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ABSTRACT 

The photosynthetic capacity of algae as a primary producer in nature and the relative ease of 

its cultivation on a large scale make it attractive to explore opportunities and develop algal 

technology for simultaneous sequestration of industrial and atmospheric CO2 (to mitigate 

climate change), whilst developing sustainable processes for manufacturing renewable fuels 

alongside biochemicals of value. The development of strategies that maximise algal product 

yield while optimising the CO2 gas supply is needed for the appropriate scale-up of algal 

technology. One of the main targets of this technology is the potential exploitation of flue 

gases, an inexpensive and carbon-rich source. So far, the growth of microalgae has 

predominantly been investigated using relatively low CO2 concentrations that are far from the 

levels offered by flue gas (6-25%), which are more useful for energy generation with 

concomitant development of carbon neutral processes. Here, we tested a series of gas supply 
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strategies to investigate microalgal growth at high CO2 levels with the aim to improve algal 

CO2 fixation and lipid accumulation. Optimal growth of Nannochloropsis salina (a marine 

algae) occurred at 6% CO2, whilst few cells grew under 20% CO2. Excess CO2 resulted in 

medium acidification, pigment reduction, and growth inhibition. However, the fixation 

capacity of CO2 and the production of specific lipids were improved by O2 removal from the 

inlet gas by up to 4.8-fold and 4.4-fold, respectively. These parameters were further improved 

by 72% and 25%, respectively, via a gradual increase in CO2 concentration. Extremely high 

CO2 levels (100%) completely inhibited cell growth, but this effect was reversed when air 

containing atmospheric CO2 levels was introduced in place of 100% CO2. These findings will 

allow for the future development of more effective strategies using algal biotechnology for 

producing biofuel while mitigating carbon emissions. 

Keywords: Gas management; energy; microalgae; CO2; lipid; Nannochloropsis salina. 

    

1. Introduction 

Anthropogenic activities, including the burning of fossil fuels, have greatly contributed to 

global warming and climate change due to the resulting CO2 emissions [1]. It is estimated 

that approximately 33.4 Gt of CO2 are emitted by fossil fuel power plants each year, 

accounting for nearly 40% of the total CO2 emitted into the Earth’s atmosphere [2]. Global 

warming and ocean acidification caused by increasing atmospheric CO2 levels have already 

resulted in a series of changes to marine ecosystems, such as mass coral-bleaching episodes 

in many of the world’s reefs [3]. Carbon capture and storage (CCS) technologies and carbon 

neutral bioenergy have been proposed as counter measures to climate change [4, 5]. Biofuels, 

such as biodiesel and bioethanol, produced from agricultural crops using existing 

technologies, cannot sustainably replace fossil-based fuels. However, microalgae have great 

potential as an alternative feedstock for biofuel production [6]. Microalgae offer a means of 
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fixing CO2 and generating biofuels, such as biodiesel, with the scope for developing 

sustainable processes for biofuel production with minimal recourse to resources. Therefore, 

microalgae are currently regarded as a promising source of third generation biofuels [7].  

 

Algal photosynthesis is responsible for a large proportion (around 50%) of global carbon 

fixation and O2 generation, despite accounting for no more than 1% of photosynthetic 

biomass. Microalgae can theoretically capture up to 9% of the incoming solar energy via 

photosynthesis to produce 280 tons of dry biomass ha−1 year−1, whilst consuming around 513 

tons of CO2 ha−1 year−1 [8]. The efficiency of the conversion of light energy partially depends 

on the species characteristics. Many algae use the C3 pathway for the acquisition of dissolved 

inorganic carbon (DIC: CO2, HCO3
−, and CO3

2−) [9]. However, different species of 

microalgae appear to have different preferences for the carbon species they take up, showing 

differences in the types and abundance of DIC transporters and carbonic anhydrases (CAs). 

For instance, Chlamydomonas reinhardtii prefers to take up CO2 under a majority of 

experimental conditions [10, 11]. Thalassiosira pseudonana prefers CO2, while 

Phaeodactylum tricornutum prefers HCO3
- [12, 13]. The transfer and uptake of different DIC 

species in microalgae primarily depends on the microalgae species and the concentration of 

CO2. Three major strategies, HCO3
− transportation, conversion of HCO3

− into CO2, and the 

direct diffusion of CO2 are known to be employed [14]. Different methods, such as genetic 

engineering and random mutagenesis, have been developed to modify the genes and the 

associated enzymes in order to improve of the rates of growth and CO2 fixation [15]. In 

addition, domestication or adaptive laboratory evolution can also be used as strategies to 

enhance microalgal CO2 fixation, particularly for the fixation of CO2 from CO2-rich flue 

gases [15].  
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Apart from the species-related factors, there are many cultivation-related factors that can 

influence microalgae carbon fixation and product yield. Most studies have focused on the 

nutrients in the medium or other cultivation conditions, such as light, while paying little 

attention to CO2 and/or O2 supply [16, 17]. O2 accumulation in closed systems is a serious 

problem since O2 can be supersaturated to concentrations as high as 400% in these systems 

[18]. These supersaturated O2 concentrations not only inhibit the carboxylase activity of 

Rubisco, but also strengthen photorespiration. Even in those studies with increased CO2, the 

O2 content in the inlet gas was rarely considered. As such, air is widely used to mix with CO2 

to obtain the desired CO2 levels [19]. However, the influence of atmospheric O2 on algal 

growth is insufficiently characterised and often ignored.  

