in

the grouping stage are optimized in a round-robin fashion for

a predetermined number of cycles. The optimizer function

can be any numerical optimization algorithm that can exploit

the provided grouping information.

It has been shown recently that putting equal emphasis on all

the subcomponents in a CC framework is not a very efficient

use of the computational budget [15]. Unlike traditional CC,

in Contribution Based Cooperative Co-evolution (CBCC) [15],

subcomponents are chosen based on their contributions to the

improvement of the global fitness. As a result, a subcom-

ponent with a higher contribution to the global fitness will

be given more computational resources. However, one of the

requirements for effective estimation of contributions is that

the interdependencies between the subcomponents are kept to

a minimum. In other words, all the interacting variables should

be placed within the same subcomponents.

IV. EXPERIMENTAL SETTINGS

In order to evaluate the performance of differential grouping

a set of 20 benchmark functions were used. These benchmark

functions were proposed for the IEEE CEC’2010 special

session on large-scale global optimization and the associated

competition [20]. The CEC’2010 benchmark functions are

classified into the following five groups making an ideal test

set for evaluating differential grouping:
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1) Separable functions (f1-f3)

2) Single-group m-nonseparable functions (f4-f8)

3) n
2m -group m-nonseparable functions (f9-f13)

4) n
m -group m-nonseparable functions(f14-f18)

5) Non-separable functions (f19-f20)

where n is the dimensionality of the problem and m is the

number of variables in each non-separable subcomponent. For

this research n and m are set to 1000 and 50 respectively.

A. Parameter Settings

The subcomponent optimizer used in this paper is

SaNSDE [48], a variant of Differential Evolution (DE) [49].

SaNSDE self-adapts the crossover rate and the scaling factor

of DE. The population size is 50 as suggested in [48]. All

experimental results are based on 25 independent runs for each

algorithm. The maximum number of fitness evaluations was

set to 3× 106 as suggested in [20]. We used these settings in

order to compare our results with other algorithms that were

benchmarked against the same test suite. For the grouping

stage the value of ǫ was arbitrarily set to 10−3 (Algorithm 1

line 14). Other values such as 10−1 and 10−6 were used to

test the sensitivity of differential grouping to ǫ (Section V-C).

V. ANALYSIS OF RESULTS

This section provides an analysis of the effectiveness of

differential grouping in terms of identifying the interacting

variables and a comparison with the Cooperative Co-evolution

with Variable Interaction Learning (CCVIL) algorithm [30].

Experimental results are provided to analyze the performance

of differential grouping in the context of a cooperative co-

evolutionary framework for large-scale optimization problems.

Additionally, this section also shows how a contribution-based

cooperative co-evolution can further enhance the optimization

performance.

A. Performance of Differential Grouping

Table I shows the experimental results for the grouping

performance of differential grouping and CCVIL grouping

algorithm. The entries of the two algorithms are separated by

the symbol ‘/’. The last column shows the grouping accuracies

of non-separable variables for both algorithms. The double

lines separate different classes of functions according to the

description in Section IV. This section focuses on the perfor-

mance of differential grouping, and the next section is devoted

to compassion with CCVIL. It can be seen from Table I that

the grouping accuracy for 13 out of 20 benchmark functions

is 100%. For functions f1 to f3, which are fully separable

(class 1, see Section IV), all the variables were placed in

one separable group. Differential grouping correctly identified

the decision variables of these functions as fully separable.

Another possibility would have been to place each of the

decision variables in a separate subcomponent. However, this

is not necessarily an optimal grouping arrangement in terms of

both efficiency and accuracy for a large-scale fully separable

problem. Studies [24], [21] have shown that an intermediate

decomposition between these two extreme cases is more

efficient. Since the focus of this paper is on the decomposition

of non-separable subcomponents, in all of our experiments,

the separable variables identified by the differential grouping

algorithm were placed into one common subcomponent.

For the second class of benchmark functions (f4-f8), where

there is one non-separable subcomponent with 50 variables

and another separable group with 950 variables, the grouping

accuracy for 3 out of these 5 functions is 100%. It may

seem odd that the grouping accuracy on f4 is reported to be

100% while the number of groups is incorrect. The reason

for this is that, although the number of groups is not correct,

all 50 non-separable variables were correctly grouped into a

common subcomponent. The reason for the incorrect number

of groups is that the algorithm unexpectedly subdivided some

separable variables into 9 other non-separable groups. Since

the grouping of separable variables does not affect the non-

separable ones, we report 100% accuracy as long as the

non-separable variables were not misplaced. Further details

of how the variables were grouped is shown in Table II

for some representative functions. The grouping accuracy for

the remaining two functions in this category (f7, f8) is also

acceptable, especially for f8 where only 4 variables were

misplaced. In the case of f7, 16 variables were mixed with

separable variables in a total of 4 non-separable groups.

For the next set of functions (f9-f13), there are 10 non-

separable subcomponents, each with 50 variables and one

separable subcomponent with 500 variables. Except for f13,

the grouping accuracy for this class is very high, with an

accuracy of 100% for 3 functions out of the 5. The grouping

accuracy on f11 is 99.2% because one non-separable variable

was misplaced. A further experiment revealed that with a

smaller value of ǫ in Algorithm 1, it is possible to perform

a fully accurate grouping on this function (see Section V-C).

The fourth category of functions (f14-f18) has a very similar

grouping accuracy as the previous group. Note that there are

no separable subcomponents in these functions and all 20
subcomponents are non-separable.

In the last category, where all the variables interact with

each other, the grouping accuracy for f19 is 100% and all the

variables were correctly placed into one big group. However,

the grouping accuracy for f20 is poor.

An interesting pattern that can be seen in Table I is the

overall low grouping accuracy on almost all instances of the

Rosenbrock function (f8, f13, f18, f20). For example, in the

case of f13 and f18, 40 and 49 non-separable groups were

formed where there are only 10 and 20 such subcomponents.

A detailed investigation on this behavior is beyond the scope

of the current study.

