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For the first time, the problem of the inflation

of a nonlinear viscoelastic thick-walled spherical

shell is considered. Specifically, the wall has

quasilinear viscoelastic constitutive behaviour, which

is of fundamental importance in a wide range of

applications, particularly in the context of biological

systems such as hollow viscera, including the

lungs and bladder. Experiments are performed to

demonstrate the efficacy of the model in fitting

relaxation tests associated with the volumetric

inflation of murine bladders. While the associated

nonlinear elastic problem of inflation of a balloon has

been studied extensively, there is a paucity of studies

considering the equivalent nonlinear viscoelastic case.

We show that, in contrast to the elastic scenario,

the peak pressure associated with the inflation of

a neo-Hookean balloon is not independent of the

shear modulus of the medium. Moreover, a novel

numerical technique is described in order to solve the
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nonlinear Volterra integral equation in space and time originating from the fundamental problem

of inflation and deflation of a thick-walled nonlinear viscoelastic shell under imposed pressure.

1. Introduction
Understanding the mechanics of the classical problem of the inflation of a balloon requires

the application of large deformation nonlinear elasticity theory, see, for example, Sec. 5 of

[1], which refers back to the experiments of [2,3]. Of specific interest in the balloon inflation

experiment is the resulting non-monotonicity of the pressure–stretch curve (the well-known and

frequently experienced difficulty with the initial inflation of a balloon) and the associated critical

stretch at which the pressure inside the balloon reaches an initial maximum followed by the

subsequent more straightforward inflation after this initial maximum [4]. This initial maximal

pressure condition gives rise to a non-trivial problem known in the literature as a limit-point

instability [2,5–8]. Furthermore, rather interestingly for balloons with neo-Hookean constitutive

response, the critical stretch at which the pressure reaches the initial maximum is independent of

the shear modulus of the medium, thereby exhibiting universal behaviour.

Understanding the balloon inflation and deflation problem has important applications.

Recently, the US Food and Drug Administration (FDA), in order to treat obesity without the

need for invasive surgery, approved [9,10] a silicone balloon device called a bioenteric intragastric

balloon (BIB) (figure 1c). The BIB is delivered into the stomach via the mouth through a minimally

invasive endoscopic procedure and inflated successively by fluid/air injection in order to take

up space in the stomach and to induce early satiety. Recently, the FDA received several reports

regarding some adverse events in patients with recently fitted liquid-filled BIBs of certain types,

although it is not entirely clear what caused the complications in the patients [11–13]. One

would suggest, however, that it is crucial to fully understand the inflation/deflation mechanism

of BIBs [14]. This specific medical scenario suggests that a constitutive model devised for

intragastric balloons should incorporate large deformations as well as viscous effects. The same

considerations can be extended to atmospheric balloons (figure 1d), which are generally made of thin

polymeric film and illustrate considerable viscoelastic behaviour [15,16]. Of potential relevance,

therefore, is the study of the canonical viscoelastic balloon inflation problem.

The balloon problem is, of course, a very specific limiting case of the more general hollow

thick-walled spherical annulus and this geometry arises as a simplification of many biological

scenarios, e.g. in the context of hollow viscera, hence the dual study of the inflation of balloons and

mammalian bladders in the paper from 1909 by Osborne & Sutherland [17]. In that paper, it was

observed that there was a significant difference between these two scenarios and specifically it

was noted that in the case of the bladder, in contrast to the balloon, no such initial local maximum

pressure occurs; the curve is monotonic. Recent work by Mangan and Destrade has considered

appropriate strain energy functions to model both thin- and thick-walled cases [18].

In biological applications, it should be noted that the materials in question are often strongly

viscoelastic in the large deformation regime (indeed, viscoelastic hysteresis was noted by Osborne

and Sutherland in their experiments). These include the inflation of organs such as the lungs,

bladder, colon and also arteries and veins, noting that the latter three examples exhibit cylindrical

rather than spherical symmetry of course. Of specific interest, in these cases, are the hysteretic

pressure–volume curves that arise due to imposed volumetric changes or due to imposed

pressures. Understanding the mechanical properties of living soft tissue is important especially

in the context of diseased tissue, in order to prevent, for example, uncontrollable wall dilatation

which can lead to aneurysm and to a surrounding wall rupture [19,20].

In the case of the bladder (figure 1b), inflation and deflation (or filling and voiding as they

are often termed) are complex physiological processes driven by pressure differences inside and

outside the bladder. Voiding is driven by the contraction of the detrusor muscle, which leads to

an initially significant increase in the internal pressure, followed by a decrease upon the release of
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Figure 1. (a) Puferish, Diodon holocanthus. Photograph of an agitated Puferish taken in the waters of Todos Santos, Baja

California Sur, Mexico, March 2014. Photo courtesy of Melissa Ward, Davis, CA, USA. (b) Urinary bladder (male)—coronal

section. Copyright c© Kenhub (www.kenhub.com); illustrator: Irina Münstermann. (c) A representative illustration of a BIB.

Image courtesy of GASTRICSLEEVETURKEY, http://www.turkeygastricsleeve.com. (d) The Balloon Experimental Twin Telescope

for Infrared Interferometer (BETTII) ascending into the upper atmosphere. NASA’s Goddard Space Flight Center Conceptual.

Image Lab/Michael Lentz.

urine from the bladder [21,22]. The spherical approximation during this process has been shown

to be a fairly reasonable one [23,24].

In a related field, and similar geometry, it is well known that the pufferfish (figure 1a) uses

self-inflation via water intake as a defence mechanism against predation. During inflation, thin

rigid spines that are initially laterally located within the exterior dermis rotate orthogonally

to the surface of the pufferfish, giving rise to an inflated spiky sphere [25,26]. This response

means that they are much harder to swallow by would-be predators. Although, once again, the

initial geometry is more complicated than a hollow sphere and has also been associated with

an inhomogeneous response [27], this example serves to illustrate that such configurations are

important in a broader biological context. It is also worth stressing here that although there

have been numerous studies of the inflation mechanism and associated skin tissue response to

loading, there appear to be no studies of deflation, during which viscoelastic effects will play an

important role.

In a rather different limiting scenario, when the outer radius of the hollow sphere tends to

infinity, the canonical hollow sphere problem becomes highly relevant to understanding the

response of porous viscoelastic elastomers under hydrostatic pressure [28–31]. In closed-cell

materials, voids are distributed throughout an elastomer, resulting in a compressible medium

even when the host elastomer is incompressible. When the voids are in a dilute distribution, a

first approximation is to neglect interaction between voids and determine the deformation of a

single void under compression (see [28]). Provided the void is not too close to the surface of

file:www.kenhub.com
http://www.turkeygastricsleeve.com
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such a medium, it will ‘see’ only the coupled effect of rigid body displacement and hydrostatic

pressure. Essential to effective constitutive models of such porous viscoelastomers, therefore, is

the ability to predict the response of a single void in a nonlinear viscoelastic medium under

hydrostatic pressure. Such porous elastomers are of interest in a number of applications including

protective materials, clothing and textiles and underwater acoustics, to name but a few. Recently,

such materials and related structures have become the focus of the metamaterials community

since they exhibit slow sound behaviour and associated strong resonances [32–34].