 

Increasing the CO2 concentration can affect both lipid productivity and biodiesel quality. 

Many microalgae, such as Chamydomonas sp. [20] and Nannochloropsis sp. [21], have been 

investigated for their ability to capture CO2 and biofuel simultaneously. Nannochloropsis sp. 

is a yellow green microalgae found in marine habitats that has been found to grow fast and 

accumulate lipids to high levels [19]. Remarkably, in air containing 1% CO2, the maximum 

biomass productivity of Nannochloropsis sp. achieved was 0.9 g L-1 d-1 under high light 

intensity and complete medium, whilst lipid productivity was able to reach up to 0.297 g L-1 

d-1 under high light intensity and low nitrogen levels [19]. It was found that the CO2 levels 

from 2.5 to 10.0% could improve the quality of algal biodiesel to meet the fuel-quality 

standards [22]. This is due to the fact that chain size and saturation were re-balanced towards 

the enhancement of biodiesel ignition and cold-flow properties [22]. Moreover, due to their 

high lipid content, both whole alga and lipid-extracted residues of Nannochloropsis salina 

have been tested in an attempt to produce methane via anaerobic digestion [23]. However, an 

excess of CO2 usually exerts a stress on cells [24]. A previous study by the authors showed 
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that the growth of N. salina could be promoted by increasing the CO2 concentration to 6% (in 

air). However, growth was highly inhibited by a CO2 concentration of over 20% [25].  

The present study aimed to improve our understanding of the influence of CO2 supply at high 

concentrations and that of O2 on N. salina growth for mitigation of CO2 emission and for 

biofuel production,. Despite many reports on microalgal CO2-acclimation/adaptation 

mechanisms under low CO2 conditions, such as CO2-concentrating mechanisms (CCM) for 

growth in air, our knowledge on carbon uptake by microalgae under high CO2 conditions 

remains limited [26]. A better understanding of microalgal growth under high CO2 conditions 

will enable the development of the appropriate strategies for applications in energy 

generation and carbon mitigation.  

 

2. Materials and Methods 

Scheme 1 shows the experimental designs of different gas strategies for CO2 fixation and 

biofuel production by microalgae. The details for each experimental set-up are provided in 

the following sections.  
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Scheme 1. Strategies of gas supply tested in the investigation to study the influence of 

constant CO2 in the feed gas (a); O2 in the feed gas at 20% CO2 (b); incremental CO2 in the 

feed gas (c); and extremely high CO2 (d).  

 

2.1 Microalgal cultivation and growth monitoring  

The phototrophic species of Nannochloropsis salina has been found to grow fast while 

accumulating lipids, making it an ideal candidate for CO2 sequestration, as well as a source 

for alternative biofuel production [27, 28]. This species was cultivated in f/2 medium in 

Erlenmeyer flasks. Three biological replicates were included in each experiment. The 

cultures were exposed to a light intensity of ~70 µE m–2 s–1 by using fluorescent lamps, 

aerated, and incubated at 24 ± 2ºC. The cells were then harvested by centrifugation twice  

(3,000 ×g for 3 min coupled with 8,500 ×g for another 5 min). The resulting supernatant was 

used for DIC measurement. The cell pellets were frozen at –20ºC until further analysis. The 

optical density of cultures at 680 nm (OD680) was measured to monitor the growth curve 

using a UV/Visible spectrophotometer (Ultrospec 2100 Pro, GE Healthcare). The OD680 
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obtained was used to deduce the dry cell weight (DCW) on the basis of the following pre-

calibrated equation, 

 

        y = 0.193x + 0.0078         R2=0.9914       (1) 

 

where y and x are biomass concentration (g L–1) and OD680, respectively. The specific growth 

rate (μ, d–1) was measured as follows, 

 

        𝜇 = ln⁡(𝑊1/𝑊0)∆𝑡       (2) 

 

where W0 and W1 are the initial and end cell density, respectively, and ∆t is the cultivation 

time. The resulting DCW was then used for the determination of the CO2 fixation rate (FCO2, 

g L–1 d–1) according to the following equation, which was derived from the typical molecular 

formula of microalgal biomass, CO0.48H1.83N0.11P0.01 [29]  

 

CO2 fixation rate (Fco2) = 1.88 × biomass productivity (BP)     (3) 

 

Since the final CO2 feeding depends on both the CO2 concentration (%) and the volumetric 

gas flow rate (vvm), the real CO2 loading of the culture (LCO2, L L-1 min-1) was defined as 

follows, 

 

       LCO2 (L L-1 min-1) = CO2 concentration (%) ×volumetric gas flow rate (vvm)      (4) 
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where LCO2 indicates the real volume of pure CO2 loaded per volume culture per minute. To 

determine the effect of CO2 loading on lipid production, LCO2 was used to determine the 

specific lipid production as follows, 

 

     Slip⁡(g⁡min⁡𝐿−1⁡𝑑−1) ⁡= (𝐿2⁡−𝐿1⁡)∆𝑡∙𝐿𝐶𝑂2              (5) 

 

where Slip is the specific lipid production on the basis of CO2 loading, L1 and L2 are the initial 

and end lipid content (g L-1), respectively, and ∆t is the cultivation time (d). In addition, 

dissolved inorganic carbon (DIC) was measured (as detailed below) to obtain an indication of 

the inorganic carbon available to the organism. 