Table II shows in detail how the subcomponents were found

for a number of functions. Each row shows a non-separable

group which is formed by differential grouping. The column

‘Group Size’ shows the size of each group. Columns (P1-P20)

are permutation groups that contain the indices of 50 randomly

chosen dimensions. The numbers in each column shows how

many variables of a group belong to each permutation group.

For example, in the case of f4 from a total of 145 variables

in the first group, none is from P1, 8 is from P2, 10 is from

P3 and so forth. The numbers in columns P1 to P20 add up
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TABLE I
PERFORMANCE OF DIFFERENTIAL GROUPING AND CCVIL ON CEC’2010 BENCHMARK FUNCTIONS (SEPARATED BY ‘/’.

Differential Grouping
(

ǫ = 10−3
)

/ CCVIL

Function Sep Non-sep Non-sep # Captured # Captured # Formed # Misplaced # FE Grouping

Vars Vars Groups Sep Vars Non-sep Vars Non-sep Groups Vars Accuracy

f1 1000 0 0 1000 / 1000 0 / 0 0 / 0 0 / 0 1001000 / 69990 100% / 100%

f2 1000 0 0 1000 / 1000 0 / 0 0 / 0 0 / 0 1001000 / 69990 100% / 100%

f3 1000 0 0 1000 / 938 0 / 0 0 / 0 0 / 31 1001000 / 1798666 100% / 93.8%

f4 950 50 1 33 / 957 50 / 43 10 / 1 0 / 7 14564 / 1797614 100% / 86%

f5 950 50 1 950 / 950 50 / 50 1 / 1 0 / 0 905450 / 1795705 100% / 100%

f6 950 50 1 950 / 910 50 / 47 1 / 22 0 / 3 906332 / 1796370 100% / 94%

f7 950 50 1 247 / 951 34 / 49 4 / 1 16 / 1 67250 / 1796475 69% / 98%

f8 950 50 1 135 / 1000 46 / 0 5 / 0 4 / 50 23608 / 69842 92% / 0%

f9 500 500 10 500 / 583 500 / 337 10 / 33 0 / 0 270802 / 1792212 100% / 67.4%

f10 500 500 10 500 / 508 500 / 492 10 / 10 0 / 8 272958 / 1774642 100% / 98.4%

f11 500 500 10 501 / 476 499 / 491 10 / 26 1 / 9 270640 / 1774565 99.2% / 98.2%

f12 500 500 10 500 / 516 500 / 435 10 / 11 0 / 65 271390 / 1777344 100% / 87%

f13 500 500 10 131 / 1000 126 / 0 40 / 0 374 / 500 49470 / 69990 25.2% / 0%

f14 0 1000 20 0 / 150 1000 / 719 20 / 63 0 / 281 21000 / 1785975 100% / 71.9%

f15 0 1000 20 0 / 18 1000 / 982 20 / 20 0 / 18 21000 / 1751241 100% / 98.2%

f16 0 1000 20 4 / 11 996 / 989 20 / 20 4 / 11 21128 / 1751647 99.6% / 98.9%

f17 0 1000 20 0 / 25 1000 / 975 20 / 20 0 / 25 21000 / 1752340 100% / 97.5%

f18 0 1000 20 85 / 1000 173 / 0 49 / 0 827 / 1000 34230 / 69990 17.3% / 0%

f19 0 1000 1 0 / 0 1000 / 1000 1 / 1 0 / 0 2000 / 48212 100% / 100%

f20 0 1000 1 42 / 972 82 / 20 16 / 14 918 / 980 22206 / 1798708 8.2% / 2%

TABLE III
RESULTS OF DIFFERENTIAL GROUPING WITH PARAMETER ǫ SET TO 10

−1 AND 10
−6 ON CEC’2010 BENCHMARK FUNCTIONS (SEPARATED BY ‘/’).

Differential Grouping
(

ǫ = 10−1
)

/ Differential Grouping
(

ǫ = 10−6
)

Function Sep Non-sep Non-sep # Captured # Captured # Formed # Misplaced # FE Grouping

