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Correction of higher mode Pochhammer–Chree dispersion in experimental1

blast loading measurements2
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3
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Abstract5

Experimental measurements of blast loading using Hopkinson pressure bars are affected by dispersion which6

can result in the loss or distortion of important high-frequency features. Blast waves typically excite multiple7

modes of propagation in the bar, and full correction of dispersive effects is not currently possible as the magnitude8

of stress propagating in each mode is not known. In this paper we develop an algorithm for multiple mode dis-9

persion correction based on rigorous interrogation of the results from a series of finite element analyses. First, a10

finite element model is validated against first-mode and higher-mode theory. The dispersion of short raised-cosine11

windowed pulses is then used to isolate the contribution of each propagating mode, enabling a relationship be-12

tween frequency and modal apportioning of stress to be obtained for the first four propagating modes. Finally,13

four-mode dispersion correction is successfully applied to an experimental signal using an algorithm based on the14

derived relationships for modal apportioning. The four-mode results show significant improvement in the capture15

of high-frequency features over existing first-mode corrections, and demonstrate the potential of this method for16

the full correction of dispersion in experimental measurements of blast loading.17

Keywords: Dispersion correction, Hopkinson pressure bar, Multiple mode, Pochhammer-Chree, LS-DYNA18

1. Introduction19

The provision of adequate blast protection systems is dependent on our ability to accurately quantify the loading20

arising from detonation of a high explosive. Blast events present a considerable challenge to the experimentalist:21

measurement devices should be robust enough to withstand pressures in the range of 10s–100s MPa, whilst being22

sufficiently sensitive and fast-acting to resolve temporal features in the kHz–MHz range.23

The Hopkinson pressure bar [1], or HPB, is commonly used as a dynamic force transducer in investigations of24

the loading from explosive events, as it combines the durability and sensitivity required to record the high-pressure25
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transient features inherent in blast and shock waves [2–11]. In a HPB, a stress wave applied to one end of the26

bar propagates down its length, and is recorded by strain gauges fixed to the bar surface some distance away. The27

wave equations derived by Pochhammer [12] and Chree [13] indicate that each frequency component of a stress28

wave will propagate at a velocity dependent on the frequency of that component. Thus, a signal will disperse as it29

propagates from the loaded face of the pressure bar to the strain gauge.30

Dispersion of a stress wave is of particular concern in the measurement of explosive events, as it can result in31

the distortion or loss of important high-frequency features, impeding accurate quantification of the loading [14].32

Dispersion of the stress wave is also accompanied by a frequency-dependent variation in stress across the bar33

cross-section, and so a signal recorded on the bar surface may not be representative of the mean stress in the bar34

[15–17].35

The Pochhammer–Chree equations have an infinite number of roots corresponding to different modes of prop-36

agation, so that a high-frequency component may propagate in more than one mode, each with its own phase and37

group velocities (Figure 1). The transmission of energy in the bar occurs at the group velocity, cg, while individual38

wave features, such as a particular crest, propagate at the phase velocity, cp. While the phase velocity in the higher39

modes often exceeds c0 (Figure 1a), the energy associated with these waves will always propagate in the bar at40

velocities below c0 (Figure 1b).41

When only the first mode of propagation is excited, the frequency domain dispersion correction method de-42

veloped by Gorham [18] and Follansbee and Frantz [19] can be used. In this method, the fast Fourier transform43

(FFT) of a signal is taken, the phase angle of each frequency component is adjusted according to the phase velocity44

derived from the Pochhammer–Chree equations, and an inverse FFT returns the signal to the time domain. Tyas45

and Watson [20] extended this method to account for the variation of stress across the bar cross-section by ap-46

plying additional corrections to the amplitude of each frequency component, an approach which was later verified47

experimentally by Tyas and Pope [21].48

Above the cutoff frequency for the second mode of propagation, at least two modes will propagate at any49

given frequency, and each mode will propagate with a distinct velocity and amplitude. In signals which contain50

significant high frequency content, such as blast and shock waves, the magnitude of each frequency component51

therefore represents the sum of the stresses propagating in each mode at that frequency. If the portion of the52

total stress assigned to each mode is known, the amplitude of each frequency component can be divided amongst53
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Figure 1: Variation of a) phase velocity, cp, and b) group velocity, cg, with frequency for the first four modes of wave propagation in a cylindrical

bar (ν = 0.3).

