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Introduction to Metamodeling for Reducing
Computational Burden of Advanced Analyses
with Health Economic Models: A Structured
Overview of Metamodeling Methods in a
6-Step Application Process

Koen Degeling , Maarten J. IJzerman, Mariel S. Lavieri, Mark Strong,

and Hendrik Koffijberg

Metamodels can be used to reduce the computational burden associated with computationally demanding analyses

of simulation models, although applications within health economics are still scarce. Besides a lack of awareness of

their potential within health economics, the absence of guidance on the conceivably complex and time-consuming

process of developing and validating metamodels may contribute to their limited uptake. To address these issues, this

article introduces metamodeling to the wider health economic audience and presents a process for applying

metamodeling in this context, including suitable methods and directions for their selection and use. General (i.e.,

non–health economic specific) metamodeling literature, clinical prediction modeling literature, and a previously pub-

lished literature review were exploited to consolidate a process and to identify candidate metamodeling methods.

Methods were considered applicable to health economics if they are able to account for mixed (i.e., continuous and

discrete) input parameters and continuous outcomes. Six steps were identified as relevant for applying metamodeling

methods within health economics: 1) the identification of a suitable metamodeling technique, 2) simulation of data

sets according to a design of experiments, 3) fitting of the metamodel, 4) assessment of metamodel performance, 5)

conducting the required analysis using the metamodel, and 6) verification of the results. Different methods are dis-

cussed to support each step, including their characteristics, directions for use, key references, and relevant R and

Python packages. To address challenges regarding metamodeling methods selection, a first guide was developed

toward using metamodels to reduce the computational burden of analyses of health economic models. This guidance

may increase applications of metamodeling in health economics, enabling increased use of state-of-the-art analyses

(e.g., value of information analysis) with computationally burdensome simulation models.
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Decision analytic models are valuable tools to inform

health policy decisions by estimating the health and eco-

nomic impact of health care technologies. When

decision-analytic models take the form of simulation

models, and particularly if they incorporate patient-level

heterogeneity and stochasticity, the computational power
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of standard desktop computers may be insufficient to

perform computationally demanding analysis within fea-

sible time horizons.1–3 Although it is typically feasible to

perform traditional analyses, such as probabilistic analy-

sis to reflect parameter uncertainty,4 performing more

advanced analyses, such as value of information analy-

sis,5 may not be possible within a feasible time frame

unless simulations are executed in parallel using high-

performance computing clusters. Similarly, if we wish to

optimize some specific model outcome, for example, to

identify a screening or treatment strategy that maximizes

patient outcomes subject to some set of constraints, we

may find that this is infeasible using only desktop com-

puting resources.6

Performing these more advanced analyses may be

computationally challenging, because they can require a

large number of model evaluations (i.e., simulation runs).

For example, suppose a discrete event simulation model

has been developed to estimate the health economic

impact of a novel cancer drug compared with an existing

drug. Now assume that running this simulation model

with 10,000 hypothetical patients for each of the 2 treat-

ment strategies is sufficient to obtain stable outcomes

over model runs and takes approximately 1 min. If an

expected value of perfect parameter information analysis

is to be performed for only 1 group of parameters using

an inner probabilistic analysis simulation loop of 5000

runs and outer simulation loop of 2500 runs, 12.5 million

simulation runs would be required in total. Even if it

only requires 1 min to perform a simulation run, per-

forming this analysis using a brute force approach on a

desktop computer with 8 central processing unit cores

working in parallel would take more than 1000 days.

Metamodeling methods can be applied to reduce the

computational burden of computationally demanding

analyses with simulation models.7,8 A metamodel, also

known as a surrogate model or emulator, in general can

be thought of as a function that approximates an out-

come (i.e., response variable or dependent variable) of a

simulator (i.e., the original simulation model) based on

input that would otherwise have been provided to that

simulator.9 Metamodels are typically defined over the

same (constrained) input parameter range as the corre-

sponding simulator, as caution is needed when extrapo-

lating input parameter values beyond their simulator

range. Since metamodels are computationally cheap to

evaluate, requiring only a fraction of the time that it

takes to evaluate the simulator, they can be used as a sub-

stitute for the simulator to substantially reduce the analy-

sis runtime. In the example above, and as illustrated in

Figure 1, metamodels can be used to replace a health eco-

nomic simulation model. Although this will still require

Figure 1 Illustration of how metamodels can be used in a health economic context to approximate the outcomes of the original

health economic simulation model.
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12.5 million evaluations to be performed, this can be

done in very limited time. For example, if a metamodel

would require approximately 0.1 s to evaluate, perform-

ing the analysis using the metamodel would take 2

instead of more than 1000 days. However, metamodels

themselves take time to build and validate,10,11 but this

will not take 1000 days.