Vars Vars Groups Sep Vars Non-sep Vars Non-sep Groups Vars Accuracy

f1 1000 0 0 1000 / 96 0 / 904 0 / 20 0 / 904 1001000 / 25036 100% / 9.6%

f2 1000 0 0 1000 / 1000 0 / 0 0 / 0 0 / 0 1001000 / 1001000 100% / 100%

f3 1000 0 0 1000 / 862 0 / 138 0 / 4 0 / 138 1001000 / 757476 100% / 86.2%

f4 950 50 1 34 / 34 50 / 50 9 / 9 0 / 0 14546 / 14546 100% / 100%

f5 950 50 1 950 / 950 50 / 50 1 / 1 0 / 0 905450 / 905450 100% / 100%

f6 950 50 1 950 / 732 50 / 50 1 / 7 0 / 0 906332 / 562748 100% / 100%

f7 950 50 1 950 / 247 50 / 34 1 / 4 0 / 16 906822 / 67250 100% / 68%

f8 950 50 1 135 / 135 46 / 46 5 / 5 4 / 4 23608 / 23608 92% / 92%

f9 500 500 10 500 / 26 500 / 128 10 / 15 0 / 327 270802 / 9350 100% / 25.6%

f10 500 500 10 500 / 500 500 / 500 10 / 10 0 / 0 272958 / 272958 100% / 100%

f11 500 500 10 512 / 158 291 / 500 36 / 14 209 / 0 329938 / 42186 58.2% / 100%

f12 500 500 10 500 / 500 500 / 492 10 / 10 0 / 8 271390 / 271182 100% / 98.4%

f13 500 500 10 500 / 131 27 / 126 173 / 40 473 / 374 636686 / 49470 5.4% / 25.2%

f14 0 1000 20 0 / 1 1000 / 407 20 / 19 0 / 593 21000 / 10574 100% / 40.7%

f15 0 1000 20 1 / 0 999 / 1000 20 / 20 1 / 0 21012 / 21000 99.9% / 100%

f16 0 1000 20 20 / 0 640 / 1000 72 / 20 360 / 640 46476 / 21000 64% / 100%

f17 0 1000 20 0 / 0 1000 / 506 20 / 20 0 / 494 21000 / 11490 100% / 50.6%

f18 0 1000 20 79 / 85 60 / 173 359 / 49 940 / 827 383540 / 34230 6% / 17.3%

f19 0 1000 1 0 / 0 1000 / 1000 1 / 1 0 / 0 2000 / 2000 100% / 100%

f20 0 1000 1 0 / 42 40 / 82 500 / 16 960 / 918 501000 / 22206 4% / 8.2%

to the group size. This function has only one 50-dimensional

non-separable subcomponent which is represented by P1 and

one 950-dimensional separable subcomponent which is repre-

sented by the remaining permutation groups. It can be seen

that in group 6 (G06), 50 variables are from P1 and none

from the rest of the permutation groups. Take f9 as another

example. For this function an ideal grouping should form

10 non-separable groups with 50 variables from the first 10

permutation groups (P1-P10) and none from the remaining

permutation groups. Table II shows how differential grouping

formed such an ideal grouping for this function.

One final remark about the performance of differential

grouping relates to the number of fitness evaluations used for

each function to discover the underlying grouping structure.

It can be seen from Table I that the number of required

fitness evaluations to identify the interaction structure for fully

separable functions (f1-f3) is relatively high. The reason for

this behavior is that in order to find out whether a variable

interacts with another variable, a pairwise comparison is

required over all decision variables. In each full scan of all

variables no interaction was detected and only one variable

was excluded from the list of all decision variables. As a

result, approximately n × (n + 1) fitness evaluations were

required. This is a special case of the result obtained in

Section III-B where m = 1. For the second class of functions

(f4-f8), slightly fewer fitness evaluations were needed because

in the first scan 50 variables were extracted for each accurate

grouping. This effect is also present in the fourth group where

there are 20 non-separable groups. The least number of fitness

evaluations was required for f19 where all the variables were
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TABLE II
DETAILED GROUPING MATRIX OF SOME SELECTED FUNCTIONS (ǫ = 10

−3). THE ROWS INDICATE THE GROUPS FORMED BY THE DIFFERENTIAL

GROUPING ALGORITHM AND THE COLUMNS REPRESENT THE PERMUTATION GROUPS FROM WHICH THE VARIABLES IN EACH GROUP WERE EXTRACTED.

Func Groups Group P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Size

f4

G01 145 0 8 10 9 4 8 7 8 9 6 10 7 6 14 7 7 12 4 5 4

G02 63 0 2 2 3 3 5 4 8 2 3 3 4 1 2 1 5 3 3 4 5

G03 177 0 9 8 13 9 8 12 7 13 9 7 6 11 6 6 13 6 9 12 13

G04 110 0 7 6 7 6 4 5 4 5 7 8 4 10 4 8 4 4 6 5 6

G05 276 0 16 14 15 16 14 15 13 16 15 12 20 16 12 13 13 13 16 12 15

G06 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G07 27 0 1 3 0 3 0 1 2 1 0 2 1 1 2 1 3 1 1 3 1

G08 89 0 6 3 2 4 8 2 6 3 4 5 6 3 5 7 3 7 5 5 5

G09 28 0 1 0 1 4 0 1 1 1 2 1 1 0 2 5 2 3 2 1 0

G10 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

f5 G01 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f7

G01 289 0 14 13 16 21 24 15 13 16 10 9 12 9 17 23 18 17 12 13 17

G02 204 34 9 14 6 6 9 8 9 9 11 12 9 6 7 7 7 9 8 10 14

G03 244 0 17 15 17 10 8 9 13 11 16 18 13 14 13 12 10 13 13 12 10

G04 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f8

G01 225 0 18 11 13 9 8 10 11 14 13 9 10 14 15 7 12 13 12 14 12

G02 306 0 11 18 13 20 14 19 16 18 19 15 19 17 17 16 14 22 8 13 17

G03 286 0 14 16 17 17 20 12 14 12 12 17 16 14 13 17 16 8 20 16 15

G04 46 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G05 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f9

G01 50 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0

G02 50 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G03 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G04 50 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0

G05 50 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G06 50 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G07 50 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G08 50 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

G09 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G10 50 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

f14

G01 50 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G02 50 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G03 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0

G04 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0

G05 50 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0

G06 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G07 50 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G08 50 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0

G09 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G10 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0

G11 50 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0

G12 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

G13 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0

G14 50 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G15 50 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0

G16 50 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0

G17 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50

G18 50 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0

G19 50 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0

G20 50 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

f20

G01 70 2 0 1 5 5 4 5 2 2 4 3 3 2 3 4 5 5 5 3 7

G02 15 2 0 2 1 0 0 0 0 1 0 0 1 2 0 2 2 0 1 1 0

G03 402 21 18 22 20 16 19 22 25 22 22 24 18 23 17 18 18 14 19 21 23

G04 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

G05 115 4 7 2 7 7 8 5 6 8 3 4 5 7 11 4 9 3 7 5 3

G06 83 6 7 6 4 4 5 4 4 1 3 3 1 3 5 7 6 4 3 2 5

G07 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

G08 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

G09 34 2 5 2 1 3 1 3 1 2 0 1 4 4 0 1 1 1 1 1 0

G10 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

G11 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

G12 74 3 5 3 3 7 5 3 1 2 3 6 6 2 3 6 3 7 0 3 3

G13 84 4 5 5 4 3 3 2 5 3 6 2 7 1 2 5 1 10 9 4 3

G14 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

G15 52 3 1 2 2 1 2 3 2 5 4 5 3 3 5 1 1 3 1 4 1

G16 17 3 0 2 0 2 0 0 1 2 1 0 0 0 2 0 0 0 0 0 4
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excluded in the first pass of the algorithm. This behavior is

implied by the complexity analysis presented in Section III-B.

B. Comparison with CCVIL

This section discusses the similarities and differences be-

tween differential grouping and another recently proposed

automatic grouping procedure, Cooperative Co-evolution with

Variable Interaction Learning (CCVIL) [30].