The importance of viscoelastic effects in large deformation elasticity has been stressed in

a variety of recent studies, in particular those associated with soft biological tissues [35–39],

polymers and rubbers [40,41]. Under very specific loading conditions, the viscoelastic nature of

such materials can be neglected to a first approximation and the theory of nonlinear elasticity

can be employed, where, under the hyperelasticity assumption, strain energy functions W can

accommodate a variety of constitutive behaviours. In reality however, at finite-deformation rates,

such approximations cannot be made, and a nonlinear theory of viscoelasticity is required.

Motivated by the plethora of application areas described above, here we study the canonical

problem of the large radial viscoelastic deformation of a hollow, thick-walled sphere with initial

inner and outer radii A and B, respectively, subjected to hydrostatic pressure both internally

and externally by a quasi-static load. Inertia is therefore neglected. The limits A → B and B → ∞
are therefore associated with the balloon and isolated void respectively. A fundamental analysis

of such a problem in the nonlinear finite-deformation viscoelastic regime is currently lacking and

therefore there is a paucity of models to understand the pressure–deformation curves associated

with viscoelastic balloons, thick-walled viscoelastic shells, hollow viscera or isolated voids in

porous viscoelastomers. One exception is the specific study of Wineman [42], who considered

a rather special constitutive law associated with a spherical membrane. In particular, in a

certain parameter regime, corresponding to α → 0 of that model, the medium becomes perfectly

hyperelastic. Wineman studied the limit point instability associated with this material behaviour.

A few years later, Calderer [43] considered the specific scenario of the radial elastic motion of a

thick spherical shell under a constant pressure difference between the inner and outer surfaces.

This is a particular case of the general (non-spherical) compressible medium problem studied by

Ball [44], who showed that, for suitable initial conditions and pressures, no weak solution exists for

all time, suggesting that the displacement becomes singular within a finite time. Later, Calderer

considered the equivalent viscoelastic problem of a spherical shell [45,46], examining whether the

presence of dissipation in the differential equation describing the deformation is able to prevent

instabilities and ensure global existence of the solutions in time.

In order to account for material nonlinear viscoelasticity, here we assume a so-called

quasilinear large deformation viscoelastic response [47]. Assuming spherical symmetry, two

types of problems can then be studied: inflation/deflation due to either imposed strains

(volumetric inflation) or imposed pressures, the former type being more straightforward to

solve. Initially, then, here we consider two problems where volumetric inflation is assumed,

meaning that the pressure difference and deformed radii can be determined straightforwardly

from a single integral expression. First, we consider the fitting of the quasilinear viscoelastic

(QLV) model to experimental data associated with volumetric inflation of murine bladders. Next,

the canonical problem of the inflation of a balloon via volumetric control is described and

compared, in particular, with the well-studied associated nonlinear elastic problem. To make

progress in the more general framework of the inflation of a thick-walled viscoelastic spherical

shell when pressure is imposed, the analysis is then confined to the case when the so-called

instantaneous elastic stress is governed by a Mooney–Rivlin strain energy function, allowing study

of, for example, a viscoelastic neo-Hookean response. More general constitutive models can be

considered, but this case illustrates the modification to the nonlinear elastic result and is indicative

of the fundamental differences between elasticity and viscoelasticity. More complex models,

including, for example, anisotropy, can also be developed but, for the present purpose, they

obscure the main message of this article, which is associated with the influence of viscoelasticity

in nonlinear media.
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The review paper by Wineman [48] has described a variety of possible viscoelastic constitutive

models that incorporate finite deformation. A rather general model is that of Pipkin & Rogers [49],

which has the advantage of allowing for strong nonlinearity and finite deformation. This model

also incorporates coupling between relaxation and strain, where necessary, giving rise to models

for strain-dependent relaxation. In order to simplify the approach and generate models that are

more tractable, a simplified version of the Pipkin–Rogers constitutive model was suggested by

Fung [50], and this approach is now known as QLV theory. This assumes that viscous relaxation

rates are independent of the instantaneous local strain. Although this method has been criticized

in recent years, a recent paper has shown that, although the model clearly cannot be valid for all

materials over all deformation rates and strains, the criticisms put forward by previous authors

were unfounded [47]. For example, in a number of publications, an incorrect QLV relation or

stress measure was employed (the latter must be the second Piola–Kirchhoff stress to satisfy

objectivity), or the incompressible limiting form was derived erroneously. QLV does, of course,

have limitations; the fact that the relaxation functions are independent of strain is an important,

possibly erroneous, assumption. However, the model appears to include enough detail to capture

many of the essential elements of the physics while not being overly difficult to implement in the

context of real-world applications.

Note that for an imposed deformation it is generally simple to derive the stress field since the

stress is prescribed in an integral form with the deformation appearing in the integrand. On the

other hand, when traction is imposed, the problem is more complicated since integral equations

are generally required to be solved for the resulting deformation. Classical discretization methods

used in the past [48,51,52] have been employed recently (with adapted and improved techniques)

in order to solve such integral equations for homogeneous deformations [47,53,54]. These

approaches permit wide utility of the models without the need for finite-element implementation.

Nevertheless, inhomogeneous deformations, to our knowledge, have not been considered in

this context, presumably because of the added complexity that arises from the presence of the

spatial variation in the deformation. Even in the most simple cases, inhomogeneous deformations

will lead to integral equations that are much more difficult to solve than those that arise for

homogeneous deformations. However, every deformation that is controllable (i.e. a deformation

which satisfies the balance equations of equilibrium with zero body force, supported by suitable

surface tractions only) for homogeneous isotropic incompressible elastic materials, in the absence

of body forces, is also a controllable deformation for a more general class of homogeneous

isotropic incompressible materials known as simple materials (see [55–57]). We note that simple

materials are defined as materials within which the stress at each point is determined by the

histories of the deformation gradients at that point, and which therefore includes all materials

with memory, i.e. viscoelastic materials.