Figure 2, which will be discussed in detail throughout

this article, includes an overview of how metamodels are

developed. After identifying candidate metamodeling

techniques, a set of experiments is to be generated. An

experiment refers to a single sample of values of the

model input parameters (thus, if there are k input para-

meters, a vector of length k), which is different from the

use of the word experiment in the context of clinical stud-

ies. For health economic models, these input parameters

may be probabilities, costs or utilities, for example. Next,

the set of experiments is to be evaluated from the simula-

tor to obtain a training data set that contains the experi-

ments and their corresponding model outcomes, such as

mean or incremental costs and quality-adjusted life-years

(QALYs). Finally, metamodels are fitted to the training

data set to approximate the relationship between simula-

tor inputs and outcomes. Different metamodeling tech-

niques can be used to approximate this relationship, each

of which makes different assumptions about the func-

tional form of the relationship between the inputs and

outcomes of the simulator. Although the extent to which

fitted metamodels can be interpreted varies, this is not of

primary interest when using metamodels to reduce com-

putational burden, because the main aim is to approxi-

mate simulators outcomes accurately and not to make

inferences between inputs and outcomes. Most tech-

niques approximate a single model-outcome, requiring

multiple metamodels to approximate multiple simulator

outputs. Hence, one metamodel can be used to approxi-

mate the net health benefit at a given willingness to pay,

but 2 metamodels would be required to approximate

costs and QALYs separately (Figure 1). After developing

a metamodel, it needs to be validated by assessing its

accuracy in approximating simulator outcomes, which is

done based on a testing data set containing experiments

and outcomes that should be similar but different from

those included in the training data set.

Metamodeling methods are used widely across differ-

ent fields of science and engineering, for example, to

optimize designs of coronary stents,12 high-speed

trains,13 and groundwater remediation,14 as well as to

estimate future water temperatures.15 In health econom-

ics, de Carvalho et al.16 recently demonstrated that a

metamodel can be used to perform probabilistic analysis,

which was not possible in a feasible time frame using

their original model.16 A previous literature review iden-

tified only 13 additional applications of metamodeling

methods in health economics, mostly aiming to perform

value of information analysis and applying various, rela-

tively basic metamodeling methods compared with those

used in other fields of research, suggesting the field of

metamodeling within health economics to be in its

infancy.3 An important reason for the limited uptake of

metamodeling methods within health economics may be

that most health economic models and applied analyses

have, until recently, been relatively simple and could

often be performed within acceptable time frames. Other

potential reasons include a lack of awareness of the

potential of metamodeling methods to reduce runtime

and a lack of guidance on how to apply these methods in

a health economic context, which would explain the

diversity in methods applied.

To increase awareness of the potential for applying

metamodels within health economics, and to provide

guidance for doing so, this study introduces the concepts

of metamodeling to the wider health economic audience

and presents a comprehensive, structured overview of

metamodeling methods deemed suitable for use in a

health economic context. Points of consideration for

selecting and applying metamodeling methods are dis-

cussed, including directions specific to health economics.

Identification of Metamodeling Methods

Metamodeling methods (and the steps to be taken when

applying them) were identified by a scoping literature

search that was performed by K.D. This involved online

searches, searches in Scopus and PubMed, and cross-

referencing. Several publications that provide informa-

tion on steps taken when applying metamodeling meth-

ods in health economics, identified in a recent review,3

were used as a starting point.17-20 Method-specific infor-

mation, other candidate metamodeling methods, and

potentially relevant process steps were identified by itera-

tive searches on methods and process steps introduced in

these publications and by cross-referencing. For exam-

ple, if the impact of different experimental designs on

metamodel performance was discussed in an article

found from a search on a specific metamodeling tech-

nique (i.e., structure of the metamodel), additional

searches on these designs of experiments were performed

to identify further information on these experimental

designs and other designs of experiments. The iterative

search process terminated when additionally found

350 Medical Decision Making 40(3)
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literature did not result in further inclusion of methods

(i.e., until theoretical saturation was reached).

Metamodeling methods were included only if they are

considered appropriate for use in health economics and

have been commonly used in other fields of research, in

line with the objective of the study. Methods were con-

sidered applicable to health economics if they are able to

account for mixed (i.e., continuous and discrete) input

parameters and continuous outcomes (i.e., response vari-

ables). Typical continuous input parameters of health

economic models are, for example, costs and utilities,

whereas the number of hospital days after a surgical

intervention can be included as a discrete parameter.

Similarly, typical continuous outcomes of interest are the

net health or monetary benefit, total cost, and QALYs.