CCVIL is a two stage algorithm where the grouping struc-

ture is discovered prior to the optimization stage. However,

unlike the technique proposed in this paper, the grouping

stage of CCVIL is also based on a cooperative co-evolutionary

framework. According to [30], two variables xi and xj are said

to interact with each other if the following condition holds:

∃ ~x, x′i, x
′
j : (16)

f(x1, ..., xi, ..., xj , ..., xn) < f(x1, ..., x
′
i, ..., xj , ..., xn)∧

f(x1, ..., xi, ..., x
′
j , ..., xn) > f(x1, ..., x

′
i, ..., x

′
j , ..., xn) ,

where ~x is a candidate decision vector and x′i, x
′
j are to be

replaced by the ith and jth decision variables respectively.

The way these two values are chosen is similar to the method

proposed by Weicker and Weicker [38]. However the approach

taken by CCVIL is more accurate and reduces the number of

falsely detected interactions.

CCVIL initially places each variable in a separate subcom-

ponent. Then, by repeatedly applying the above equation to

any two variables xi and xj , the subcomponents containing the

interacting variables are merged until the termination criteria

is met.

Since the focus of this paper is on proposing a decomposi-

tion algorithm, we omit the details of the optimization stage of

the CCVIL algorithm. The interested reader is referred to [30].

Table I shows the performance of CCVIL on the CEC’2010

benchmark functions (right hand side entries). It can be seen

from the table that differential grouping provides a more

accurate grouping with considerably fewer fitness evaluations

on most of the functions. Exceptions are f1, f2, and f7. It is

notable that, like differential grouping, CCVIL also behaved

differently on all instances of the Rosenbrock function. Indeed,

CCVIL classified all variants of the Rosenbrock function as

fully separable functions. An advantage of CCVIL is its ability

to quickly detect fully separable variables with a relatively low

number of fitness evaluations, whereas in differential grouping,

approximately one million fitness evaluations were required to

discover the underlying grouping structure.

An example shows why differential grouping detects in-

teracting variables much faster than the CCVIL algorithm.

Figure 1 shows three regions A, B, and C on the contour plot

of a two-dimensional Schwefel’s Problem 1.2 (lighter areas

have smaller function values). For this function both variables

interact over the entire search space. The condition given in

Equation (16) is only satisfied by points in region A. If the

points are in regions B or C, the condition will be false and the

algorithm will need to search further in order to find values

of the decision variables that satisfy Equation (16). This kind

of behavior is expected since Equation (16) uses an existential

quantifier, and the amount of search effort required to find a set

of points to satisfy the criteria in Equation (16) is unknown. In

order to alleviate this problem a stochastic approach is taken

in [30]. If an interaction is not found by Equation (16) after a

small number of applications, the probability of there being an

interaction becomes very small and the search is terminated.

Since differential grouping approximates the gradient, it

uses a more accurate measure for detecting interacting vari-

ables without excessive search. Unlike CCVIL, which directly

compares the fitness of the sample points, in differential

grouping, the changes in the fitness values are compared to

detect whether there is an interaction. As shown in Figure 1,

differential grouping compares the differences between the

elevations of the two pairs of points |f(x1, x2)−f(x1+δ, x2)|
and |f(x1, x

′
2) − f(x1 + δ, x′2)|, as shown by the dashed

lines. If these two values are different, it is inferred that the

corresponding dimensions are non-separable. In other words,

this is like forming a difference equation based on Equation (4)

(∆x1
[f ]) and evaluating it for two different values of x2 and

comparing the results. The figure shows that, regardless of the

chosen region, differential grouping can detect an interaction

in its first attempt. However, differential grouping may fail

when a portion of the search space is fully separable while

other regions are fully non-separable. In such scenarios, if

all four chosen points fall inside the separable region, the

interaction will not be detected, but if at least one point falls

in the non-separable region, the interaction will be correctly

detected. The situation is even worse with CCVIL, because

even if at least one of the four points falls inside the non-

separable region, it is still not guaranteed that Equation (16) is

satisfied. For most of CEC’2010 test functions the interaction

occurs over the whole search space, and this is why differential

grouping managed to accurately and efficiently detect the

interactions.

The results in Tables I clearly show that differential group-

ing is superior to CCVIL. It is clear that if the same sub-

component optimizer is used under identical conditions, it is

highly likely that the algorithm with the better grouping would

perform better in the optimization stage. The fact that differ-

ential grouping had roughly twice as many fitness evaluations

for the optimization stage also increased this possibility.

C. Sensitivity Analysis

In order to test the sensitivity of differential grouping to

the parameter ǫ, the differential grouping algorithm was tested

with two additional ǫ values, the result of which is reported

in Table III. Therefore, by considering the results provided in

Table I, differential grouping was tested with three different ǫ
values which are: 10−1, 10−3, and 10−6.

As it can be seen from Tables I, and III, the differential

grouping algorithm with three different ǫ values consistently

outperform CCVIL. This shows that the performance of

differential grouping is not very sensitive to this parameter

as long as it is set to a relatively small value. A general

trend that can be seen is that more separable variables are

correctly classified when a larger ǫ (10−1) is used. This

behavior is evident in functions f1-f13 which have a separable

subcomponent. When a smaller ǫ (10−3) was used differential
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Fig. 1. Detection of interacting variables using differential grouping and
CCVIL on different regions of a 2D Schwefel Problem 1.2.

grouping was able to identify the interacting variables with a

higher accuracy. This is evident in functions f14-f20 where

there is no separable subcomponent. However, when ǫ is

too small (10−6), more separable variables were classified as

non-separable. This might be due to the precision error in

calculating the difference of the delta values. In the current

implementation of Algorithm 1, choosing a very small ǫ may

influence the grouping accuracy of non-separable variables.

This is because in each scan of the decision variables in

Algorithm 1, all the variables that are found to interact with

the variable in examination are extracted from the set of

decision variables and grouped in a common subcomponent.