Although inhomogeneous, the purely radial nonlinear elastic deformation associated with the

inflation and deflation of an incompressible hollow sphere subjected to hydrostatic pressure is

a universal solution belonging to ‘Family 4’ (see [58,59]). The problem is straightforward and its

solution has long been known (see, for example, [28,58] and references therein). The equilibrium

equation can be integrated exactly to yield a nonlinear equation for the internal deformed void

radius a (or equivalently for the external radius b) in terms of the imposed pressure difference and

the undeformed radius A (or the external undeformed radius B, respectively), in the form

pb − pa =
∫ b

a

2

r
(Trr − Tθθ ) dr. (1.1)

Here Trr and Tθθ are the radial and tangential Cauchy stresses and we specify Trr = −pa on r = a

and Trr = −pb on r = b (or when the outer hydrostatic pressure is applied in the far-field, i.e.

B, b → ∞, on r = ∞) (figure 2). Given a strain energy function, the integral on the right-hand

side in (1.1) is determined in a straightforward manner and the deformed radius a is determined

numerically [28]. The corresponding linear viscoelasticity problem is also straightforward, and

since the associated constitutive law in that case may be inverted without difficulty, both imposed
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X
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Figure 2. Figure illustrating the deformation of the hollow sphere subject to internal and external hydrostatic pressure pa and

pb, respectively.

displacement and pressure conditions can be derived. This paper will focus therefore on the

problem when the medium is QLV.

The paper proceeds as follows. In §2, a summary of the equations governing the deformation

of an incompressible isotropic QLV medium is presented for an arbitrary strain energy function.

We then sequentially study a series of problems beginning with imposed volumetric strain and

ending with imposed pressure. In §3, an assessment of the efficacy of the model is presented by

fitting experimental data associated with the inflation of murine bladders when volumetric strains

are imposed. The strongly related canonical thin-walled (balloon) inflation/deflation problem,

when controlled by volumetric strain, is solved in §4, noting the additional effects that arise due

to viscous effects over and above the classical nonlinear elastic balloon inflation problem. In §5,

the general formulation is then restricted to the case of a neo-Hookean strain energy function in

order to study the more difficult problem of inflation due to imposed pressure, with reference also

being made to the more general Mooney–Rivlin strain energy function. The governing equation is

a nonlinear Volterra integral equation and we describe a new root finding technique to determine

the resulting radial stretch when pressure is prescribed. Some canonical problems associated

with the inflation and deflation of a shell of finite thickness are subsequently solved using this

procedure in §6. Concluding remarks are made in §7.

2. Governing equations
With reference to figure 2, consider a hollow sphere of inner and outer radii A and B, respectively,

which is capable of large deformation and whose QLV constitutive behaviour will be specified

shortly. The medium is assumed to be incompressible and isotropic. We consider the deformation

of the medium when it is subjected to hydrostatic internal (pa(t)) and/or external (pb(t)) pressure

in a time-dependent manner beginning at some reference time t0 = 0. Similarly, we can consider

the problem of a spherical void in an infinite host medium if we impose the external pressure on

b, and take the limit B → ∞ (and hence b → ∞).

We assume that the centre of the hollow sphere is located at the origin of a Cartesian coordinate

system (X, Y, Z). The deformation of the void will be purely radial and therefore, working in

spherical polar coordinates, we can represent this deformation in the form

r = r(R, t), θ = Θ and φ = Φ, (2.1)

where (R, Θ , Φ) and (r, θ , φ) are the polar coordinates in the reference and current configurations,

respectively, with dr/dR > 0. Let F(t) denote the (time dependent) deformation gradient tensor,
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defined as

F(s) =

⎧

⎪

⎨

⎪

⎩

I, s ∈ (−∞, 0),

∂x(s)

∂X
, s ∈ [0, t].

(2.2)

Here I is the second-order identity tensor, x(s) = (x(s), y(s), z(s)) is the position vector of a generic

particle P at time s ∈ (−∞, t] and X = (X, Y, Z) is its position at the reference time s = t0 = 0. The

quantity B ≡ FF
T is the left Cauchy–Green strain tensor. Associated with this for an isotropic

medium are the three principal strain invariants

I1 = tr B, I2 = 1
2 [(tr B)2 − trB

2] and I3 = det B. (2.3)

Since we assume that the motion begins at s = t0 = 0, the polar components of the deformation

gradient (2.2) associated with (2.1) are therefore given by

F(s) =

⎧

⎪

⎨

⎪

⎩

I, s ∈ (−∞, 0),

diag

(

dr

dR
,

r

R
,

r

R

)

, s ∈ [0, t].
(2.4)

For incompressible materials, the constraint of incompressibility I3 = det F = 1 leads to dr/dR =
R2/r2, which is integrated to give

r(R, s) = (R3 − α(s))1/3, (2.5)

where

α(s) = A3 − a3(s) = B3 − b3(s). (2.6)

Then

I1 =
R4

r4
+ 2

r2

R2
, I2 =

r4

R4
+ 2

R2

r2
and I3 = 1. (2.7)

Assuming next that an underlying elastic stress associated with the host can be given in terms

of the derivative of an elastic potential W(I1, I2), which is a so-called hyperelastic strain energy

function, the constitutive law for the elastic Cauchy stress is

T
e = −pI + 2W1B − 2W2B

−1, (2.8)

where p is the Lagrange multiplier introduced by the incompressibility constraint and Wi ≡
∂W/∂Ii. From the deformation gradient (2.4), the viscoelastic Cauchy stress for a QLV material

can be written as [47]

T(t) = F(t)

(

Π
e
D(t) +

∫ t

0
D

′(t − s)Πe
D(s) ds

)

F
T(t) − p(t)I, (2.9)

where

Π
e
D = F

−1
T

e
F

−T = 2

[(

I2

3
W2 −

I1

3
W1

)

C
−1 + W1I − W2C

−2

]

(2.10)

is associated with the deviatoric part of the Cauchy stress, C = F
T

F is the right Cauchy–Green

strain tensor and D is the scalar relaxation function associated with the time-dependent response

of the QLV material. Thus from (2.9) and using (2.4) the principal Cauchy stresses are

Trr(t) =
R4

r4(t)

(

Πe
Drr(t) +

∫ t

0
D

′(t − s)Πe
Drr(s) ds

)

− p(t) (2.11)

and

Tθθ (t) = Tφφ(t) =
r2(t)

R2

(

Πe
Dθθ (t) +

∫ t

0
D

′(t − s)Πe
Dθθ (s) ds

)

− p(t), (2.12)

where from (2.10) and (2.7) it is straightforward to show that

Πe
Drr =

4

3

(R6 − r6)

R8
(R2W1 + r2W2) (2.13)
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and

Πe
Dθθ = Πe

Dφφ = −
2

3

(R6 − r6)

R2r6
(R2W1 + r2W2). (2.14)

We assume that the deformation acts on time scales such that inertia can be neglected and

therefore the equation of motion reduces to

div T = 0, (2.15)

where body forces have also been neglected. Boundary conditions are

Trr(r, t)|r=b = −pb(t) and Trr(r, t)|r=a = −pa(t). (2.16)