Relevant steps to be taken when applying metamodeling

methods in health economics were not prespecified but

extracted from the literature as described above and

structured in a process. Metamodeling methods and their

characteristics were described according to this process

and presented in a table or graphs when appropriate. In

addition, examples of packages available to implement

methods in R Statistical Software21 and Python22 were

identified via an online search and introduced along with

the corresponding methods. These 2 software environ-

ments were selected because they can be used to develop

both the health economic simulation model and

metamodel in a single script and are commonly used by

academics, although other software environments such

as SAS, Stata, and C++ can also be used to develop

metamodels.

A Process for Metamodeling in Health

Economics

A 6-step process for metamodeling in health economics

was consolidated, covering methods from selecting suit-

able metamodeling techniques up to validating

metamodel outputs against simulator outputs (Figure 2).

A validated health economic simulation model (i.e.,

simulator) that is considered appropriate to perform the

analysis of interest is a prerequisite, because although

metamodels can theoretically be as accurate as their cor-

responding simulators, they cannot compensate for inac-

curacies or bias in these simulators. Here, the analysis

refers to what is to be analyzed using the original health

economic model but is considered infeasible because of

the associated computational burden. Depending on the

analysis to be performed, the sixth step is facultative, as

will be discussed. As for any type of modeling study, the

process of metamodeling is iterative, since new insights

may question prior decisions. Next, each process step

will be described, including an overview of correspond-

ing methods. An illustration of how this process would

be applied to perform value of information analysis is

presented in Appendix A.

Step 1: Identifying Candidate Metamodeling

Techniques

Identification of theoretically suitable metamodeling

techniques is based on study characteristics, including

the analysis to be performed, type of input parameters

(continuous, discrete, or mixed, i.e., both continuous and

discrete), number of input parameters, and type of out-

come (continuous or discrete). As discussed previously,

the focus here is on techniques capable of handling mixed

input parameters and continuous outcomes. In the pres-

ence of time or budget constraints for metamodel devel-

opment, and when multiple techniques are considered

appropriate for use, modelers can start by selecting and

applying one of these techniques and only select and

apply another technique if the resulting metamodel does

not yield acceptable performance (see step 4).

Tappenden et al18 identified 5 metamodeling tech-

niques for application in value of information analysis:

linear regression, response surface methodology, multi-

variate adaptive regression splines, Gaussian processes,

and neural networks. These techniques are complemen-

ted with symbolic regression, which was also identified

from the review,19 and generalized additive models,

which have been used previously for performing value of

information analysis.23,24 In Table 1, an overview of tech-

niques and their characteristics is provided. For each

metamodeling technique, this overview includes the typi-

cally required number of experiments (which we have

defined as low: n \ 500, or high: n � 500), number of

input parameters it allows (which we have defined as

low: n \ 20, or high: n � 20), interpretability of the

resulting metamodel structure (which we have classified

as low: not or barely possible to understand relations

between inputs and outputs, moderate: input-output rela-

tions can be understood to some extent, or high: input-

output relations can be understood), and the description

of any R and Python packages available to apply the

technique. Regarding the interpretability of the metamo-

dels’ structures, this is typically not of primary interest

when using metamodeling for reducing computational

burden, as accurate and fast approximation of simulator

outcomes is the main goal.

Simple linear regression is a statistical modeling tech-

nique well known in health economics and, theoretically,

352 Medical Decision Making 40(3)



suitable for metamodeling. This assumes a linear rela-

tionship between independent variables (i.e., input para-

meters) and the dependent variable (i.e., outcome of

interest) and is linear in the regression model para-

meters.55 These models can easily be fitted to data sets of

all sizes, including data sets with large numbers of experi-

ments and input parameters, while allowing for both

continuous and categorical input parameters. Although

fitting linear regression models and interpreting their

structure can be considered relatively easy, they are

unlikely to be useful as metamodels of health economic

simulation models, as the latter typically induce complex

and nonlinear parameter interactions. More advanced

techniques, allowing for more flexible model structures,

are often better suited to represent such simulation models.

Response surface methodology is also linear in the

regression model parameters but does not assume a lin-

ear input-output relationship, and it fits polynomial

regression models to predict responses (i.e., out-

comes).10,27,28 Both continuous and categorical input

parameters can be considered in response surface mod-

els, and data sets including large numbers of experiments

and input parameters can be used. However, high nonli-

nearity will require higher-order polynomials, which will

require larger numbers of experiments; hence, it will

require larger up-front simulator runtime. Although

polynomial models are more difficult to interpret com-

pared with linear models, if desired, general trends of

model parameter influence can still be extracted from

their model structures.

Symbolic regression uses genetic programming to con-

struct a mathematical expression from elementary opera-

tors (e.g., ‘‘+’’ and ‘‘3 ’’) and elementary functions (e.g.,

‘‘log’’), accurately describing the relation between input

parameters and the outcome of interest, without making

any priori assumption about this relationship.32,33 Fitting

an accurate symbolic regression model may take substantial

time, because of a potentially large number of candidate

metamodels (i.e., large solution space). However, symbolic

regression is capable of handling large data sets, including a

large number of mixed input parameters. Symbolic regres-

sion models can be difficult to interpret unless the final

expression is relatively simple or is simplified.