Therefore, a wrongly detected interaction between a separable

variable and a set of non-separable variables may break a non-

separable subcomponent into a set of smaller groups which

reduces the overall accuracy of the grouping. Examples of

such a drop in grouping accuracy due to a very small ǫ
(10−6) are f7, f9.f12, f14, and f17 in Table III. Taking f9
as an example, Table III shows that decreasing ǫ causes

the grouping accuracy to drop from 100% to 25.6%. This

function has 500 separable variables, but when ǫ = 10−6 the

differential grouping algorithm misclassified these variables

into a set of non-separable groups. This reduced the number

of correctly classified separable variables from 500 to only 26

variables. Consequently, since variable interaction is a two-

way relationship, non-separable subcomponents are divided

up into smaller groups due to the interference of separable

variables. For this reason instead of forming 10 non-separable

subcomponents, differential grouping formed 15 non-separable

subcomponents. In short, the above observations show that

despite the changes in the grouping accuracy due to variations

in ǫ, the performance of differential grouping especially on

non-separable functions is high. Even in the case that ǫ is very

small (10−6), out of 20 test functions differential grouping

outperformed CCVIL on 11 functions, performed equally well

on 3 functions, but performed worse on 6 functions. It should

be noted that on the functions where CCVIL has a better

performance, two functions are fully separable.

TABLE V
COMPARISON OF DIFFERENTIAL GROUPING AND OTHER GROUPING

TECHNIQUES ON THE CEC’2010 BENCHMARK FUNCTIONS USING 25
INDEPENDENT RUNS. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY

BETTER (WILCOXON TEST, α = 0.05).

Functions DECC-DG MLCC DECC-D DECC-DML DECC-I

f1
Mean 5.47e+03 1.53e-27 1.01e-24 1.93e-25 1.73e+00

Std 2.02e+04 7.66e-27 1.40e-25 1.86e-25 2.55e+00

f2
Mean 4.39e+03 5.57e-01 2.99e+02 2.17e+02 4.40e+03

Std 1.97e+02 2.21e+00 1.92e+01 2.98e+01 1.90e+02

f3
Mean 1.67e+01 9.88e-13 1.81e-13 1.18e-13 1.67e+01

Std 3.34e-01 3.70e-12 6.68e-15 8.22e-15 3.75e-01

f4
Mean 4.79e+12 9.61e+12 3.99e+12 3.58e+12 6.13e+11

Std 1.44e+12 3.43e+12 1.30e+12 1.54e+12 2.08e+11

f5
Mean 1.55e+08 3.84e+08 4.16e+08 2.98e+08 1.34e+08

Std 2.17e+07 6.93e+07 1.01e+08 9.31e+07 2.31e+07

f6
Mean 1.64e+01 1.62e+07 1.36e+07 7.93e+05 1.64e+01

Std 2.71e-01 4.97e+06 9.20e+06 3.97e+06 2.66e-01

f7
Mean 1.16e+04 6.89e+05 6.58e+07 1.39e+08 2.97e+01

Std 7.41e+03 7.37e+05 4.06e+07 7.72e+07 8.59e+01

f8
Mean 3.04e+07 4.38e+07 5.39e+07 3.46e+07 3.19e+05

Std 2.11e+07 3.45e+07 2.93e+07 3.56e+07 1.10e+06

f9
Mean 5.96e+07 1.23e+08 6.19.+07 5.92e+07 4.84e+07

Std 8.18e+06 1.33e+07 6.43e+06 4.71e+06 6.56e+06

f10
Mean 4.52e+03 3.43e+03 1.16e+04 1.25e+04 4.34e+03

Std 1.41e+02 8.72e+02 2.68e+03 2.66e+02 1.46e+02

f11
Mean 1.03e+01 1.98e+02 4.76e+01 1.80e-13 1.02e+01

Std 1.01e+00 6.98e-01 9.53e+01 9.88e-15 1.13e+00

f12
Mean 2.52e+03 3.49e+04 1.53e+05 3.79e+06 1.47e+03

Std 4.86e+02 4.92e+03 1.23e+04 1.50e+05 4.28e+02

f13
Mean 4.54e+06 2.08e+03 9.87e+02 1.14e+03 7.51e+02

Std 2.13e+06 7.27e+02 2.41e+02 4.31e+02 3.70e+02

f14
Mean 3.41e+08 3.16e+08 1.98e+08 1.89e+08 3.38e+08

Std 2.41e+07 2.77e+07 1.45e+07 1.49e+07 2.40e+07

f15
Mean 5.88e+03 7.11e+03 1.53e+04 1.54e+04 5.87e+03

Std 1.03e+02 1.34e+03 3.92e+02 3.59e+02 9.89e+01

f16
Mean 7.39e-13 3.76e+02 1.88e+02 5.08e-02 2.47e-13

Std 5.70e-14 4.71e+01 2.16e+02 2.54e-01 9.17e-15

f17
Mean 4.01e+04 1.59e+05 9.03e+05 6.54e+06 3.91e+04

Std 2.85e+03 1.43e+04 5.28e+04 4.63e+05 2.75e+03

f18
Mean 1.11e+10 7.09e+03 2.12e+03 2.47e+03 1.17e+03

Std 2.04e+09 4.77e+03 5.18e+02 1.18e+03 9.66e+01

f19
Mean 1.74e+06 1.36e+06 1.33e+07 1.59e+07 1.74e+06

Std 9.54e+04 7.35e+04 1.05e+06 1.72e+06 9.54e+04

f20
Mean 4.87e+07 2.05e+03 9.91e+02 9.91e+02 4.14e+03

Std 2.27e+07 1.80e+02 2.61e+01 3.51e+01 8.14e+02

D. Differential Grouping with CC

In this section we present the experimental results for co-

operative co-evolution with differential grouping and compare

it against other similar algorithms with various decomposition

strategies. Specifically, we compare differential grouping with

random grouping [25], delta grouping [28], and an ideal

grouping that was constructed manually using knowledge of

the benchmark functions. All of the algorithms used in our em-

pirical studies are summarized in Table IV. The experimental

results can be found in Table V. The entries shown in bold

are significantly better than other algorithms as determined by

a two-sided Wilcoxon test with a confidence interval of 95%.