The only non-trivial equation of (2.15) is the radial one, which when integrated with respect to r

and imposing the boundary conditions (2.16) reduces to give (1.1). Writing the right-hand side in

terms of the radial coordinate R in the reference configuration, this equation reduces to the form

pb(t) − pa(t) = 2

∫B

A
(Trr(R, t) − Tθθ (R, t))

R2

r3(R, t)
dR. (2.17)

From (2.11) to (2.14) and (2.7) we have

Trr(R, t) − Tθθ (R, t) = g(R, t)f1(R, t) +
1

3

∫ t

0
D

′(t − s)g(R, s)f2(R, s, t) ds (2.18)

where we define

g(R, t) = 2

(

W1(R, t) +
W2(R, t)r2(R, t)

R2

)

,

f1(R, t) =
R4

r4(R, t)
−

r2(R, t)

R2

and f2(R, s, t) =
2R4

r4(R, t)

(

1 −
r6(R, s)

R6

)

−
r2(R, t)

R2

(

1 −
R6

r6(R, s)

)

,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.19)

noting that the functions f1 and f2 are explicitly independent of the strain energy W.

Two different types of problems then arise. The first, more straightforward type is to choose

the strain energy function W, the shear modulus µ and relaxation function D(t) together with the

initial internal and external radii A and B and impose the deformed radii a and b, i.e. we impose

volumetric strain. We can then straightforwardly determine the pressure difference pb(t) − pa(t)

as a function of time by determining the integral on the right-hand side of (2.17). The second

type is a more complicated mathematical problem. In this case, our task is to determine α(t)

from (2.17) when we impose W, µ,D, A and B as before but now where we impose pressures pa(t)

and pb(t). From α(t) we can, of course, then determine a(t) and b(t), the evolving internal and

external boundaries of the hollow sphere. The case of imposed pressure is non-trivial because

(2.18) is a nonlinear Volterra integral equation in space and time. In previous works, these have

been solved by a numerical procedure that exploited the separable nature of the terms under

the integral in terms of s and t [47,53]. Here, however, this separability does not arise and a new,

modified approach is required. In §5, we will develop this approach for the commonly considered

simple but illustrative and informative case when W is the neo-Hookean strain energy function

[60]. Before this however we consider some problems when deformations are imposed and

pressure differences are measured. We begin by illustrating that the QLV model can qualitatively

model data obtained from experiments performed on the controlled filling of murine bladders.

Furthermore, following this, the canonical problem of the inflation and deflation of a thin-walled

viscoelastic balloon is studied, the elastic equivalent of which has been studied extensively in

the past.
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3. Quasilinear viscoelasticity model it to experimental investigations on
urinary bladder illing

(a) Animals

All experiments were performed using 12–16-week-old C57/BL6 male mice from Charles River

(Margate, UK). Mice were acclimatized for 7 days in the laboratory animal husbandry unit under

a 12 L:12 D cycle and had free access to water and food. Immediately before the onset of the

protocol, mice were anaesthetized with isoflurane and humanely sacrificed by cervical dislocation

according to UK Home Office legislation regulating Schedule 1 procedures (Scientific Procedure

Act 1986). Ethics approval was obtained from the University of Sheffield Ethics Review Panel.

(b) Bladder preparation and isovolumetric experiments

Following euthanasia, the whole pelvic region including surrounding tissues was dissected from

the animal and placed in a purpose-built recording chamber. The chamber was continually

superfused with gassed (95% O2–5% CO2) Krebs–bicarbonate solution (composition, mM: NaCl

118.4, NaHCO3 24.9, CaCl2 1.9, MgSO4 1.2, KH2PO4 1.2, glucose 11.7 and KCl 4.7) and maintained

at a stable temperature of 35◦C. A polythene catheter (0.28 mm) was inserted into the urethra

and secured with a suture. Bladders were perfused with isotonic saline (0.9%) using a perfusion

pump (Genie, model NE-1000; Kent Scientific) at a rate of 100 µl min−1. The bladder dome was

punctured at the apex with a syringe needle (BD MicrolanceTM, 19G) and a dual-lumen catheter

was inserted and secured with a suture. One arm of the catheter was connected to a pressure

transducer (BD DTX PlusTM disposable transducer, Becton Dickinson, Singapore) to monitor

intravesical pressure and the other arm was connected to the three-way tap to allow bladder

filling (tap closed) or emptying (tap open).

The intravesical pressure was continually captured by a pressure transducer, connected to

a power 1401 interface. Data were recorded on a PC using spike2 software (v. 4; Cambridge

Electronic Design, UK).

(c) Experimental protocol

Control distensions were always carried out at the start of the protocol. To do this, bladders were

distended using isotonic saline (NaCl, 0.9%) at a rate of 100 µl min−1 to a maximum pressure

of 40 mmHg; at this point the infusion pump was stopped and rapid evacuation of the fluid

occurred by opening the two-way catheter in the dome to the atmosphere. This was repeated

several times at intervals of 10 min to assess the viability of the preparation and reproducibility

of the intravesical pressure responses to distension. Once stable and reproducible responses were

obtained (typically after three control distensions) the isovolumetric experiments were conducted.

To perform the isovolumetric experiments, bladders were filled to an intravesical pressure of

25 mmHg. At this point, the tap on the dome catheter was closed and the infusion pump was

switched off. Bladders were left to equilibrate for 15–20 min at the intravesical volume, following

which the bladder was emptied by opening the tap. Intravesical pressure data were continuously

collected throughout the protocol and data points at 5 s intervals were analysed.

(d) Model it

We now fit the experimental data obtained using the procedure described above with a

viscoelastic model using three methods: (i) QLV with an isotropic neo-Hookean strain energy

function, (ii) QLV with an isotropic Fung strain energy function, and (iii) using linear

viscoelasticity. As mentioned above, the bladders were filled at a constant rate of 100 µl min−1

until a critical time tc, after which the volume was held constant. Therefore, an equation for the
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bladder volume as a function of time is

V(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

4πA3

3
+

1

60
t, t ≤ tc,

4πA3

3
+

1

60
tc, t ≥ tc,

(3.1)

where the volume V is given in microlitres, the inner radius A is given in metres and the time t

and critical time tc are given in seconds. The volume is related to the deformation parameter α(t)

via the following equation:

α(t) = A3 −
3

4π
V(t), (3.2)

which is what we impose to drive the deformation for the first two methods. We use equations

(2.17)–(2.19) to determine the pressure difference by substituting the following strain energy

functions into the first equation of (2.19). The neo-Hookean strain energy function is given by

W =
µ

2
(I1 − 3), (3.3)

where µ is the ground-state shear modulus of the material under consideration, which gives

W1 = µ/2, W2 = 0. The isotropic Fung strain energy function is given by

W = 1
2 (a(I1 − 3) + b(ec(I1−3) − 1)), (3.4)

which gives W1 = (a + bcec(I1−3))/2, W2 = 0. In order to reduce the number of fitting parameters

for this model, we assume that a = 0, which means that, for consistency with linear elasticity, we

must have bc = µ, and therefore W1 = µec(I1−3)/2.