 

The f/2 medium used in the cultivations consisted of (per litre) 33.6 g artificial seawater salts 

(Ultra Marine Synthetica Sea Salt, Waterlife), 75 mg NaNO3, 5.65 mg NaH2PO4·2H2O, 1 ml 

trace elements stock, and 1 ml vitamin mix stock. The trace elemental solution (per litre) 

included 4.16 g Na2EDTA, 3.15 g FeCl3·6H2O, 0.18 g MnCl2·4H2O, 10 mg CoCl2·6H2O, 10 

mg CuSO4·5H2O, 22 mg ZnSO4·7H2O, and 6 mg Na2MoO4·2H2O. The vitamin mix solution 

(per litre) included 100 mg vitamin B1, 0.5 mg vitamin B12, and 0.5 mg biotin.  

 

2.2 Analysis of DIC species 

The speciation of the dissolved inorganic carbon and the determination of its abundance were 

used to estimate the total available inorganic carbon in the culture medium at a given time 

point. To this end, a simplified “back-titration” technique was employed [25]. This method 

was based on the principle that the total carbonates (TCO2) can be derived from carbonic 

alkalinity (CA). Briefly, the sample pH was adjusted to the bicarbonate equilibrium point 

(pHHCO3) and subsequently subjected to two titrations, in tandem. The pH was first titrated to 
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around 3.5 by adding 0.1 M (or 0.5 M) HCl, the amount of which was recorded for 

calculating the total alkalinity (TA). This is followed by bubbling the sample with nitrogen to 

remove CO2, and a second titration to the pHHCO3 with the addition of 0.1 M NaOH (or 0.5 

M). The acid or base equivalent consumed was used to determine the non-carbonate 

alkalinity (NA). The alkalinities of TA and NA were calculated using the following equation, 

 

       A = 106 × CH/OH × VH/OH / mo       (6) 

 

where A is the alkalinity (μmol kg–1), CH/OH (mol L–1), and VH/OH (L) are the concentration 

and volume of acid or base, and mo (kg) is the mass of samples. The difference between TA 

and NA is CA (i.e. TA–NA), which was used to calculate TCO2. The data (TCO2, pH, 

temperature, and salinity) was fed into the CO2SYS program [30] to calculate the 

concentration of individual DIC species.  

 

2.3 Analysis of cellular bio-components 

The biochemical composition of cells, including pigments, carbohydrates, proteins, and 

lipids, was measured using a simultaneous assay [31]. Briefly, the harvested cell pellets were 

ground by glass bead-beating in an alkaline solution using a cell disruptor (DISRUPTOR 

GENIE®, USA). An aliquot of the sample was used for the carbohydrate assay; meanwhile, 

the remaining sample was heated at 100ºC for 30 min. This was followed by cooling the 

mixture to room temperature, after which an aliquot of the saponified sample was taken for 

the protein assay. Another aliquot of the sample was mixed and vortexed with an organic 

solvent (chloroform: methanol, 2:1). After centrifuging this mixture, the lower organic phase 

was used for the total carotenoids and lipid assay, while the supernatant aqueous phase was 
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used for the chlorophyll assay. Alternatively, a single assay of lipids in other cases was 

conducted by using a simplified version of the above method [32].  

 

2.4 Influence of a constant CO2 supply in the feed gas, at different concentrations 

In order to determine the CO2 tolerance and fixation capability of N. salina, the cultures were 

aerated in three constant CO2 concentrations: 0.04% (air), 6%, or 20% (CO2 in air). For 6% 

and 20%, pure CO2 (100%) was mixed with air to obtain the desired CO2 concentration by 

controlling the flow rates using flowmeters. The flow rate of the mixed gas was fixed at a 

volume ratio of 0.5 (vvm) between the gas (L min–1) and the culture (L). The corresponding 

LCO2 was 2 × 10-4, 0.03, and 0.1 L L–1 min–1 for 0.04% (air), 6%, and 20% CO2, respectively. 

The corresponding DICs were also monitored. 

 

2.5 Influence of photorespiration 

Although the O2 concentration in the culture can be reduced to avoid oversaturation by 

sparging a gas, the presence of O2 in the feeding gas has only been studied scarcely. This may 

explain why N. salina hardly grew under 20% CO2 in the presence of O2 (as shown in section 

3.1), as reported in our previous investigation [25]. To determine the influence of O2 on 

photorespiration and C-fixation, CO2 was mixed with either air or pure N2. The flow rates of 

these gases were controlled using flowmeters to obtain a constant concentration of CO2 at 

20% in the supplied gas. The flow rate of the mixed gas was fixed at a volume ratio of 0.5 

(vvm) between the gas (L min–1) and the culture (L), obtaining a constant LCO2 of 0.1 L L–1 

min–1. 

 

2.6 Influence of incremental CO2 levels 
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A high CO2 concentration usually results in the overfeeding of algal cells due to the excess 

CO2 supplied, particularly at the beginning of the cultivation period with dilute biomass, 

leading to growth inhibition [33]. A process of acclimation from a low to a high CO2 levels 

may be used to soften the inhibition. To this end, the cultures were sparged with incremental 

levels of CO2 over time. Pure nitrogen (100%) was mixed with pure CO2 (100%) to obtain the 

desired level of CO2. The low rate of the mixed gas was fixed at a gas to liquid ratio of 0.5 

(vvm), while the CO2 concentration was adjustable during cultivation. Nitrogen was used to 

adjust the CO2 concentration instead of air in order to determine the influence of CO2 and 

exclude the influence of oxygen in the air. 