Multivariate adaptive regression splines were devel-

oped to model input-outcome relations that may not be

constant across input space.10,37,38,56 Regression spline

modeling divides the outcome domain into intervals and

then estimates an equation, typically a low-order polyno-

mial, for each interval. Different types of splines can be

distinguished, based on how the number of intervals and

level of smoothness are defined. Fitting multivariateT
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adaptive regression splines includes an automated input

parameter importance analysis (see step 2). Although

capable of handling large data sets of mixed input para-

meters, regression splines are prone to overfitting. In

contrast to the previously discussed metamodeling tech-

niques, the interpretability of multivariate adaptive regres-

sion splines is limited.

Generalized additive models assume that the depen-

dent variable is a smooth, but unknown, function of the

independent variables.40,43 This unknown underlying

smooth function is usually represented using splines, with

the cubic spline as a common choice. In its simplest case,

a univariate cubic spline represents an arbitrary smooth

single-input function as a series of short cubic polyno-

mials joined piecewise such that the function is twice dif-

ferentiable at the ‘‘knots’’ (i.e., join points). The same

spline can also be represented as the weighted sum of a

series of predetermined ‘‘basis functions’’ that extend

over the whole range of the function input. Simple uni-

variate cubic splines have natural extensions to higher

dimensions and to a metamodeling framework, in which

the spline parameters (i.e., the basis function weights) are

estimated from noisy data. Generalized additive models

can handle large data sets and high numbers of input

parameters, but their structure is difficult to interpret.

Gaussian process regression is a nonparametric regres-

sion method also known as Kriging.10,49 Gaussian pro-

cesses use information on neighbor experiments for new

predictions while directly providing information on the

uncertainty in these predictions. This is unique for

metamodeling techniques, since other techniques require

additional effort to obtain information on prediction

uncertainty. Although Gaussian processes are capable of

considering mixed input parameters,57 Treed Gaussian

processes have been developed specifically for this type of

data.58 The interpretability of Gaussian processes is low.

A disadvantage of Gaussian processes is that computa-

tional burden, both in terms of fitting and predicting,

increases dramatically with increasing numbers of experi-

ments and parameters, limiting their applicability. Hence,

Gaussian processes are often well suited for optimization

problems, which are typically defined by limited numbers

of decision parameters. Furthermore, input parameter

importance analysis can be performed to reduce the num-

ber of parameters (see step 2) and, thereby, computa-

tional burden.

Neural networks are nonparametric models that are

commonly found in machine learning applications. These

models consist of networks of nodes (called neurons) and

layers, which learn about relationships between inputs,

either continuous or categorical, and outputs, typically

using large data sets.10,38,54 Although neural networks

are commonly used for classification, they are also able

to predict continuous outcomes.59 Since no assumption

regarding simulator structure is made, neural networks

may well represent complex (i.e., nonlinear) health eco-

nomic models. Developing large neural networks typi-

cally requires large numbers of experiments, which may

pose challenges regarding obtaining sufficient simulator

samples. Similar to multivariate adaptive regression splines,

generalized additive models, and Gaussian processes, neural

networks are ‘‘black boxes’’ that are hard to interpret.

In conclusion, as illustrated in the selection flowchart

(Figure 3), Gaussian processes are particularly useful

when obtaining sufficient simulator samples to apply the

other techniques is infeasible. Response surface metho-

dology, symbolic regression, multivariate adaptive regres-

sion splines, generalized additive models, and neural

networks are typically useful when sufficient samples can

be obtained from the simulator (i.e., original health eco-

nomic model). If metamodel interpretation is important,

response surface methodology and symbolic regression

can be used to develop metamodels that may be interpre-

table to some extent.

Step 2: Simulating Data Sets

Simulating data from the simulator is crucial in

metamodeling studies, as metamodel performance is

highly dependent on the data used for fitting.9 Modelers

control the number and definition of experiments used

for fitting metamodels, which is fundamentally different

from prediction modeling studies, for which data are

typically observed from clinical studies or registries.55

Furthermore, challenges regarding handling missing data,

reversed causality, omitted variables, and measurement

error are not applicable to metamodeling. There are 5 key

aspects to simulating data sets for metamodeling: 1) the

number of data sets, 2) parameter ranges, 3) design of

experiments, 4) number of experiments, and 5) analysis

used for obtaining simulator outcomes. As explained pre-

viously, an experiment refers to the generation of a single

sample of model input parameter values in a

metamodeling context. Hence, the number of experiments

does not refer to a number of (hypothetical) patients but

to the number of sets of model input parameter values for

which the simulation model is evaluated to create data sets

for metamodel fitting and validation.