For the third method, we use linear viscoelasticity. The displacement vector u = u(r, t)er for an

incompressible linear viscoelastic material must satisfy div u = 0, and therefore we have

du

dr
+ 2

u

r
= 0 ⇒ u(r, t) =

β(t)

r2
. (3.5)

The deformation of the inner wall is prescribed by V(t) using the following equation:

V(t) =
4π

3
(A + u(A, t))3 ⇒ β(t) =

(

(

3

4π
V(t)

)1/3

− A

)

A2. (3.6)

The stress in an incompressible linear viscoelastic material is given by

σ (t) = −p(t)I + 2µ

(

e(t) +
∫ t

0
D

′(t − s)e(s) ds

)

, (3.7)

where p is a Lagrange multiplier associated with the incompressibility constraint and e is the

linear strain tensor, which for our deformation is given by e = diag(du/dr, u/r, u/r). Using the

above, we obtain

σrr = −p + 2µ

(

du

dr
+

∫ t

0
D

′(t − s)
du

dr
ds

)

and σθθ = −p + 2µ

(

u

r
+

∫ t

0
D

′(t − s)
u

r
ds

)

, (3.8)

which can be substituted into the equation below to obtain the pressure difference,

pb(t) − pa(t) = 2

∫B

A

σrr(r, t) − σθθ (r, t)

r
dr = −12µ

∫B

A

(

β(t)

r4
+

∫ t

0
D

′(t − s)
β(s)

r4
ds

)

dr. (3.9)

For all three methods, we assume the non-dimensional relaxation function to be a one-term Prony

series of the form

D(t) =
µ∞
µ

+
(

1 −
µ∞
µ

)

e−t/τ , (3.10)

where µ∞ is the long-time shear modulus and τ is the relaxation time. We fit for the pressure

difference pa(t) − pb(t) (note the sign change with respect to equations (2.17) and (3.9) due to the

fact that we are considering a situation in which the internal pressure is greater than the external
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Figure 3. The pressure as a function of time in a murine bladder (red) and predicted via neo-Hookean QLV (green), Fung QLV

(black, solid) and linear viscoelasticity (black, dashed).

pressure) using the three methods described above by using the parameters µ, µ∞, τ and c as

fitting parameters. We assume that the bladder had an initial inner radius of 2 mm and outer

radius of 2.3 mm and that the critical time that marked the cut-off of the filling phase was tc =
155 s. The results of the fitting process are plotted in figure 3. The predicted parameter values and

the mean squared error associated with each fit are reported in the table below. The ability to more

accurately capture the loading phase when using the Fung QLV model leads to a much smaller

mean squared error than in the other two cases.

model µ (mmHg) µ∞ (mmHg) τ (s) c mean squared error (mmHg)2

neo-Hookean QLV 870 190 410 7.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fung QLV 250 72 170 280 1.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

linear viscoelasticity 3300 770 370 7.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Having illustrated that there is merit to the model, let us now consider two canonical problems

in the sections to follow. The nonlinear elastic equivalents of each of the following problems are

classical but the influence of viscoelastic effects has not yet been studied.

4. Inlation and delation of quasilinear viscoelastic balloons with imposed
volumetric strain

We shall now consider a problem whose deformation is also volume controlled, but which is more

canonical in its nature than the specific case of a bladder as described in the previous section. In

particular, this problem has an equivalent well-studied analogy in nonlinear elasticity so that here

we describe the additional effect of viscosity. This problem is the thin-walled limit of the hollow

sphere. This is of interest in many scenarios, including biological membranes [61], and of course is

strongly related to the bladder application considered in the previous section. The problem is also

an extension of the classical elastic balloon inflation problem considered by numerous authors as

described in the Introduction. The problem dictates that finite-deformation (visco)elasticity theory

should be employed, but as discussed in the Introduction, in the purely elastic case with a neo-

Hookean strain energy, the pressure–volume curve is non-monotonic [18] and further the peak

pressure is independent of the shear modulus of the medium. The departure from neo-Hookean

behaviour and the influence of the strain energy function has been studied extensively [4,18,62].
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However, there is a lack of results on the subsequent behaviour when effects beyond elasticity

are incorporated, e.g. viscoelasticity, with an exception associated with the study of Wineman

[42,52], who considered a rather special viscoelastic constitutive law for the large deformation

of a spherical membrane. Wineman [42] derived a necessary condition in order to guarantee the

existence of a limit-point instability. However, in the limit α → 0 of that model, corresponding

to a neo-Hookean material, the medium becomes perfectly hyperelastic, having a peak-pressure

result that is consistent with the standard neo-Hookean universality result [4,18,62].

Let us consider the response in the context of a Mooney–Rivlin strain energy function

W =
µ

2

(

1

2
+ γ

)

(I1 − 3) +
µ

2

(

1

2
− γ

)

(I2 − 3), (4.1)

where γ is a constant in the range −1/2 ≤ γ ≤ 1/2. The quasilinear constitutive law proposed here

however remains viscoelastic regardless of the choice of the parameter γ and therefore we are

able to study the influence of viscoelastic effects on a medium with a strain energy function that

is associated with neo-Hookean behaviour (i.e. when γ = 1/2).

As described in the Introduction, although this balloon inflation problem is canonical and

therefore well studied in the elastic case, viscoelastic effects could potentially play an important

role in, say, the context of the inflation and deflation of intragastric balloons, which represent

one of the most frequently employed medical devices to treat obesity. The efficacy of intragastric

balloons may be influenced by volume control [10–13] and creep, and these processes must

be completely understood in order to better predict inflation/deflation behaviour. Related to

this aim then, the canonical study of the inflation and deflation mechanisms of quasilinear

viscoelastomeric balloons is presented here. By varying the elastic modulus µ∞ and the relaxation

time τ appearing in the relaxation function (3.10), we show the loss of neo-Hookean peak pressure

universality, emphasizing the relevance of the pressure/volume control for materials that exhibit

inelastic effects.

In order to present some specific results employing (2.17) to obtain the pressure difference, let

us set the relaxation function to be the classical one-term Prony series as in (3.10). For convenience

in this canonical problem, let us introduce the following dimensionless quantities:

R̃ =
R

A
, B̃ =

B

A
, α̃ =

α

A3
, ã =

a

A
(4.2)

and

t̃ =
t

τr
, τ̃ =

τ

τr
, µ̃∞ =

µ∞
µ

, ∆p̃ =
(pb − pa)

2µ
, (4.3)

such that 1 < R̃ < B̃ and τr is a reference relaxation time which we set as τr = 1.0s.