 

2.7 Influence of 100% CO2 

Although an excess supply of CO2 inhibited the growth of algae, it remains unclear whether 

this inhibition was fatal or temporary. To examine this, the culture was supplied with either 

an extremely high CO2 concentration (100%) or a low concentration of 0.04% (air). At a high 

CO2 concentration, a low flow rate of the gas was controlled within the range of 0.02–0.04 

vvm (LCO2 ranging from 0.02–0.04 L L–1 min–1). The inoculum for this experiment was 

obtained from a culture where the alga was pre-cultured and grew well in 20% CO2 (in the 

absence of O2).  

 

3. Results and Discussion 

3.1 Influence of increased CO2 concentration at a constant gas volumetric flow rate 

To determine the capacity of the algal species to sequester CO2 and produce lipids, the N. 

salina cultures were sparged with a gaseous mixture of air and CO2 at three constant 

volumetric proportions: 0.04% (only air), 6%, and 20% CO2, forming volumetric CO2 

loadings (LCO2) of 2 × 10-4, 0.03, and 0.1 L L–1 min–1, respectively. These experimental 
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conditions have been described in a previous investigation [25], however, the results were re-

interpreted by updating the data with an emphasis on the influence of an increased 

concentration of CO2 on CO2 fixation, pigments, and lipid production. The growth curves and 

variations in pH, pigments, DIC species, and lipids are presented in Fig. 1 and Fig. 2.   

 

The results indicate that the fastest growth was obtained at a CO2 concentration of 6% (Fig 

1a). The maximum specific growth rates for 0.04% (air), 6%, and 20% were 0.26 (± 0.03), 

0.34 (± 0.12), and 0.11 (± 0.03) d–1, respectively (Fig 1c). A further increase in CO2 from 6% 

to 20% significantly inhibited the algal growth (P<0.05, t-test). The average CO2 fixation 

rates during the active growth phase (after the fourth day) for 0.04% (air), 6%, and 20% were 

0.045 (± 0.015), 0.062 (± 0.030), and 0.006 (± 0.004) g L–1 d–1, respectively (Fig 1d). The 

growth rate of N. salina under air conditions was similar to that reported for Nannochloropsis 

sp. [21], however, the optimal growth of the latter was found to be at 15% CO2 with a higher 

growth rate than that of the former at 6%. The initial cell concentration reached 0.17 g L–1 for 

Nannochloropsis sp., whereas it only reached 0.05 g L–1 for N. salina in the present study. 

This may have been the cause for the differences observed between the two species. In 

addition, the volumetric CO2 loading (LCO2) for Nannochloropsis sp. was 0.015 L L–1 min–1 

(15% CO2, 0.1 vvm), only half of the 0.03 L L–1 min–1 (6% CO2, 0.5 vvm) for N. salina in 

this study. With 0.04% (air), an increase in pH was observed (Fig. 1b) due to chemical and 

biochemical reasons. Chemically, the photosynthetic consumption of CO2 pushes the 

equilibrium towards a decrease in [H+], according to the following reaction, 

  

                        (7) 
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The biochemical reason is the light-dependent alkalisation of the medium caused by the 

utilisation of HCO3
–, which may occur either by direct uptake or by the conversion of HCO3

– 

to CO2 and OH– (via the catalysis of carbonic anhydrase) external to the plasmalemma [34]. 

On the contrary, the pH in the medium dropped quickly to around 6.5 and 5.6 at 6% and 20% 

CO2, respectively, due to the increasing build-up of CO2 in the medium that resulted from a 

higher supply of CO2, as compared to its uptake by algae, driving the equilibrium reaction (6) 

forward.  

 

Although pigments are responsible for light harvesting, the pigment curves were not 

completely in accordance with the growth curves. Interestingly, cells growing at 0.04% (air) 

accumulated higher pigments but a lower biomass than at 6% CO2. This is primarily due to 

the carbon deficiency at 0.04% CO2. The pigment production and content (%) at 6% CO2 was 

close to that at 0.04% on the first five days, and then decreased (Fig 1e–h). The decrease in 

the pigment production with the increase in CO2 concentration is likely associated with a 

decrease in the pH. Similar results have been reported, showing that the production of 

chlorophyll a and carotenoids in Dunaliella bardawil and Chlorella ellipsoidea decreased 

with pH reduction in the range of 4–7.5 [35]. This suggests that the pigments at 6% CO2 had 

a higher conversion efficiency of light energy by transferring the excitation energy to fix the 

increasing availability of CO2. At higher CO2 levels (6%), when the dissolved carbon dioxide 

was relatively sufficient, or even in surplus than required for growth of the algae, feedback 

inhibition minimised the build-up in intracellular pigment levels. Therefore, the increased 

growth caused by the increase in CO2 concentration (e.g. from 0.04% to 6%) appears to result 

from the enhancement of the energy conversion efficiency by the pigments. A further 

increase in CO2 concentration, such as up to 20%, would acidify the medium and inhibit the 

pigment production, leading to a lower growth rate.   
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In most studies, DIC speciation and the abundance of carbon species are not reported, and 

only the overall CO2 levels in the supplied gas are given [36]. Monitoring the abundance of 

dissolved inorganic carbon species facilitates our understanding of the effects of different gas 

compositions on algal CO2 fixation and the intracellular carbon flux. The profiles of the DIC 

species and the lipid accumulation are shown in Fig. 2. The total inorganic carbon (TCO2) 

was in line with the corresponding CO2 inlet concentration, which was nearly constant due to 

continuous aeration. This is due to the fact that a DIC equilibrium was reached between the 

gas and the medium. The concentrations of TCO2 for 0.04%, 6%, and 20% CO2 were around 