the propagating modes, and then each mode individually corrected for dispersion according to its phase velocity.54

However, this modal apportioning relationship is not provided by the Pochhammer–Chree curves, and so has been55

a topic of research for many years.56

Gregory and Gladwell [22] analysed the Pochhammer–Chree equations with an integral formulation of least57

squares to determine the proportion of a sinusoidal wave propagating in each mode at normalised frequencies58

up to f a/c0 ≈ 0.40, where f is frequency, a is the radius of the bar and c0 is the one-dimensional wave speed.59

Puckett [23] used this approach to develop an analytical model for wave propagation in cylindrical bars, although60

comparisons with experimental signals showed that the analytical model could not accurately predict dispersion61

for wavelengths exceeding the bar diameter, i.e. when higher dispersion modes were excited.62

Lee et al. [24, 25] used experimental pressure data with a Gaussian-windowed Fourier transform to estimate63

the time of arrival and relative power of each frequency component in a blast wave. The results suggested that64

at a given frequency the mode with the highest group velocity carried the majority of the signal energy. This led65

to the development of dispersion curves based on the simplification that the entire magnitude of each frequency66

component only propagates in the mode with the highest group velocity. However, Husemeyer [26] performed67

multiple-mode dispersion simulations which showed that the contribution of the remaining propagating modes is68

not sufficiently small to enable them to be neglected in this manner.69
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Despite a number of previous studies investigating multi-mode dispersion correction, there is no consensus70

and no proven method to estimate the magnitude of a given frequency component propagating in a given mode,71

other than for frequencies where only one mode propagates. No researchers to date have successfully isolated72

each mode of propagation, and the contribution of each mode to a reconstructed (dispersion corrected) pressure73

signal has yet to be demonstrated. The safe, economical design of blast-resistant structures, the investigation of74

explosive phenomena at small scaled distances, and the rigorous validation of numerical modelling approaches all75

depend on the development of reliable methods for the correction of higher-mode dispersive effects in experimental76

measurements of blast loading.77

This paper presents a new method for correcting for dispersion in the first four modes of propagation. First,78

a finite element model is validated against theoretical predictions of the cross-sectional distribution of stress for79

single and multiple-mode propagation in a cylindrical bar. The finite element model is then used to derive ‘modal80

apportioning factors’ by propagating a windowed single-frequency signal down a HPB and recording amplitudes81

some distance down the bar, after the signal has separated into distinct modes. Finally, we present modifications to82

the Tyas and Watson [20] phase angle correction method to account for higher modes, and we present an example83

of higher-mode dispersion correction of an experimental signal. The contribution of each of the first four modes is84

calculated up to f a/c0 = 0.90, enabling the correction of multiple-mode dispersion in experimental recordings of85

the loading from explosive events.86

2. Finite element model validation87

2.1. Initial considerations88

The Pochhammer–Chree equations arise from the application of traction-free boundary conditions to the wave89

equation,90

∂2u

∂t2
= c2
∇

2u. (1)

In a finite element (FE) model of a cylindrical pressure bar, wave propagation is described by this same equation,91

and so complex phenomena such as multiple-mode propagation, dispersion and cross-sectional variations in stress92

should arise as predicted by the analytical methods. Finite element methods can therefore be particularly useful93

for investigating phenomena where the governing relationships are intractable, as in the case of modal stress94

apportioning.95
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Results can be obtained over the whole volume and time of interest, as the discretisation allows, however there96

are known limitations of the FE method which should be considered. The Pochhammer–Chree equations were97

derived for the case of an infinitely-long pressure bar subjected to an infinitely-long sinusoidal axial disturbance.98