As in prediction modeling, 2 distinct data sets are pre-

ferred for metamodeling studies: one for fitting (i.e.,

training or development data set) and one for validation

(i.e., testing or validation data set). In prediction

354 Medical Decision Making 40(3)



modeling studies, validation data sets would typically be

obtained by isolating a proportion of the data from a

single cohort for internal validation or by gathering

additional data from another ‘‘plausibly related’’ cohort

for external validation.55 In metamodeling, however, it is

preferable to obtain 2 separate data sets from the simula-

tor, each having a prespecified design with comprehen-

sive coverage. Obtaining 1 large data set and separating

it in 2 data sets for training and validation may compro-

mise the coverage of these data sets: either data set may

lack the structure and properties induced by the design

of experiments used to generate the single large data set.

By obtaining 2 separate data sets, their structure and

properties according to the design of experiments used

will be maintained, as will be discussed.

The range of values that is to be covered in the data

sets requires careful consideration for each input para-

meter separately. Although metamodels are theoretically

capable of extrapolating beyond the parameter ranges

covered by the data set on which they were fitted, such

extrapolations are not preferable. The ranges that need

to be covered are determined by the ranges of interest in

the analysis that is to be performed using the metamodel.

For example, if a metamodel is developed to optimize a

cancer screening strategy, the ranges that are considered

feasible in the optimization should be the same as those

in the data sets used for fitting and validating the used

metamodel(s). If the screening interval in years is a para-

meter of interest and any value between 1 and 10 is con-

sidered feasible, the parameter range for this parameter

in the training and testing data set should also range

from 1 to 10.

Design of experiments methods determine how sets of

samples of parameter values are selected, which are to be

evaluated from the simulator in order to obtain data sets

for fitting and validation.60 The objective of these meth-

ods is to cover parameter spaces and parameter interac-

tions as effectively and efficiently as possible (i.e., with

the least number of experiments). Failing to represent

the full parameter spaces and parameter interactions

will decrease metamodel performance. Most common

designs of experiments are so-called single-pass methods

that first define a complete set of experiments, all of

which are subsequently evaluated using the simulator.11

Commonly used designs are random designs, full factor-

ial designs, and Latin hypercube designs.

Random designs, also known as Monte Carlo

sampling methods, obtain n sets of experiments by

Figure 3 Flowchart for the selection of appropriate metamodeling techniques for a specific case study.
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generating n draws from the joint probability distribu-

tion for the input parameters.60 These designs require a

large number of experiments to sufficiently cover the

parameter space. Input distributions may be designed to

cover a prespecified range with equal probability (i.e.,

uniform distributions) or may represent judgments about

the true unknown value of some population quantity,

for example, using Gamma distributions for parameters

with a positive range.4 When a random design is used, 1

large data set can be separated in 2 data sets for fitting

and validation, while maintaining its random properties.

Full factorial designs fully enumerate possible combi-

nations of discrete parameter values.11 More specifically,

for n values of k parameters, a full factorial design repre-

sents all n
k combinations of these parameter values.

Although full factorial designs are able to cover the full

parameter space and interactions, the number of experi-

ments increases exponentially with the number of para-

meters, and they are, therefore, often infeasible to use.

Fractional factorial designs have been introduced to

address challenges regarding high numbers of experi-

ments when using factorial designs and consist of subsets

of full factorial designs.61

Latin hypercube designs have been used often for

designing computer experiments, as they efficiently cover

the full parameter space.60,62,63 In its simplest form,

Latin hypercube samples represent random combina-

tions of values for each parameter, which are equally

spaced between their minimum and maximum value for

each parameter. More often, Latin hypercube samples

represent random combinations of random values from

equally sized bins that cover the parameters’ domains.

Over the years, more advanced versions have been devel-

oped, such as the maximin Latin hypercube design,64

which maximizes the minimum distance between design

points, and orthogonal Latin hypercube designs.65

Figure 4 illustrates how random, full factorial, and

maximin Latin hypercube designs may define 9 experi-

ments for 2 continuous parameters TestCost and

ConsultationCost. Although simulators and metamodels

in practice will have more than 2 parameters, this figure

clearly demonstrates differences between the designs. It

shows that parameter spaces are most effectively covered

by maximin Latin hypercube sampling, as the corre-

sponding experiments are properly distributed over all

bins of the parameter ranges. Conversely, the full factor-

ial design covers some bins multiple times and others not

at all. The randomly sampled experiments also cover

some bins multiple times and others not at all, although

which bins those are is determined by chance. From this

figure, it can also be seen why simply isolating a

proportion of experiments from the data set for model

validation is not appropriate, and a separate data set

needs to be simulated when a nonrandom design is used.