0.067 (± 0.007), 0.172 (± 0.017), and 0.390 (± 0.015) g L–1 CO2 (e), respectively. Given that 

the fastest CO2 fixation rate of 0.062 g L–1 d–1 was obtained at 6% CO2, these TCO2 would 

require around 1 day, 2.8 days, and 6.3 days to be fixed by N. salina, not accounting for gas 

escape. As such, for large-scale algal farming, the amounts of CO2 captured by the medium 

are not insignificant. It is worth noting that the estimation of the CO2 fixation rate in the 

present study was based on the dry biomass, which depends on the element composition of 

cells and varies with species and growth conditions. Moreover, many algae have been found 

to produce extracellular substances [37], which are not included in the biomass measurement, 

leading to an underestimation of the CO2 fixation.  

 

The concentration of carbonate (CO3
2–) is expected to have a lower influence on the 

accumulation of biomass and lipids since it is not a significant component at 6% and 20% 

CO2. Both CO2 and bicarbonate (HCO3
–) can be utilised through interconversions by carbonic 

anhydrases [34], where the increase in these two species, as happens at 6% CO2 sparging, 

elevates growth. However, the concentrations of these two species were found to be the 

highest at 20% CO2, despite the fact that growth was found to be inhibited at this 
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concentration due to excess carbon and a decreased pH. Apart from the low pH and low 

pigment content, oxidative stress could be another reason for the inhibition of growth [38]. It 

was found that the acidification of the medium and a higher CO2 concentration may promote 

the generation of reactive oxygen species, including H2O2, phenolic compounds, and 

lipoperoxides [38]. However, N. salina is able to induce antioxidant enzymatic activities, 

including that of catalase, ascorbate peroxidase, and peroxiredoxine, to mitigate this oxidative 

stress [38].  

 

The average specific lipid productivities at 0.04%, 6%, and 20% CO2 was around 31.39 (± 

14.80), 0.60 (± 0.15), and 0.018 (± 0.017) g min L-1 d-1, respectively. This suggests that the 

efficiency of CO2 conversion to lipids declined with the increase in CO2 loadings. However, a 

higher lipid content was observed at 6% and 20% CO2 than at 0.04%, indicating that 

increasing the CO2 input can induce lipid accumulation. Lipids and carbohydrates are both 

energy and carbon reserves, however, the former has a higher energy density than the latter 

(38 kJ g–1 for lipids compared to 17 kJ g–1 for carbohydrates) [36]. From this perspective, an 

increase in CO2 concentration would increase not only the CO2 fixation but also the 

efficiency of the conversion and storage of light energy. 
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Fig. 1. Effects of different air/CO2 mixtures (air, 6%, 20% CO2) at a constant gas flow rate on 

the growth (a), pH (b), average specific growth rate during active growth (c), maximum CO2 

fixation rate (d) and pigment levels (e-h) in N.salina cultivation. Mean of three biological 

replicates are plotted with error bars representing standard error about the mean. Ca: 



 

17 

 

Chlorophyll a; Ct: total carotenoids; Ca%, Ct% are the corresponding mass content on the 

basis of DCW. 

 

 

Fig. 2. Effects of different air/CO2 mixtures (air, 6%, 20% CO2) at a constant gas flow rate on 

the medium DIC species and lipids production in N.salina cultivations. Mean of three 

biological replicates are plotted with error bars representing standard error about the mean. 
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3.2 Influence of photorespiration 

Oxygen present in the inlet gas can be a potential factor limiting cell growth [39]. This is 

related to the process of photorespiration, which involves the consumption of fixed carbon 

and has been regarded as a waste route during photosynthesis. To determine the influence of 

oxygen in the feeding gas at 20% CO2, the N. salina culture was supplied alternately with or 

without oxygen. For the oxygen free condition, nitrogen was used in place of air in the 

mixture with 100% CO2 to obtain a CO2 concentration of 20%.  

  

The growth curves and lipid production are displayed in Fig. 3. It can be clearly seen that the 

cells were able to grow at 20% CO2 devoid of oxygen (Fig. 3a). However, once the feeding 

gas was switched to 20% CO2 in air, the growth rate was inhibited immediately, even 

becoming negative at times. When the gas was turned back to 20% CO2 in nitrogen, the 

growth rate was recovered. The average specific growth rates in the presence of O2 and N2 

were 0.012 (± 0.025) and 0.077 (± 0.018) d–1, whilst the average CO2 fixation rates were 

0.005 (± 0.009) and 0.029 (± 0.004) g L–1 d–1, respectively. The two-tail t-test showed 

significant differences between these two scenarios for both specific growth rates and the 

CO2 fixation rate. Therefore, the capacity of CO2 fixation was enhanced by 4.8-fold after the 

removal of O2. The average specific lipid productivities in the presence of O2 and N2 was 