While it is only possible to model an approximation of an infinitely-long pressure bar, the errors introduced by99

deviating from a true infinite bar can be minimised by windowing the forcing functions to reduce the inertial100

effects1 introduced by the sudden application of stress at a free face [20, 26], or by enforcing zero displacement101

boundary conditions for a small length of bar equal to the wavelength of the forcing function [28].102

Representation of mass in either a lumped or consistent matrix will give rise to spurious oscillations [29],103

and the central-differencing explicit time-stepping algorithm used in most finite element solvers will give rise to104

oscillations that are indistinguishable from Pochhammer–Chree dispersion [28]. The results from a finite element105

model may therefore begin to diverge from theory, particularly when considering cumulative numerical losses106

associated with propagating higher frequencies (relative to mesh size) over long distances. However, these errors107

can be minimized by using smaller, uniformly-sized elements and a time-step that is close to the critical time-step,108

given as the smallest element length divided by the one-dimensional wave speed.109

To ensure that the modal apportioning of stress is accurately calculated by finite element methods, this section110

first compares the dispersion and radial distribution of stress modelled in LS-DYNA with the theoretical relation-111

ships, for both single and multiple mode propagation. The distribution of stress between the propagating modes112

is a result of the same wave equation responsible for these effects, and so accuracy in these behaviours is a good113

indicator that modal apportioning is also well captured.114

2.2. Propagation in the first mode115

Simulations were first compared to the Pochhammer–Chree relationships for situations where the forcing fre-116

quency was below the Mode 2 cutoff frequency ( f a/c0 ≈ 0.35), where it is known that only the first mode will117

propagate. A cylindrical steel pressure bar was modelled in LS-DYNA [30] with volume-weighted axi-symmetric118

shell elements and the *MAT ELASTIC material model, using the parameters in Table 1 which were informed by119

previous mesh sensitivity studies [31, 32]. The dispersion of continuous sinusoidal waves of unit amplitude was120

1When a pulse is applied suddenly to the end of a HPB the majority of the energy propagates axially along the bar. However, a small fraction

of the energy remains at the loaded end of the bar in a very narrow frequency band. The energy of this resonant mode gradually leaks into the

HPB as a normal propagating mode, known as an ‘evanescent mode’ [27].
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First mode Higher modes

Element length, mm 0.2 0.4

Bar radius, mm 5 10

Bar length, m 3 10

(a)

Parameter Value

Young’s modulus, GPa 210

Density, Mg/m3 7.850

Poisson’s ratio 0.3

(b)

Table 1: a) Mesh geometry and b) LS-DYNA Elastic material model parameters used for analysis of first and higher mode propagation.
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Figure 2: a) Sinusoidal forcing function with half raised-cosine window and b) stress measured on the bar axis 500 mm and 550 mm from the

free end, for f a/c0 = 0.02.

then assessed by modelling forcing functions at normalised frequencies up to 0.34 and comparing the resultant121

phase velocities and cross-sectional variations of stress with those predicted by Pochhammer–Chree theory.122

In each case, a sinusoid of unit amplitude was applied to the end of the bar for the entire 1 ms duration of123

the analysis, representing an infinite duration pulse, with the addition of a 0.3 ms raised-cosine window applied124

at the beginning of the wave to reduce the inertial effects as discussed above. To ensure that any further inertial125

effects associated with the head of the applied pulse did not influence the results, results from the early stages of126

the analysis were omitted. Only the latter stages of the output signals were considered, defined as the region over127

which the stress response has constant peak amplitude.128
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Figure 3: Relationship of phase velocity and frequency for Mode 1: comparison of Pochhammer–Chree theory and FE-modelled pressure bar.