Isolating a (random) proportion from a data set gener-

ated according to a full factorial or Latin hypercube

design will result in a training data set that no longer

covers the full parameter space consistently. The remain-

ing experiments will no longer cover all bins of the para-

meter domain in a Latin hypercube design or all

parameter value combinations in a full factorial design.

In general, Latin hypercube designs are preferable for

both training and testing data sets, especially when only

a limited number of experiments can be evaluated from

the simulator in the available time. Optimized Latin

hypercube designs can easily be generated in most soft-

ware environments, for example, using the lhs package

in R66 or the pyDOE package in Python. However, these

designs are challenging to apply when constraints on

combinations of parameters are applicable. Although

some work has been done on conditioned Latin hyper-

cube designs, accounting for inequality constraints,67 this

might not enable all constraints to be accounted for. In

such situations, factorial designs can be used if the result-

ing number of experiments is considered feasible.

However, when using factorial designs for continuous

variables, a finite set of discrete values within the contin-

uous parameter range needs to be defined, which may

result in an infeasible number of experiments to cover

those parameters’ ranges at the desired level of detail. If

using a factorial design is considered infeasible, random

designs allow constraints to be accounted for easily.

However, random designs are likely less efficient, which

may result in suboptimal solution space coverage and,

consequently, lower metamodel performance, especially

when a limited number of experiments can be evaluated

from the simulator.

How many experiments are required (i.e., how large

the n should be) heavily depends on the desired

metamodel accuracy, which will be discussed in step 4.

In addition, the design of experiments method used and

how well the metamodeling techniques match the

unknown relation between inputs and outputs influence

the number of experiments required.68,69 A general rule

of thumb is to start with n= 103 k, where k refers to

the number of input parameters.69,70 After evaluating

model performance for the initial set of experiments (see

step 4), n may be increased until the desired level of over-

all accuracy is achieved (see Appendix A for an exam-

ple). Alternatively, adaptive sampling methods may be

applied to improve accuracy in local regions of the para-

meter space,51 but these methods are outside the scope of
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this study (see the Discussion section). If the desired

model accuracy cannot be achieved with a feasible num-

ber of experiments, importance analysis methods may be

applied to reduce the number of input parameters k, by

analyzing which parameters are most important in terms

of predicting the simulator outcomes.18,72,73 Including

only the most parameters might result in less complex

metamodel structures, and if redundant input parameters

can be removed, metamodel accuracy may improve as

overfitting is reduced.

Whether a deterministic or probabilistic analysis needs

to be performed to evaluate experiments from the

simulator depends on the analysis to be performed with

the metamodel. In a deterministic analysis, the simulator

is evaluated once for the expected values of the input

parameters.4 In a probabilistic analysis, the simulator is

evaluated numerous times, typically thousands of times,

based on parameter values sampled from distributions

that reflect the uncertainty in the parameter values (i.e.,

second-order uncertainty). If a model is nonlinear, which

most health economic models are, health economic out-

comes from a deterministic analysis are not equal to

those of a probabilistic analysis.74 If metamodels are

being used to perform model probabilistic analysis or

Figure 4 Illustration of how a random uniform sample, full factorial design, and maximin Latin hypercube sample may define 9

experiments for 2 continuous parameters, TestCost and ConsultationCost.
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value of information, simulator outcomes based on a

deterministic analysis should be used. If the aim is to per-

form calibration or optimization, simulator outcomes

based on probabilistic analyses are preferred, because

these are the values expected to be observed in reality

given the current information. However, performing a

probabilistic analysis for each experiment might not be

feasible because of the required simulator runtime. In

that case, outcomes from a deterministic analysis may be

used to approximate the outcomes of a probabilistic

analysis, although this should be clearly noted as a lim-

itation when reporting the results.

The stability of outcome estimates is another impor-

tant aspect. If stochastic uncertainty, also referred to as

uncertainty on the patient level or first-order uncer-

tainty, is reflected in a patient-level simulation model,

sufficient hypothetical patients need to be simulated to

obtain stable outcomes. Similarly, regardless of whether

first-order uncertainty is reflected, sufficient probabilistic

analysis runs need to be performed to obtain stable point

estimates. When insufficient hypothetical patients are

simulated, or probabilistic analysis runs performed, the

subsequent noise in the data used for fitting metamodels

may have a pernicious effect on metamodel performance.