Table V shows that DECC-DG outperformed other algo-

rithms. The performance of DECC-DML is very similar to

that of DECC-DG. On closer inspection one can see that it

outperformed DECC-DG on all separable functions. However,

on non-separable functions, DECC-DG outperformed DECC-

DML when the grouping accuracy (Table I) is high. The same

trend continues when comparing DECC-DG against DECC-

D. Another observation is that the performance of DECC-DG

is either worse or the same as DECC-DML on instances of
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TABLE IV
DESCRIPTION OF VARIOUS ALGORITHMS THAT ARE USED IN THE EMPIRICAL STUDIES.

Algorithms Description Decomposition Strategy

DECC-G [25] Differential Evolution with Cooperative Co-evolution and Random Grouping. Random Grouping

MLCC [29] Similar to DECC-G, but instead of using a fixed grouping a set of potential group sizes is used. Random Grouping

DECC-D [28] Differential Evolution with Cooperative Co-evolution and Delta Grouping. Delta Grouping

DECC-DML [28] Similar to DECC-D uses delta grouping, but similar to MLCC uses a set of potential group sizes. Delta Grouping

DECC-I DECC using an ideal grouping which is performed manually using the knowledge of benchmark functions. Ideal Grouping

DECC-DG DECC using the differential grouping that we proposed in this paper. Differential Grouping

CBCC-DG Contribution Based Cooperative Co-evolution [15] with differential grouping. Differential Grouping

MA-SW-Chains [50] The top rank algorithm in the IEEE CEC’210 competition on large-scale global optimization. N/A

rotated elliptic functions (f4, f9, f14) even though according to

Table I differential grouping discovered the optimal grouping.

In order to show how DECC-DG compares against an ideal

decomposition, the performance of DECC-I is also reported.

The grouping for DECC-I was done manually using prior

knowledge of the benchmark functions. Although this is not a

fair comparison, it serves as a good benchmark for evaluating

the performance of differential grouping. It is not fair because

the grouping information were provided to DECC-I and all the

allotted fitness evaluations were used for optimization, whereas

in the case of DECC-DG, a considerable number of fitness

evaluations had to be used to discover the grouping structure,

and the remaining fitness evaluations were used for the actual

optimization.

Figure 2 shows the convergence behavior of different algo-

rithms. Each point on the plot was calculated by taking the

average of 25 independent runs. Although for some functions

a considerable number of fitness evaluations were used to

discover the grouping structure, this effort was compensated

for during the optimization stage. In Figures 2(a), 2(b), and

2(c) the algorithms that use differential grouping initially do

not have any improvement for some number of iterations, but

once the grouping structure is identified there is a significant

improvement thereafter. Note that there are some other algo-

rithms in the convergence plots which will be discussed in

Section V-E

Overall, the experimental results in Table V, and the con-

vergence plots in Figure 2 show that using an automatic

grouping that can identify the underlying structure of the

benchmark functions (in terms of non-separability of the

decision variables) is highly beneficial, and it is advantageous

to spend some fraction of the computational budget to find

such a structure before running the optimizers.

E. Differential Grouping with Contribution Based CC

This section shows how the performance of DECC-DG can

be improved by using a contribution-based cooperative co-

evolution instead of traditional cooperative co-evolution where

the subcomponents are optimized in a round-robin fashion.

It has been shown recently that considerably better solutions

can be obtained by spending more computational budget on

the subcomponents with a higher contribution towards the

global fitness [15]. One general assumption in contribution-

based CC is that the interdependencies between subcompo-

nents should be kept to a minimum. The algorithm proposed

in [15] relies on a manual grouping of the decision variables

TABLE VI
COMPARISON OF TRADITIONAL CC WITH CBCC WITH DIFFERENTIAL

GROUPING ON THE CEC’2010 BENCHMARK FUNCTIONS USING 25
INDEPENDENT RUNS. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY

BETTER (WILCOXON TEST, α = 0.05). THE ENTRIES MARKED WITH THE

SYMBOL ‘‡’ ARE USED TO COMPARE CBCC WITH MA-SW-CHAINS.

MA-SW-

Functions DECC-DG CBCC1-DG CBCC2-DG Chains [50]