Examples of the forcing function and the stress measured on the bar axis 500 mm and 550 mm from the end129

are shown in Figure 2. Stresses were calculated by converting the axial component of nodal velocity (v) into axial130

stress (σ) using the expression ∆σ = ρc0∆v. Phase velocity was calculated from these measurements by assessing131

the change in phase angle that occurred between the two measurement locations. Phase velocities for normalised132

frequencies up to 0.34 are shown in Figure 3, where it can be seen that the numerical results closely match the133

relationship derived by Davies [15] through manipulation of the Pochhammer–Chree equations.134

The distribution of stress across the bar cross-section was investigated in a similar manner for a number of135

normalised frequencies between 0.09 and 0.34 by recording the stress at various radial ordinates between the bar136

axis and surface at a location 500 mm from the end of the bar. The measured stresses were normalised against the137

stress at the bar axis. The results are shown in Figure 4, where again it can be seen that the model is in very good138

agreement with the Davies [15] theoretical values at each normalised frequency.139

2.3. Propagation in higher modes140

In order to investigate wave propagation in higher modes, the radius and length of the pressure bar were141

increased (Table 1). This allowed lower velocity frequency components to reach the monitoring location without142

any reflected waves arriving from the distal end of the bar and corrupting the results. Thus, the assumption of an143

infinite-length bar was maintained. A full raised-cosine window was applied to a sinusoid of the required frequency144

to produce a pulse of 0.2 ms length, as shown in Figure 5a. The wave envelope created by the windowing function145
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Figure 4: Spatial distribution of stress over the bar cross-section for Mode 1: comparison of Davies’ analysis [15] and FE-modelled pressure

bar.
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Figure 5: a) Raised-cosine windowed sinusoidal forcing function, and stresses measured after 6.0 m propagation on the bar b) surface and c)

axis, for f a/c0 = 0.52.
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Figure 6: Spatial distribution of stress over the bar cross-section for Modes 1–3 at f a/c0 = 0.52: comparison of Davies’ analysis [15] and

FE-modelled pressure bar.

propagates in the bar at the group velocity, and so, as each mode propagates at its own group velocity, a single-146

frequency input pulse will disperse and eventually separate into several distinct pulses, equal to the number of147

modes present. This effect is shown in Figures 5b and 5c for a sinusoid with a normalised frequency of 0.52, where148

the signal propagates in Modes 1–3. As a finite-duration input signal was used, at a point 6 m down the bar three149

separate modes can be clearly distinguished and identified using measurements of group velocity. From this, the150

relative amplitude of the pulses can be calculated.151

The stress propagating in each mode at a particular radial ordinate was taken as the peak value of each distinct152

modal pulse, and by recording at a variety of radial ordinates, the distribution of stress over the bar cross-section153

was calculated for each mode. The cross-sectional distributions arising from the forcing function in Figure 5a are154

shown in Figure 6; these results remain close to the theoretical values obtained from Davies’ analysis [15] even155

though multiple modes are now propagating. This suggests that while numerical errors may be present (Section156

2.1), they are insufficient to cause significant deviation from analytical theory. Hence, as LS-DYNA can replicate157

these dispersive and radial stress distribution effects in waves propagating in higher modes, we can be confident158

that the proportion of stress associated with each individual mode is also being modelled correctly.159
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Figure 7: a) Group velocities of Modes 1–4 and b) the proportion of stress travelling in each mode on the bar surface, for 0.30 < f a/c0 < 0.90.