Outcomes can be considered stable if the outcomes

obtained from simulations with different random num-

bers, but with the same input parameter values, are suffi-

ciently similar. What defines ‘‘sufficiently similar’’ differs

among case studies and should be discussed with all rele-

vant stakeholders (e.g., care providers, decision makers,

and modelers). Obtaining stable outcomes may require a

substantial number of patients to be simulated or simula-

tion runs to be performed and may not be feasible in

practice. However, to reduce the number of patients to

be simulated or the number of runs to be performed to

obtain stable outcomes, variance reduction techniques

may be applied, such as using common random numbers

when comparing strategies.75,76

Step 3: Fitting Metamodels

After evaluating an initial set of experiments from the

simulator, this training data set can be used to fit selected

metamodeling techniques. Steps involved in the fitting

processes differ between techniques as well as any settings

to be provided. We refer to the corresponding literature

and software documentation to learn about the steps to

be taken and settings to be provided (see step 1 and

Table 1). As a basic example, some metamodeling tech-

niques or software packages require input parameters to

be rescaled. Fitting metamodels is an iterative process, in

which settings may be adapted, or more experiments may

be evaluated from the simulator, after assessing model

performance (see step 4).

Step 4: Assessing Metamodel Performance

Assessing the performance of fitted metamodels is essen-

tial to further improve that performance, by iteratively

improving (extending) the design of the training data set

used or adapting the settings for fitting these models. In

addition, an initially selected metamodeling technique

may be deemed inappropriate if performance does not

reach an acceptable level, resulting in exclusion of this

technique from the list of potential candidates (step 1).

Performance can be assessed using the testing data set

evaluated from the simulator in step 2. Since metamodels

of health economics models will typically predict contin-

uous scale outcomes, of main interest is to quantify how

close predictions are to actual simulator outcomes.

Assessing accuracy and comparing different metamodels

can be done graphically and using quantitative perfor-

mance criteria. A validation plot, with predicted values

on the x-axis and observed values from the simulator on

the y-axis, is fundamental in assessing model perfor-

mance and presents information on systematic trends as

well as general performance (see Appendix A for an

example). Several quantitative performance criteria are

available, including mean or maximum values of the

absolute error, absolute relative error, and squared error,

all of which may be normalized using the sample range

or standard deviation, and summarized by their mean or

maximum values, and R2.38,69,77,78

It is important to be aware of performance criteria

characteristics when selecting one, or several, to compare

metamodels or to assess whether model performance is

acceptable. For example, compared with mean absolute

errors, mean squared errors place more weight on out-

liers. In addition, compared with squared errors, setting

a desired level of accuracy is more straightforward for

absolute (relative) errors, as these can be set by answering

questions such as, ‘‘What is the maximum mean devia-

tion in predicted life-years the metamodel is allowed to

have compared with the simulator outcomes?’’ The per-

formance that can be considered acceptable for deciding

to apply a metamodel for performing analyses differs

among case studies and should be based on input from

all stakeholders. For example, when the point estimate

for the incremental QALYs is 0.18 QALYs, an absolute

error of 0.01 QALY may be considered appropriate by

stakeholders. Since different performance criteria and

definitions of acceptable performance may yield alterna-

tive conclusions, these should be decided upon prior to

metamodel development.
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Step 5: Applying the Metamodel

Once a metamodel has been developed and validated, it

can be used to perform analyses that could not be per-

formed in a feasible time period with the original health

economic model. Previous applications of metamodels in

health economics include value of information analysis,

model calibration, optimization, probabilistic analysis,

and obtaining stable outcomes over multiple runs with

the same input values.3 In addition, metamodels can be

used in online tools for which limited computer resources

are available. For example, see de Carvalho et al.16 for a

demonstration of metamodels used for probabilistic anal-

ysis or Appendix A for an illustration of the presented 6-

step process for performing value of information analy-

sis. Another example may be to use metamodels for eval-

uating a large set of (thousands of) screening strategies,

for example, to identify the starting age, screening inter-

val, and number of screening rounds that optimize health

and economic outcomes.

Step 6: Verifying Results (Optional)

If metamodels are used for optimization purposes, it is

recommended to reevaluate a certain number of best

strategies identified by the metamodel using the original

health economic model, to assess whether their outcome

and ordering meaningfully differ. By providing these

results, decision makers are better informed about the

expected impact of choosing a good but not optimal can-

didate strategy for implementation, which may be

favored over the optimal strategy for practical reasons.

For other types of analyses, such as probabilistic or

value of information analysis, additional verification will

not add to the validation of step 4, because reevaluating

a number of strategies using the simulator will yield

approximately the same error values as those obtained in

step 4. Although this will also be the case for several

best-performing strategies when optimization is per-

formed, knowing the true outcomes and ordering of the

strategies according the simulator is informative, whereas

knowing the true outcome for a specific probabilistic

analysis run is not of any value.

Discussion

This study provides an introduction to metamodeling

methods that can be used to reduce the computational

burden of advanced analyses with health economic mod-

els and addresses challenges regarding the selection and

application of these methods. Similar to ordinary statisti-

cal regression modeling, different methods, which are

discussed, are available with their own advantages, dis-

advantages, and underlying assumptions, and directions

for selecting and implementing these methods are pro-

vided. Selected methods are structured in a comprehen-

sive 6-step process that can be followed to ensure

essential modeling steps are covered, as it includes all rel-

evant design choices. In addition, the process discussed

can be used as a structure to effectively and efficiently

communicate metamodeling studies, to increase model-

ing transparency and reproducibility.