0.02 (± 0.025) and 0.088 (± 0.034) g min L-1 d-1, respectively, indicating an increase of 4.4-

fold in the CO2 conversion efficiency to lipids after the removal of O2. Furthermore, it was 

observed that the removal of O2 also improved the lipid percentage by 32.7% (Fig. 3b) 

compared to 30% (Fig. 2h) of the maximum lipid with 20% CO2 in air. There appears to be a 

lag in the response of lipids (% content) in the first few days compared to the biomass.  
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Fig. 3. Influence of oxygen in 20% CO2 in the presence of oxygen (mixed with air (O2)), and 

the absence of oxygen (mixed with nitrogen (N2)), on the growth/lipid production (a), lipid 

content (%) (b), average specific growth rate and CO2 fixation rate (c) of N. salina.  

 

This experiment shows that oxygen is indeed a limiting factor for the growth of algae. As 

such, the flue gases can be expected to be an ideal CO2-enriched source since most of the 

oxygen has been consumed for combustion. Without oxygen (or its presence in only trace 

amounts), N. salina is able to grow at a CO2 level as high as 20% and can be expected to 

sequester CO2 from exhaust gases. The increased ratio of CO2/O2 should help promote the 

carboxylase activity of Rubisco and inhibit its oxygenase activity, leading to suppressed 

photorespiration and enhanced net photosynthesis [40]. Moreover, the presence of CO2 in the 

feed gas seems to be required to suppress photorespiration, since enhanced photorespiration 

has been observed only when N2 was supplied. This has been noted with two marine 

microalgae, Tetraselmis gracilis and Phaeodactylum tricornutum, which were aerated with 

only N2 and without CO2, showing a higher photorespiratory flux than that in the cultures 

aerated with atmospheric air [41]. This is due to the fact that, under N2 supply without CO2, 

O2 derived from photosynthesis can activate Rubisco oxygenase activity for photorespiration 

[41]. This is a noteworthy point since, in addition to expelling photosynthetically derived O2 

out of the algal culture, sufficient carbon supplementation is essential. The present study 
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shows that a high CO2 concentration (20%) with a medium O2 concentration (16.76%, i.e. 

20.95% × 80%) inhibited the growth of algae. Another scenario is that of a high O2 

concentration with a medium CO2 concentration. It was found that when the O2 increased to 

84%, an increase of CO2 from 0.7% to 2% did not exhibit any positive effects on the growth 

of the algae [42]. The inhibitory effect resulting from an increased O2 was primarily caused 

by photorespiration. This is perhaps indicative of the role of pH, when at high CO2 

concentration, such as at 20% CO2, the pH of the medium drops to 5.5 (Fig. 1). At these pH 

levels, the absence of dissolved O2 in the medium (e.g. when 20% CO2 in nitrogen is 

supplied) plays a part in facilitating carbon uptake.  

 

3.3 Influence of incremental CO2 levels  

The above experiment shows that the growth of N. salina was highly inhibited at 20% CO2 

when oxygen is present, the removal of which could enhance growth as well as lipid 

accumulation. Another strategy exists that may be able to further improve the growth of N. 

salina under a high CO2 concentration, i.e. a gradual increase in CO2 levels. To this end, the 

cells of N. salina were grown initially at 0.04% (air) during lag phase, followed by the supply 

of 6% CO2 in nitrogen, 20% CO2 in nitrogen, and 30% CO2 in nitrogen, in tandem (Fig. 4). 

The fastest growth rate was obtained at 6% CO2. At 20% CO2, the growth rate remained 

similar to that at 6%, with only a slight decrease. The growth then plateaued when the CO2 

level was increased to 30%, indicating that growth was limited by the stress induced by a 

high CO2 concentration. Equilibrium appeared to have been reached at the level between the 

oxidative stress and the antioxidant protection. The specific growth rates at 0.04% (air), 6%, 

and 20% CO2 were 0.316 (± 0.082), 0.532 (± 0.101), and 0.173 (± 0.070) d–1, respectively. 

The maximal CO2 fixation rate was 0.079 (± 0.012) g L–1 d–1 with 6% CO2. In contrast, the 

average CO2 fixation rate with 20% CO2 in nitrogen was 0.050 (± 0.016) g L–1 d–1, which was 
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72% higher than that with constant 20% CO2 in nitrogen (0.029 (± 0.005) g L–1 d–1), and was 

733% higher than at constant 20% CO2 in air (0.006 (± 0.004) g L–1 d–1). The specific lipid 

productivity at 20% CO2 by this incremental method was found to be around 0.11 g min L-1 d-

1, which was 125% higher than that at constant 20% CO2 in nitrogen (0.088 g min L-1 d-1), 

resulting in an overall increase of 5.5-fold compared to 20% CO2 in air (0.02 g min L-1 d-1). 

Both the amount and content of lipids (%) increased during 6% and 20% CO2 aeration, but 

decreased when the gas supply was switched to 30% CO2 in nitrogen. The extremely high 

concentration of CO2 had a negative effect on both lipid production and the biomass. 