Let us fix ∆ = (B̃ − 1) ≪ 1 in order to recover the theory of spherical membranes. To this

extent from now on we set ∆ = 10−6, and we denote the critical stretch at which peak pressure

occurs as ã∗. We consider inflation prescribed by ã = ã(t) with pb = 0, as shown in figure 4a, with

the resulting ∆p̃ − ã curves presented in figure 4b for the cases of neo-Hookean (γ = 1/2) and

Mooney–Rivlin (γ = 1/4, 1/8) strain energy functions and in the case when µ̃∞ = 0.5, τ̃ = 0.1. Also

note here that deflation curves can present a lower local maximum.

For the imposed inflation/deflation cycle depicted in figure 4a we now determine the

pressure–stretch curves for balloons whose instantaneous elastic stress is derived from the neo-

Hookean strain energy function when the non-dimensional relaxation time τ̃ varies with µ̃∞ fixed

(figure 5a) and alternatively when the non-dimensional long-time shear modulus parameter µ̃∞
varies with τ̃ fixed (figure 5c). This clearly illustrates the loss of universality of peak pressure once

viscoelastic effects are taken into account, noting that for a purely elastic, neo-Hookean balloon

this peak pressure occurs at ã∗ = 6
√

7. The right-hand side of figure 5 depicts the respective global

behaviour for the computed critical stretch ã∗ against τ̃ (figure 5b) and µ̃∞ (figure 5d).
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Figure 4. (a) Prescribed inlation/delation curve ã= ã(t). (b) Resulting pressure–stretch curves associated with the

inlation/delation cycle in (a) for the non-dimensional parameter set µ̃∞ = 0.5, τ̃ = 0.1 and for neo-Hookean (γ = 1/2)

and Mooney–Rivlin strain energy functions.
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Figure 5. Predictions of the critical stretch ã∗ associated with peak pressure on the load curve when γ = 1/2 and for an

inlation/delation curve as in igure 4a. (a) Pressure–stretch curve when µ̃∞ = 0.5 and for varying τ̃ . (b) Predictions of ã∗

versus τ̃ as in (a). (c) Pressure–stretch curve when τ̃ = 1 and for varying µ̃∞. (d) Predictions of ã∗ versus µ̃∞ as in (c).

5. Mathematical formulation and numerical scheme for inlation and delation
due to imposed pressure

Let us now move on to the more complicated mathematical problem of imposing pressure and

determining the deformed radii. Initially, we describe the general formulation of the problem

in the context of the Mooney–Rivlin strain energy function (4.1) before focusing the numerical

scheme on the case of a neo-Hookean material.
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(a) Reduction of the governing equation

In the case when the strain energy function is of Mooney–Rivlin type (4.1), the expression for g in

(2.19)1 reduces to

g(R, t) =
(

γ +
1

2

)

µ +
(

1

2
− γ

)

µ
r2(R, t)

R2
. (5.1)

Using this in (2.18) and subsequently in (2.17) and interchanging the order of integration, (2.17)

can be rewritten as

1

2µ
(pb(t) − pa(t)) = J1(α(t)) +

∫ t

0
D

′(t − s)J2(α(s), α(t)) ds, (5.2)

where the functions J1(α(t)) and J2(α(s), α(t)) can be determined explicitly for the Mooney–Rivlin

medium and are stated in appendix A. They take on a particularly simple form for the case of a

neo-Hookean medium γ = 1/2, since then g(R, t) = µ in (5.1) reduces to a constant. Therefore here,

in order to illustrate the method, we focus on the neo-Hookean strain energy function, where

W does not depend on the second invariant I2. The procedure that we describe below can be

modified to incorporate the more general Mooney–Rivlin form, or indeed other strain energy

functions, but this specific, simple case is sufficient to illustrate an array of interesting behaviours.

In the case of a neo-Hookean medium then

J1(α(t)) =
∫B

A

R2

r3(R, t)
f1(R, t) dR (5.3)

and

J2(α(s), α(t)) =
1

3

∫B

A

R2

r3(R, t)
f2(R, s, t) dR (5.4)

and we stress here the dependence on α(s) and α(t), recalling that r3(R, s) = R3 − α(s). It is

straightforward to calculate the term J1(t) explicitly

J1(α(t)) =
1

4

(

5A4 − 4Aα(t)

(A3 − α(t))4/3
−

5B4 − 4Bα(t)

(B3 − α(t))4/3

)

. (5.5)

Recall that a limit of interest is B → ∞, corresponding to a void in an unbounded medium and in

this case (5.5) reduces to

J1(α(t)) =
1

4

(

5A4 − 4Aα(t)

(A3 − α(t))4/3
− 5

)

. (5.6)

The function J2(α(s), α(t)) requires more care as we now describe. Start by defining the new

variable

u =
r3(R, t)

R3
=

R3 − α(t)

R3
= 1 −

α(t)

R3
(5.7)

and so du = (3/R)(1 − u) dR and

R du

3(1 − u)r
=

du

3(1 − u)u1/3
. (5.8)

Therefore,

J2(α(s), α(t)) =
1

3

∫ 1−α(t)/B3

1−α(t)/A3

[

2

u2

(

1 −
(

1 −
α(s)

R3

)2
)

−
(

1 −
(

1 −
α(s)

R3

)−2
)]

du

3(1 − u)u1/3
. (5.9)

Next, letting β = α(s)/α(t) one can show that

−
(

1 −
(

1 −
α(s)

R3

)−2
)

=
2β(1 − u) − β2(1 − u)2

(1 − β(1 − u))2
, (5.10)
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which allows us to write (5.9) in the form

J2(α(s), α(t)) =
1

9

∫ 1−α(t)/B3

1−α(t)/A3

1

u1/3

(

2β(2 − β)

u2
+

2β2

u
+

2β − β2(1 − u)

(1 − β(1 − u))2

)

du. (5.11)

This is integrated to yield the explicit form

J2(α(s), α(t)) =
[

−
β(2 − β)

6u4/3
−

2β2

3u1/3
+

β

9

u2/3

(1 − β)(1 − β + βu)

+
√

3

27

β1/3(4 − 3β)

(1 − β)4/3
arctan

(

2(βu)1/3

√
3(1 − β)1/3

−
1

√
3

)

+
1

54

β1/3(4 − 3β)

(1 − β)4/3
log

(

(1 − β)2/3 − (1 − β)1/3(βu)1/3 + (βu)2/3

((1 − β)1/3 + (βu)1/3)2

)]1−α(t)/B3

1−α(t)/A3

. (5.12)

Two important special cases of J2 are when β = 0 and β = 1. In the former, i.e. when α(s) = 0, we

have J2 = 0, whereas in the latter, when s = t, we get J2(α(t), α(t)) ≡ J1(α(t)). Note furthermore that

(5.11) is continuous at α(t) = 0 and it converges to

J2(α(s), 0) =
α(s)

9

[

4
B3 − A3

A3B3
+

B3 − A3

(A3 − α(s))(B3 − α(s))

+ α(s)
A6 − B6

A6B6
+

1

α(s)
log

(

A3

B3

B3 − α(s)

A3 − α(s)

)]

(5.13)

and also J2(0, 0) = 0. For practical computations, when the strain is imposed the explicit expression

(5.13) is very useful in order to ensure convergence of the scheme (if this is used even in the

simplest strain imposed case).