Given that tools and packages are available to gener-

ate experiments according to specific designs and to fit

different types of metamodels, for example, in R and

Python, applying metamodeling methods is feasible for

health economic analysts. Currently available software

and results from this study enable analysts to perform

computationally demanding analyses with their models,

such as value of information analysis, model calibration,

and optimization. The benefits of developing

metamodels are relevant to analyses using patient-level

simulation methods, such as microsimulation state-

transition modeling and discrete event simulation, but

also to cohort models used to perform analyses that

require a large number of model evaluations.

Applying metamodeling methods can reduce compu-

tational burden, but this usually comes at the price of

introducing additional uncertainty in the model outputs.

Consequently, checking whether underlying assumptions

are met and checking metamodel performance are crucial

to success and essential to build confidence in the meta-

model. Since modelers typically have access to the origi-

nal health economic model, validation of the metamodel

is often not a problem, although it is likely to be more

demanding in terms of effort compared with developing

the metamodel itself. The starting point for building any

metamodel, however, should be a realistic and validated

health economic model, since metamodels can theoreti-

cally be as accurate as their corresponding simulators but

will not compensate for inaccuracies in these simulators.

Moreover, when metamodels are used for optimization,

the strategies considered, and possibly identified as opti-

mal, may not be supported by (the data underlying) the

simulator. Caution is required when such extrapolation is

(automatically) performed, and such optimization results

should serve only to initiate discussion on the appropri-

ateness and validity of the simulator and the data sup-

porting it. In addition, the application of metamodeling

methods requires communication of metamodeling

design choices made in publications, for which space is

typically already limited. Hence, metamodeling studies

may be published separately from their simulator to
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ensure the metamodeling process can be appropriately

described. Furthermore, there is a ‘‘sweet spot’’ for meta-

modeling: sufficient experiments need to be evaluated

using the simulator to develop an accurate metamodel,

but evaluating all experiments of interest should not be

feasible.

Several technical challenges remain regarding the

application of metamodeling methods in health econom-

ics. Simulators in health economics may include complex

behavior, such as rigid cutoffs due to clinical decision

rules, which may be complex for metamodeling tech-

niques to capture. In addition, (combinations of) model

input parameters may be subject to constraints, which

are difficult to incorporate in efficient designs of experi-

ments, such as Latin hypercube sampling. If sufficient

samples can be evaluated from the simulator to use ran-

dom or full factorial designs in which constraints can be

accounted for more easily, however, this might not be an

issue. Alternatively, more advanced adaptive sampling

strategies may need to be applied.

Not all metamodeling methods are directly suitable

for application in health economics and hence have not

been discussed. However, it is important to note that

some techniques, such as those that can be used for cate-

gorical outcomes (i.e., classification), could theoretically

be applied in health economics after discretizing continu-

ous outcomes. Such an approach has been taken previ-

ously by using a binary outcome to reflect whether one

treatment was preferred over another in a logistic regres-

sion model.73 Similarly, examples of packages for R and

Python were discussed, whereas additional packages are

likely to be available and other software environments

can also be used to develop metamodels, such as Stata,

SAS, and C++. In addition, alternative performance cri-

teria for metamodel validation can be found, or may be

developed, based on study-specific needs. With regard to

sampling methods, only single-pass methods have been

discussed, whereas iterative methods, also known as

adaptive sampling or active learning methods, also

exist.79,80 Iterative methods use an initial data set for fit-

ting an initial metamodel, which is subsequently used in

an iterative process to identify additional experiments to

be added to the data set, to update the initial metamodel,

and to check the updated metamodel performance, until

this performance is in accordance with a predefined

threshold.71 The additional experiments are sampled in

the area in which performance needs to be improved.

Although iterative methods are more efficient compared

with single-pass methods, they are substantially more

complicated to implement and require simulators to be

available in the same software environment used for

generating experiments and fitting the metamodel.

Nevertheless, these methods may be useful if insufficient

experiments according to a single-pass design can be

obtained to develop an accurate metamodel. Also, alter-

native designs of experiments are available, such as D-

optimal designs, which are efficient and can account for

constraints, but for which an linear or quadratic model

simulator model structure should be known,81 or for so-

called Sobol sequences, which may be more efficient

compared with Latin hypercube designs with low-

dimension (i.e., number of input parameters)

problems.82,83

Future metamodeling applications should further

illustrate the potential and use of these research methods

and also identify common challenges. Once the field of

metamodeling in health economics has evolved, good

research practices (i.e., consensus guidance) can be iden-

tified to further improve the quality of metamodeling

studies.
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