3. Derivation of modal apportioning factors160

3.1. Modal apportioning factors and graphical representation161

Using the method in Section 2.3, the modal distribution of stress measured on the surface of the bar was162

assessed at a range of normalised frequencies up to 0.90, at which point four modes are propagating simultaneously.163

The results are shown in Figure 7, where the abscissa denotes the modelled frequency for each separate numerical164

analysis, and the ordinates represent the contribution of each mode at that frequency. As an example, at f a/c0 =165

0.52 the proportion of stress propagating in Modes 1, 2 and 3 is 6%, 92% and 2% respectively, as was previously166

shown in Figure 5.167
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At frequencies where the group velocity of two or more modes is similar, the relative dispersion is not large168

enough for the clear separation of the forcing function into modal pulses. As it is not possible to identify the con-169

tribution of individual modes in these cases, the modal stress distribution cannot be resolved at these frequencies170

using the current method. However, an indication of the behaviour in these regions can be provided using the171

piecewise polynomial fits shown in Figure 7. Two additional constraints are applied to the fits: the stress propa-172

gating in a particular mode is zero below the cutoff frequency of that mode; and the proportions of the propagating173

modes should sum to unity at any normalised frequency. Any error initially present in the sum of the modes was174

minimised through iterative distribution between the contributing modes and refitting of the curves, so that even175

outside the modelled results the error in the sum of the fits remains below 1%. The modal proportions in Figure 7176

are provided in a supplementary file [33] as the ratios r1, r2, r3 and r4, along with the cross-sectional mean for each177

mode, r̄1, r̄2, r̄3 and r̄4, to enable future investigation and development of further correction algorithms. Results178

are provided at normalised frequency increments of 0.01, and indicate where the modal contributions are derived179

directly from the modelling study (‘M’), or interpolated from the piecewise polynomial fits (‘I’).180

3.2. Interpretation181

The modal apportioning of stress on the bar surface in Figure 7 indicates a gradual transfer of stress from182

Mode 1 to Mode 2 at frequencies above the Mode 2 cutoff. From approximately f a/c0 = 0.40 the majority of the183

stress propagates in Mode 2, and this remains the case until f a/c0 = 0.73, where Mode 3 becomes dominant. Mode184

4 does not become dominant over the considered frequency range. These results appear to be in good qualitative185

agreement with the energy partitions of Lamb waves derived in the case of plane strain response of semi-infinite186

elastic strips to harmonic excitation [34].187

Comparison of Figures 7a and 7b indicates that the frequencies over which a particular mode is dominant do188

not closely relate to the frequencies at which that mode has the highest group velocity, as was reported by Lee189

et al. [25]. For example, the group velocity of Mode 3 exceeds all other propagating modes from f a/c0 = 0.63,190

but the proportion of stress propagating in Mode 3 does not exceed that of the other modes until f a/c0 = 0.73.191

Between these frequencies Mode 2 is also briefly the slowest propagating mode while remaining dominant in192

terms of stress proportion. These results additionally confirm that the magnitudes of the non-dominant modes are193

not small enough to justify neglecting their contributions, except within narrow frequency bands, as discussed by194

Husemeyer [26].195
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Figure 8: Distribution of stresses across Modes 1–4 for 0 < f a/c0 < 0.90. Dashed lines indicate interpolated data.

The data in Figure 7 can also be represented using stacked areas as in Figure 8, which shows how the total stress196

associated with each propagating frequency component is distributed between the first four modes for normalised197

frequencies between 0 and 0.90. In this figure the greyed-out areas represent regions where the group velocities198

of the propagating modes are similar and the modal apportioning relationships have been interpolated from the199

piecewise polynomial fits, as discussed previously. Successful measurements at these frequencies would require a200

much longer pressure bar to enable sufficient relative dispersion. This has not been attempted in the current work201

as the additional length would have introduced significant alteration of the signal through numerical losses.202

The modal distribution of stresses in Figure 8 can be used with phase angle adjustments to calculate the stress203

acting at another point on the bar surface, as in the following example. The next challenge in higher mode dis-204

persion correction will be to consider the radial variation of stress and strain in the bar, using factors M1 and M2205

for each propagating mode [20]. The values of M1 and M2 can be easily derived for any mode, but contain dis-206

continuities at frequencies where nodal cylinders coincide with the bar surface, and so further investigation will be207

required to quantify the data lost due to these nodal cylinders and develop best practice on their use.208
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Figure 9: a) A dispersed experimental Hopkinson pressure bar signal and b) the normalised cumulative power with frequency.