The above analysis can be extended in a straightforward fashion to the case of a Mooney–

Rivlin medium, which yields the same expression (5.2) but now with alternative forms for J1 and

J2. Both of these are stated in appendix A. The function J2 is evaluated explicitly but only in terms

of a certain hypergeometric series.

(b) Numerical scheme for imposed pressure

Once the relaxation function D, material properties and relaxation times are given, for an imposed

α, (5.2) predicts explicitly the applied pressure difference across the boundaries r = a, b required

in order to maintain the given deformation. By contrast, for an imposed hydrostatic loading, (5.2)

is a nonlinear (space dependent) Volterra integral equation, the solutions of which are non-trivial

to determine. To solve the equation for a given time-dependent pressure difference, we discretize

the integral and then pose the problem in terms of a root-finding scheme for each time step. To

proceed, define the function

R(t) =
1

2µ
(pa(t) − pb(t)) + J1(α(t)) +

∫ t

0
D

′(t − s)J2(α(s), α(t)) ds (5.14)

and we seek values of α(t) such that R(t) = 0. At t = 0, clearly α(0) = 0. At the next time step

t = ∆t ≪ 1, we have

R(∆t) =
1

2µ
(pa(∆t) − pb(∆t)) + J1(α(∆t)) +

∫
∆t

0
D

′(∆t − s)J2(α(s), α(∆t)) ds. (5.15)

Then anticipating what is to come, let Rn =R(n∆t), α(n∆t) = αn and the imposed (scaled) pressure

difference

∆pn =
1

2µ
(pa(n∆t) − pb(n∆t)). (5.16)
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With this (5.15) becomes

R1 = ∆p1 + J1(α1) +
∫

∆t

0
D

′(∆t − s)J2(α(s), α1) ds. (5.17)

Given α0 = 0, we need to determine α1 such that R1 = 0. Use the trapezium approximation to the

integral to yield

R1 = ∆p1 + J1(α1) + 1
2 ∆t(D′(∆t)J2(α0, α1) + D

′(0)J2(α1, α1)), (5.18)

where we have introduced the notation D
′
n =D

′(n∆t).

More generally, keeping track of each αm, m < n we have

Rn = ∆pn + J1(αn) +
1

2
∆t

(

D
′
nJ2(α0, αn) + D

′
0J2(αn, αn) + 2

n−1
∑

m=1

D
′
n−mJ2(αm, αn)

)

. (5.19)

Recalling that α0 = 0, we use the result that J2 = 0 when α(s) = 0 = α0 and also employ (5.5) to find

that

Rn = ∆pn + J1(αn) +
1

2
∆t

(

D
′
0J1(αn) + 2

n−1
∑

m=1

D
′
n−mJ2(αm, αn)

)

. (5.20)

Each successive αn is determined by ensuring that Rn = 0.

Note that this scheme can be employed regardless of the form of the functions J1 and J2 and so

can be implemented in the case of a Mooney–Rivlin strain energy function, or other hyperelastic

materials. Here, however, for the sake of illustration, we describe some specific implementations

for the case of neo-Hookean media, using the expressions for J1 and J2 derived in the previous

subsection above.

6. A parameter study on a hollow thick-walled quasilinear viscoelastic sphere
under pressure

Many physical models, including multiple examples of soft composite materials and biological

soft tissues, particularly hollow viscera, take the approximate form of hollow thick-walled

spheres. Let us first assess the accuracy and convergence of the scheme as we reduce the size

of our time step ∆t.

We shall work once again in terms of the non-dimensional parameters introduced in (4.2) and

(4.3) and, unless otherwise specified, we take µ̃∞ = 0.5, τ̃ = 1, B̃ = 2. Figure 6 depicts the load

and unload history as applied to the hollow sphere. After an initial load, then hold (creep) phase,

followed by unloading, the sample is subjected to cyclic loading of the |sin 2t̃| type frequently

employed to characterize dynamic viscoelastic behaviour. This is also useful for us in order to

test the convergence of the time-step discretization ∆p̃. Predictions of α̃ are given in figure 6b

according to the choice of the discretization ∆t̃. In the case when the stress gradient is not too large,

even the discretization ∆t̃ ∼ 0.50 appears to be in very good agreement with finer discretization

time steps. Indeed, the prediction for ∆t̃ ∼ 0.10 is in agreement with the ∆t̃ ∼ 0.01 predictions

almost everywhere, except the scenarios of very high-rate loading (which are not of interest in the

quasi-static loading case), for example, here when |sin (2t̃)| approaches zero.

When quasi-static loading/unloading is considered, we can conclude that discretization with

∆t̃ ∼ 0.10 is sufficient to guarantee the convergence of the numerical stress–strain predictions

while keeping computational costs relatively low. Next, we analyse predictions for α̃ when the

relaxation time and the thickness of the hollow sphere are varied, according to the three specific

load/unload pressure curves in figures 7a and 8a, 8c, and for which the discretization ∆t̃ ∼ 0.1 will

be considered.

In figure 7, we present results associated with the case when we subject the hollow viscoelastic

thick-walled shell to a loading of the type given in figure 7a. Figure 7b illustrates the subsequent

creep and recovery curves for fixed τ̃ = 1 while varying B̃, whereas figure 7c shows predictions for
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Figure 6. (a) The non-dimensional pressure∆p̃= (pa − pb)/(2µ) as a function of time t̃. (b) Predictions of α̃ for several

choices of time step∆t̃ when the applied pressure is as in (a) with non-dimensional parameters µ̃∞ = 0.5, τ̃ = 1, B̃= 2.
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Figure 7. (a) Plot of the non-dimensional imposed pressure ∆p̃ as a function of time t̃. (b) Predictions of α̃ for the

imposed pressure in (a), with non-dimensional parameters τ̃ = 1, µ̃∞ = 0.5 and varying B̃. (c) Predictions of α̃ for

the imposed pressure in (a), with non-dimensional parameters B̃= 2, µ̃∞ = 0.5 and varying τ̃ . (d) The hysteresis curves

for α̃ against∆p̃ associated in (a), for some illustrative non-dimensional parameter sets as indicated.

a fixed thickness B̃ = 2 while varying τ̃ . In both cases, we take µ̃∞ = 0.5. Note that, for thick shells,

curves converge relatively quickly to the limiting curve predicted for the spherical cavity case

(B̃ → ∞), while figure 7c illustrates that larger relaxation times τ̃ imply slower relaxation rates

and therefore, as expected, it takes more time for the material to fully recover. Finally, figure 7d

illustrates the loading and unloading cycle α̃ versus ∆p̃, indicating the typical hysteresis loops

that arise.