 

While the effect of CO2 concentration on microalgal growth has been widely studied, most of 

these studies have employed continuous or intermittent sparging at fixed CO2 levels in the 

cultivations. For instance, N. oculata NCTU-3 was found to produce the maximal biomass 

and lipid productivity in a semi-continuous system with 2% CO2 aeration [43]. The maximum 

rate of CO2 fixation by Chlorella vulgaris P12 reached up to 2.22 g L-1 d-1 with 6.5% CO2 at 

a flow rate of 0.5 vvm (i.e. 0.033 L L–1 min–1 of LCO2) after seven days of cultivation at 30°C 

[44]. On the basis of the optimum CO2, an increase in CO2 levels causes stress to the cells 

and limits their growth rate. This is due to the fact that the algal cells do not require much 

CO2, especially at the beginning of the cultivation period when the cell numbers are low. 

Nevertheless, their need for CO2 increases over time as biomass accumulates. The present 

study is in agreement with a report [45] that indicated that the tolerance and fixation capacity 

of CO2 for Chlorella vulgaris UTEX259 was enhanced by a progressive increase in CO2 

concentration. Therefore, in practice, it is recommended that the inlet flow rate of CO2-

enriched gas increase incrementally over time to obtain varying levels of CO2 at different 

stages. This allows the cells to gradually acclimate to the high levels of CO2 and meet their 

increasing demand for CO2 caused by an increased cell density. 
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In fact, phototrophic microalgae have developed special mechanisms to acclimate and adapt 

to variations in both O2 and CO2. Although many reports have been published on CO2-

acclimation/adaptation mechanisms under limited CO2 conditions, such as CO2-concentrating 

mechanisms (CCM), our knowledge of these mechanisms under high CO2 conditions is 

limited [26]. Even in reports using high CO2 conditions, the focus has been mainly on lipid 

biosynthesis for biofuel production, as well as on how to obtain an optimal productivity [46], 

rather than on the underlying mechanisms of the algal species’ behaviour or on CO2 uptake. 

The microalgae that show high-CO2-acclimation/adaptation, such as Synura petersenii, 

Synura uvella, and Tessellaria volvocina, are usually also acclimated to low pH environments 

where they are isolated and where only CO2 is predominant as a substrate for photosynthesis 

[47]. These species appear to lack CCM, as no external carbonic anhydrase on the cell 

surface is detected and no bicarbonate uptake ability is known. However, they have the high 

CO2-affinity of Rubisco and are able to maintain pH homeostasis [48]. It is worth pointing 

out that CO2 enrichment is not always conducive to increased algal growth, as for those fully 

low-CO2-acclimated species, CCM can be induced to enable growth with a near-maximum 

growth rate under air-CO2 levels [49]. However, growth can still be considerably enhanced 

when the cell density is high due to their increased requirements for CO2 availability [26], 

indicating that a progressive increase in CO2 with respect to cultivation time provides a useful 

strategy for photosynthetic species to avoid carbon deficiency regardless of low- or high- 

CO2-acclimated microalgae.  
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Fig. 4. Effect of gradual increase in CO2 concentration from air to 30% CO2 in nitrogen on 

the growth (a), lipid production/content (%) (b), specific growth rate (c) and CO2 fixation rate 

(d) in N.salina cultivation. Mean of biological triplicates are plotted with standard error about 

the mean as error bars.  

 

3.4 Influence of 100% CO2 feed 

The tolerance and fixation capacity of CO2 can be improved by controlling the gas supply, 

such as O2 removal, and appropriate acclimation. However, an extremely high CO2 

concentration can be destructive to the cells. To investigate this, the culture was exposed to 

100% CO2. The resultant growth and pH curves are shown in Fig. 5. Since the CO2 

concentration was too high, the flow rate of CO2 was controlled at a low level to reach a low 

volumetric ratio of gas over liquid. As can be seen from the results, the cells only grew on the 

first day at 10 mL min–1 of gas flow rate (i.e. 0.04 L L–1 min–1 of LCO2), perhaps due to the 
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pre-cultivation at 20% CO2 enabling them only a limited acclimatization to the high CO2 

levels. On the second day, the harmful effects of extreme CO2 levels started to be show as the 

specific growth rate became negative (–0.183 d–1). A decrease in the flow rate of CO2 to 6 

mL min–1 (i.e. 0.024 L L–1 min–1 of LCO2) slowed the decrease in growth, indicating that the 

stress was relieved slightly.  

 

 

Fig. 5. Effect of 100% CO2 on the growth and medium pH of N.salina.  

 

When the feeding gas was switched to air (0.04% CO2), a rise in the growth was observed as 

the stress was removed. This indicates that the inhibitory effect of 100% CO2 was not fatal to 

all the cells during the first four days, although a few cells may have died. An aeration period 

of around three days was followed by a switch to 100% CO2, which significantly inhibited 

the growth of the cells again, although the gas flow rate was reduced to 5 mL min–1 (i.e. 0.02 

L L–1 min–1 of LCO2), even lower than the optimal CO2 concentration of 6%, as shown in 

section 3.1 (0.03 L L–1 min–1 of LCO2). This indicates that the inhibition of growth is caused 

not only by the high CO2 loading, but also by the high percentage of CO2 (and the resultant 

change in pH). Significant variations in pH were observed during the alternation of CO2 and 

air. When using air (0.04% CO2), the pH increased from 4.5 to over 9, with an increase in 

biomass. At 100% CO2, the pH dropped down to as low as 3.5. This low pH was in favour of 
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the dissolved inorganic carbon existing in the primary form of aqueous CO2 and should have 

prevented cells from producing pigments for a light harvest.  