f1
Mean 5.47e+03 1.32e+04 8.34e+03 2.10e-14‡

Std 2.02e+04 6.25e+04 3.41e+04 1.99e-14

f2
Mean 4.39e+03 4.44e+03 4.44e+03 8.10e+02‡

Std 1.97e+02 1.60e+02 1.80e+02 5.88e+01

f3
Mean 1.67e+01 1.66e+01 1.67e+01 7.28e-13‡

Std 3.34e-01 3.79e-01 3.28e-01 3.40e-13

f4
Mean 4.79e+12 2.31e+12 2.36e+12 3.53e+11‡

Std 1.44e+12 7.43e+11 7.92e+11 3.12e+10

f5
Mean 1.55e+08 1.35e+08‡ 1.36e+08‡ 1.68e+08

Std 2.17e+07 2.18e+07 2.46e+07 1.04e+08

f6
Mean 1.64e+01 1.65e+01‡ 1.64e+01‡ 8.14e+04

Std 2.71e-01 3.99e-01 3.46e-01 2.84e+05

f7
Mean 1.16e+04 1.81e+04 1.35e+04 1.03e+02‡

Std 7.41e+03 4.59e+04 3.92e+04 8.70e+01

f8
Mean 3.04e+07 3.34e+06‡ 8.70e+05‡ 1.41e+07

Std 2.11e+07 2.29e+06 1.71e+06 3.68e+07

f9
Mean 5.96e+07 6.79e+07 7.97e+07 1.41e+07‡

Std 8.18e+06 6.92e+06 1.08e+07 1.15e+06

f10
Mean 4.52e+03 4.01e+03 4.04e+03 2.07e+03‡

Std 1.41e+02 1.37e+02 1.21e+02 1.44e+02

f11
Mean 1.03e+01 1.05e+01‡ 1.03e+01‡ 3.80e+01

Std 1.01e+00 9.31e-01 8.47e-01 7.35e+00

f12
Mean 2.52e+03 4.19e+03 4.00e+03 3.62e-06‡

Std 4.86e+02 1.25e+03 8.63e+02 5.92e-07

f13
Mean 4.54e+06 9.10e+03 4.54e+03 1.25e+03‡

Std 2.13e+06 3.75e+03 1.91e+03 5.72e+02

f14
Mean 3.41e+08 3.64e+08 3.69e+08 3.11e+07‡

Std 2.41e+07 2.61e+07 2.42e+07 1.93e+06

f15
Mean 5.88e+03 5.89e+03 5.88e+03 2.74e+03‡

Std 1.03e+02 9.10e+01 8.81e+01 1.22e+02

f16
Mean 7.39e-13 3.08e-12‡ 4.44e-12‡ 9.98e+01

Std 5.70e-14 3.19e-13 4.22e-13 1.40e+01

f17
Mean 4.01e+04 4.50e+04 4.73e+04 1.24e+00‡

Std 2.85e+03 3.18e+03 2.77e+03 1.25e-01

f18
Mean 1.11e+10 1.34e+09 3.47e+08 1.30e+03‡

Std 2.04e+09 4.94e+08 1.39e+08 4.36e+02

f19
Mean 1.74e+06 1.74e+06 1.74e+06 2.85e+05‡

Std 9.54e+04 8.46e+04 8.46e+04 1.78e+04

f20
Mean 4.87e+07 9.53e+04 8.42e+03 1.07e+03‡

Std 2.27e+07 1.02e+05 2.36e+03 7.29e+01

in order to show that a contribution scheme is beneficial.

The differential grouping algorithm proposed in this paper

allows the use of a contribution-based cooperative co-evolution

without relying on a manual decomposition of the decision

variables. In the remainder of this section the following two

comparisons are made. 1) The traditional CC is compared with

contribution-based CC (DECC-DG vs CBCC-DG); 2) CBCC-

DG is compared with the MA-SW-Chains [50] algorithm, the



IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, MONTH YEAR 13

top ranked algorithm in the IEEE CEC’2010 special session

and competition on large-scale global optimization (CBCC-

DG vs MA-SW-Chains).

DECC-DG vs CBCC-DG: Table VI presents the results on

CEC’2010 benchmark functions. It is noteworthy that CBCC1

and CBCC2 only differ in the policy that they use to divide

the computational budget between the subcomponents. The

reader is referred to [15] for the details of these algorithms.

For the purposes of this paper it is sufficient to note that in

both CBCC1 and CBCC2 the subcomponents with a higher

contribution to the global fitness are given more of the

computational budget. This can be contrasted with traditional

cooperative co-evolution, where the computational budget is

equally divided between all subcomponents.

Table VI shows that both instances of the CBCC algorithm

outperformed traditional cooperative co-evolution (DECC)

where differential grouping was used as the decomposition

procedure. At first glance it might seem that DECC-DG and

CBCC-DG have similar performance. However, if we look

at the results according to the classes of functions that were

described in Section IV, we can see that the CBCC algorithm

outperforms DECC-DG on the second class of functions (f4-

f8). With respect to the other classes (f9-f18), none of the

algorithms clearly outperforms the others. This behavior was

reported in [15] and was attributed to the fact that there were

equal contributions from all subcomponents. It is expected that

CBCC will perform as well as DECC-DG in situations where

there are equal contributions.

It is arguable that in most real-world problems some im-

balance will exist between various subcomponents. In such

cases equal contribution to the global fitness is unlikely. In

order to properly benchmark the performance of CBCC-DG

on imbalanced problems, modified functions f9-f18 to create

artificial imbalance between the subcomponents. The effect of

functions with a higher degree of imbalance is analyzed in the

next section.

CBCC-DG vs MA-SW-Chains: In comparing CBCC-DG

and MA-SW-Chains (Table VI) the symbol ‘‡’ is used to

indicate which algorithm performed significantly better than

the other. Table VI shows that MA-SW-Chains outperformed

CBCC-DG algorithms on 15 out of 20 functions. However,

two important facts should be noted here. Firstly, there is no

imbalance between the subcomponents of the functions f9-f18,

but if we look at the performance of CBCC on f4-f8 which

do have imbalance, it can be seen that CBCC is slightly better

than MA-SW-Chains. Secondly, the optimizers used here are

different in nature. It has been established that if any subcom-

ponent optimizer is used with a cooperative co-evolutionary

framework using differential grouping as the decomposition

method, the performance will be greatly enhanced.

F. The Effect of More Imbalance

To further investigate the effect of imbalance the functions

in categories 3 and 4 can be modified in the following way:

Fcat3 =

n
2m
−1

∑

i=0

102(i−9) × Fnonsep + Fsep

TABLE VII
EXPERIMENTAL RESULTS FOR IMBALANCED FUNCTIONS. THE

EXPERIMENTS ARE BASED ON MODIFIED BENCHMARK FUNCTIONS USING

25 INDEPENDENT RUNS. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY

BETTER (WILCOXON TEST, α = 0.05). THE ENTRIES MARKED WITH THE

SYMBOL ‘‡’ ARE USED TO COMPARE CBCC WITH MA-SW-CHAINS.