In figure 8, we consider two further specific load/unload curves associated with cyclic

pressure loading and unloading as depicted in figure 8a,c, where the latter is distinguished from

the former by the rest periods between load cycles. In each load/unload figure we illustrate two

different load amplitudes up to ∆p̃ = 1 (red curves) and ∆p̃ = 0.5 (black curves). The respective
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Figure 8. (a) Plot of the non-dimensional imposed pressure∆p̃ as a function of time t̃ for cyclic loading up to two distinct

amplitudes. (b) Predictions of α̃, given the applied pressure cycles in (a) (and associated colours) with non-dimensional

parameters B̃= 2, µ̃∞ = 0.5 and varying τ̃ . (c) Plot of the non-dimensional imposed pressure∆p̃ as a function of time t̃

for cyclic loading with rest periods between cycles. (d) Predictions of α̃, given the applied pressure cycles in (c) (and associated

colours) with non-dimensional parameters B̃= 2, µ̃∞ = 0.5 and varying τ̃ .

predictions for τ̃ = 1, 2 are shown in figure 8b,d where red and black curves refer to the respective

loading curves. In particular, we note that the rest periods allow the material to recover so that

subsequent α̃ cycles are very similar to the initial cycle. This is in contrast to the case where there is

no rest period; in this case, the maximum α̃ value on each subsequent cycle continues to increase

due to viscoelastic creep.

7. Conclusion
The inflation and deflation of a nonlinear viscoelastic thick-walled spherical shell have been

described in the context of incompressible QLV media. This canonical problem has a broad range

of applications but is particularly important in the field of biological systems, including hollow

viscera. The model described was shown to fit experimental data associated with the volumetric

inflation of murine bladders very well for an appropriate strain energy function. Following this,

the thin-walled shell limit, associated with a viscoelastic balloon, was considered, building on

the significant body of work on the canonical, perfectly elastic balloon inflation problem. We

concluded that, in contrast to the elastic balloon scenario, the peak pressure associated with

inflation of a neo-Hookean viscoelastic balloon is not independent of the shear modulus of the

medium.

In the scenario where pressure is imposed, a new formulation of the problem was required. The

governing equation linking the inhomogeneous radial stretch to the imposed pressure difference

is a nonlinear Volterra integral equation in the radial coordinate and time. We developed a

novel numerical technique to solve this governing equation in the context of a viscoelastic

Mooney–Rivlin material and applied it to the case of inflation/deflation of finite-thickness shells,

for a range of pressure difference histories (across the shell wall). The great advantage of the

proposed quasilinear constitutive model (and numerical solution scheme) is that it is extremely
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straightforward to implement, especially as it enables the required integration over the spatial

variable to be accomplished analytically. Hence, it reduced what could be a time-consuming

and complex multiple integration time-stepping exercise to a computationally highly efficient

procedure, thus allowing for a comprehensive and wide-ranging parameter study associated with

inhomogeneous deformations of nonlinear viscoelastic spherical shells.

Of future interest will be a study of the limit point instability for the viscoelastic balloon

problem considered here, which would be an extension of the problem studied by Wineman [42].
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Appendix A. Evaluation of J1(α(t)) and J2(α(s),α(t))
In §5, we determined the functions J1 and J2 for the special case of a neo-Hookean medium. In the

more general case of the Mooney–Rivilin strain energy, (4.1), it can be shown that

J1(α(s), α(t)) =
1

4

(

1

2
+ γ

)

(

5A4 − 4Aα(t)

(A3 − α(t))4/3
−

5B4 − 4Bα(t)

(B3 − α(t))4/3

)

+
(

1

2
− γ

)

(

(B3 − α(t))1/3(B3 − 2α(t))

2B(B3 − α(t))
−

(A3 − α(t))1/3(A3 − 2α(t))

2A(A3 − α(t))

)

, (A 1)

where we note that γ is a constant in the range −1/2 ≤ γ ≤ 1/2. Furthermore,

J2(α(s), α(t)) =
[

(

1

2
+ γ

)

(

−
β(2 − β)

6u4/3
−

2β2

3u1/3
+

β

9

u2/3

(1 − β)(1 − β + βu)

+
√

3

27

β1/3(4 − 3β)

(1 − β)4/3
arctan

(

2(βu)1/3

√
3(1 − β)1/3

−
1

√
3

)

+
1

54

β1/3(4 − 3β)

(1 − β)4/3
log

(

(1 − β)2/3 − (1 − β)1/3(βu)1/3 + (βu)2/3

((1 − β)1/3 + (βu)1/3)2

))

+
(

1

2
− γ

)

β(β(u − 1) + 1)2/3

(

β(5β − 1)u2

(

β(1 − u) − 1

β − 1

)1/3

2F1

(

1

3
,

2

3
;

5

3
;

uβ

β − 1

)

+ u2(2β + 2 − 6β2) + β(7β − 10)u − 2 + 3β − β2

)/

(6u4/3(β(u − 1) + 1))

]1−α(t)/B3

1−α(t)/A3

, (A 2)

http://dx.doi.org/doi:10.17632/33n49wtnn2.1
http://dx.doi.org/doi:10.17632/33n49wtnn2.1
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where we recall that β = α(s)/α(t). The function 2F1(a, b; c; z) can be written as the Gauss

hypergeometric series (see [63] for more details) defined by

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n

(c)n

zn

n!
, (A 3)

where ()n is the Pochhammer symbol defined by (p)n = p(p + 1) · · · (p + n + 1) if n > 0, and (p)n = 1

for n = 0. Note that when uβ/(β − 1) > 1 in (A 2) by extension the following relation can be used:

2F1(a, b; c; z) =
Γ (c)Γ (b − a)

Γ (b)Γ (c − a)
(−z)−a

2F1

(

a, 1 − c + a; 1 − b + a;
1

z

)

+
Γ (c)Γ (a − b)

Γ (a)Γ (c − b)
(−z)−b

2F1

(

b, 1 − c + b; 1 − a + b;
1

z

)

, (A 4)

while Γ (p) is the well-known Gamma function.
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