The extremely high CO2 concentration of 100% inhibited the growth of cells, resulting in a 

decreased biomass despite a low volumetric ratio. However, this did not kill all the cells, and 

the growth of cells was recovered by decreasing the CO2 concentration to relieve stress. The 

adverse effect of a high CO2 content on algal growth has been observed in most of the species 

studied [50, 51]. However, fewer studies have reported algal growth at 100% CO2. Very few 

strains are able to survive at such extreme levels of CO2. Chlorella sp. T-l [52] and 

Desmodemus sp. [53] are two strains that have been shown to grow at 100% CO2. As 

reported in the present work, although the growth of Scenedesmus was completely inhibited 

at 100% CO2, this effect was reversed (i.e. growth resumed) when the concentration of CO2 

was returned to 20% [54]. Apart from a low pH, a low pigment content, and oxidative stress, 

it was found that intracellular acidification caused by intracellular CA is another major reason 

for the inhibition of photosynthetic carbon fixation when the algae was exposed to an excess 

concentration of CO2 [48]. Experimenting at 100% CO2 enables us to develop a better 

understanding of microalgal CO2 uptake, as well as assess the suitability of using microalgal 

cultivations for the sequestering of relatively concentrated sources of pure CO2, such as from 

ethanol fermentation.   

When the cells were transferred from low- to high-CO2 conditions, the extracellular CA was 

found to decrease during acclimation to high-CO2 conditions [55]. The loss of CA and active 

DIC transport systems are strategies employed by algae to avoid the secondary inhibitory 

effects caused by excess DIC accumulation. However, extracellular 43 kDa protein/Fe-

assimilation 1 (H43/FEA1) can be induced under high-CO2 conditions [56]. This protein acts 

as a substitute of CA for sensing the CO2 signal and is the most abundant extracellular 
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soluble protein (ESP), taking up around 26% of the total ESPs in cells grown under high CO2 

conditions [57]. Moreover, the protein can also be expressed in response to other stressful 

conditions, such as iron-deficiency and Cd-stress conditions, caused by fast growth under 

high CO2 conditions [26]. 

This study investigated different gas management strategies aimed at enhancing CO2 fixation 

and lipid production by algae. Our findings provide a basis for the usage of flue gases as a 

rich carbon source for biofuel production with concomitant CO2 mitigation in future studies. 

Firstly, the growth of the algae was enhanced by the cheap and abundant CO2 in the flue 

gases. Secondly, after combustion, the flue gases only contain residual O2 (usually between 

0.04-6%), which is significantly lower than the O2 concentration (16.76%) in the gas 

mixtures that contain 20% CO2 and 80% air (section 3.1). As such, photorespiration was 

inhibited to an extent when using flue gases. Thirdly, the biggest problem was the content of 

other gases in the flue gas, including SOx and NOx, which may be toxic to algae. However, 

this toxicity was primarily attributed to the change in the pH and was alleviated by 

moderating the pH without a need to pre-treat the algae for these contaminants [58, 59]. 

Moreover, the algae can be pre-cultured in the flue gases (for example, by gradually the 

increasing CO2 load) in order to acclimatise the algae and absorb the contents of the flue gas, 

including CO2. SOx and NOx may in fact act as sources of sulphur (S) and nitrogen (N), the 

latter being an essential nutrient, whose availability in the flue gases will allow for resource 

recovery options. Fourthly, a mixture of the flue gas with air or another gas resource can 

reduce the overall toxicity, however, this should be used with caution in order to limit the 

intensity of the O2 input, unless the content of NO is high, which can be oxidised by O2 to 

form NO2
–. This is in turn assimilated by the algae, resulting in the detoxification of NO and 

the promotion of growth [60]. Finally, although the heavy metals may also be present in the 

flue gas due to the evaporation of the fossil fuels (e.g. coal) after combustion at high 
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temperatures, the microalgal biomass exhibits high metal-binding capacities for the removal 

of heavy metals, which would not be a major issue in the biomass if the microalgal biomass is 

to be used for the generation of biofuels [61].   

 

4. Conclusion 

This study offers strategies to cultivate algae for the production of biofuels under high CO2 

regimes, such as flue gases, in order to generate energy concomitantly with a reduction in 

CO2 in real life applications. With a constant CO2 concentration supplied via the inlet gas, the 

optimal CO2 concentration for algal growth was generally found to be moderate (6% CO2 for 

N. salina, i.e. 0.03 L L–1 min–1 of LCO2). However, the growth and production of lipids was 

found to be enhanced by the removal of oxygen from the inlet gas, limiting photorespiration, 

which augurs favourably for the use of flue gases from combustion sources with low oxygen 

levels and a high CO2/O2 ratio. With gradual increases in the CO2 concentration in the supply 

gas, the tolerance of algae to CO2
 was further elevated (up to 20% CO2 in this study, i.e. 0.1 L 

L–1 min–1 of LCO2). The increased CO2 concentration did not induce pigment production, 

although it caused lipid accumulation. The present work is the first to identify gas supply 

strategies for a marine species of algae to facilitate the application of high CO2 regimes, such 

as those encountered in flue gases, for the production of biofuels, whilst concomitantly 

facilitating CO2 removal. The findings presented here provide a basis for the production of 

biofuels using other algal species in future studies. 
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