Functions DECC-DG CBCC1-DG CBCC2-DG MA-SW-

Chains [50]

f ′
9

Mean 3.81e+11 2.18e+11 2.04e+11 8.43+10‡

Std 1.15e+11 5.51e+10 5.16e+10 3.21+10

f ′
10

Mean 2.89e+07 2.36e+07‡ 2.43e+07‡ 2.24+07‡

Std 1.51e+06 1.79e+06 1.89e+06 1.34+07

f ′
11

Mean 9.98e+00 1.03e+01‡ 1.05e+01‡ 2.72+04

Std 1.16e+00 1.11e+00 8.93e-01 4.74+04

f ′
12

Mean 1.62e+07 6.27e+06 5.02e+06 6.93+05‡

Std 7.53e+06 7.27e+06 1.73e+06 4.24+05

f ′
13

Mean 1.07e+07 1.06e+07 1.04e+07 4.31+06‡

Std 4.77e+06 4.69e+06 4.08e+06 3.31+06

f ′
14

Mean 1.11e+13 6.62e+12 6.50e+12 4.69+11‡

Std 2.64e+12 4.20e+12 3.40e+12 5.38+10

f ′
15

Mean 1.98e+08 1.73e+08‡ 1.73e+08‡ 1.30+08‡

Std 6.84e+06 1.35e+07 1.19e+07 8.40+07

f ′
16

Mean 2.78e-08 2.98e-08‡ 4.22e-08‡ 1.71+05

Std 1.55e-08 1.33e-08 2.87e-08 1.32+05

f ′
17

Mean 1.36e+09 7.34e+08 6.86e+08 3.13+07‡

Std 2.88e+08 5.01e+08 4.23e+08 1.56+07

f ′
18

Mean 4.25e+10 4.33e+10‡ 5.64e+10‡ 5.39+12

Std 9.76e+09 1.23e+10 3.13e+10 9.59+12

TABLE VIII
CBCC-DG’S NUMBER OF WINS, LOSSES AND TIES AGAINST DECC-DG

AND MA-SW-CHAINS BEFORE AND AFTER INCLUSION OF IMBALANCE IN

BENCHMARK PROBLEMS. (BASED ON FUNCTIONS f4-f8, f ′

9
-f ′

18
)

Balanced Imbalanced

Algorithm Wins Loses Ties Wins Loses Ties

DECC-DG 7 5 3 9 2 4

MA-SW-Chains 5 10 0 6 7 2

Fcat4 =

n
m
−1
∑

i=0

10(i−9) × Fnonsep + Fsep .

The overall structure of the functions remains unchanged, but

the contribution of a component is multiplied by a coefficient

to create the imbalance effect. The third category (f9-f13), and

the fourth category (f14-f18) take the form of Fcat3, and Fcat4

respectively.

The experimental results using the modified set of bench-

mark problems are given in Table VII. A prime symbol is used

to indicate the modified functions (such as f ′9).

It can be seen from Table VII that in the presence of im-

balance, the CBCC-DG algorithm outperforms the DECC-DG

algorithm with a wider gap. This shows that, in the absence

of knowledge about the imbalance between subcomponents,

CBCC-DG performs at least as well as DECC-DG. However, if

such an imbalance exists – which we believe is highly likely in

many real-world problems – CBCC-DG finds better solutions

and outperforms traditional cooperative co-evolution.

By comparing the performance of CBCC-DG and MA-SW-

Chains, it can be seen that both algorithms perform similarly

on the imbalanced problems, but MA-SW-Chains performs

slightly better. This information is summarized in Table VIII.

Since functions f4-f8 from CEC’2010 are also imbalanced,

we have included them in Table VIII. For a better under-
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Fig. 2. Convergence plots of various algorithms on selected CEC’2010 benchmark functions. The plots are generated from 25 independent runs.

standing of the behavior of both algorithms the convergence

plots are shown in Figure 3. In almost all cases there is a

drastic improvement in the value of the objective function and

thereafter the fitness becomes stagnant. Since MA-SW-Chains

is a memetic algorithm [51], this behavior can be attributed

to the local search performed during evolution. Both DECC-

DG and CBCC-DG show a steady improvement in the global

fitness and in the case of f ′11 and f ′16 they overtake MA-

SW-Chains at some point during the evolutionary process.

It can be seen that for some functions such as f ′12 both

DECC-DG and CBCC-DG show a steady improvement and

it is possible that both algorithms would overtake MA-SW-

Chains with more evolutionary cycles. This suggests that

given a limited number of fitness evaluations a local-search

approach can find better solutions in the short term, but, in

the long run, a contribution-based cooperative co-operative co-

evolutionary approach with differential grouping appears to be

more stable and has the potential to further improve. This can

be backed up by observing that CBCC-DG outperformed MA-

SW-Chains on almost all instances of multimodal functions.

On 9 imbalanced multimodal functions (f5-f8,f ′9-f ′18) CBCC-

DG outperformed MA-SW-Chains on 6, performed equally

well on 2 and was worse on only one function.

VI. CONCLUSION

In this paper we have proposed differential grouping, an

automatic way of decomposing an optimization problem into

a set of smaller problems where there are few or no inter-

dependencies between the subcomponents. We have shown

how differential grouping can be derived mathematically from

the definition of additively separable functions. We have also

shown how LINC-R [37] can be derived from our formulation.

The proposed decomposition procedure has been evaluated

using CEC’2010 benchmark functions and the results have

shown that it is capable of grouping interacting variables with

great accuracy for the majority of the benchmark functions. A

comparative study with the grouping procedure of the CCVIL

algorithm was conducted and the experimental results showed

that differential grouping is superior to CCVIL both in terms

of grouping accuracy and computational cost.

In order to evaluate the actual performance of differential

grouping on optimization problems, we used the grouping

structure identified by differential grouping in a cooperative

co-evolutionary framework for the optimization of large-scale

additively separable functions. The experimental results re-

vealed that the near-optimal grouping accuracy of differential

grouping can greatly enhance the performance of optimization

compared to the cases where the grouping is less accurate.

In the presence of an accurate grouping of decision vari-

ables, it is possible to accurately quantify the contribution

of each of the subcomponents to the global fitness [15].

Once the contribution information is obtained, it is possible

to divide the computational budget more wisely, according

to the contribution of each subcomponent. Unlike traditional

cooperative co-evolution, where all subcomponents are given

equal resources, in a contribution-based scheme subcompo-

nents with higher contributions are given more resources. The

differential grouping approach that is proposed in this paper

makes it possible to accurately quantify the contributions.

It was shown that contribution-based cooperative co-

evolution has the potential to greatly enhance the optimization

performance for imbalanced problems. However, finding better

strategies for allocation of computational resources to each of

the subcomponents is the subject of future investigations.

Finally we have shown for a given high performance

evolutionary optimizer, it is possible to make it scale better

to high dimensional problems by using it as a subcomponent

optimizer in a contribution-based framework with differential

grouping.
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