4. Higher mode correction of an experimental signal209

The numerical results above indicate that it is now possible to determine how a signal will separate into its210

component modes as it propagates in a Hopkinson pressure bar: this can be demonstrated by applying higher211

mode correction to an experimental signal. Figure 9a shows a signal recorded 1 m from the end of an explosively-212

loaded Hopkinson pressure bar used to perform acceleration tests on electronic components at the University of213

Sheffield Blast & Impact Laboratory in Buxton, UK. The steel pressure bar is 2 m long, 100 mm diameter and214

has c0 = 5185 m/s and ν = 0.3. The dispersion of the signal is clear from the tail of high-frequency oscillations215

following the main loading: these oscillations would continue beyond the 550 µs shown here, but are overwritten216

by the stress wave reflecting from the end of the bar. The cumulative power plot in Figure 9b, determined from an217

FFT of the recorded signal, indicates that 96% of the signal is at frequencies below the Mode 2 cutoff, and so will218

propagate in Mode 1 only. The remaining 4% is above the Mode 2 cutoff, and will propagate in two, three or four219

modes simultaneously.220

Correction of this signal was performed to obtain the stress on the surface of the bar at the loaded face, removing221

the dispersion associated with 1 m of travel. A first-mode dispersion correction program [35, 36] was modified to222

incorporate the proportion of stress propagating in each of the first four modes, using the values for the bar surface223

derived in Section 3. The original program uses the method described by Tyas and Watson [20] to apply a phase224
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angle correction to each frequency component, x(ω),225

x(ω) = A(ω) eiφ(ω) (2)

where A(ω) is the amplitude of the component and φ(ω) is the phase angle, and both are functions of the compo-226

nent’s angular frequency ω. The phase angle correction, φ′(ω), is calculated as227

φ′(ω) =

(

c0

cp(ω)
− 1

)

ωz

c0

(3)

where z is the propagation distance to correct over. A modified frequency component, x′(ω), can then be recon-228

structed as229

x′(ω) = A(ω) ei(φ(ω)−φ′(ω)). (4)

To incorporate Modes 2, 3 and 4, phase angle corrections (φ′
1
(ω), φ′

2
(ω) etc.) are calculated for each mode ac-230

cording to the phase velocity at that frequency. The modified frequency component is then given as the sum of the231

portions propagating in each mode, which are scaled by the mode ratios (r1(ω), r2(ω) etc.) derived in Section 3:232

x′(ω) =

4
∑

m=1

rm(ω) A(ω) ei(φ(ω)−φ′m(ω)). (5)

Figure 10 shows a comparison of one-mode and four-mode dispersion correction of the signal in Figure 9a,233

where corrections have been applied to remove the dispersion associated with 1 m of travel in the bar. ‘One-mode’234

correction assumes that the total signal at each frequency propagates only at the Mode 1 phase velocity: this is the235

current limitation imposed on dispersion correction without the modal apportioning factors derived in this paper.236

While only 4% of the power of the signal is propagating in multiple modes, there is a significant difference in the237

loading predicted by the two methods.238

One-mode correction of the signal reduces the tail of high-frequency components following the main stress239

wave, but, as all frequencies are assumed to propagate at Mode 1 phase velocities, large oscillations are intro-240

duced ahead of and during the signal. For the current signal, one-mode correction remains adequate for non-local241

measurements, such as total impulse, as the large local errors largely cancel each other out over over the range of242

interest. For example, the uncorrected signal in Figure 10b has a total impulse of 95.2 N s, while the one-mode and243
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Figure 10: Single-mode and multiple-mode dispersion correction of a Hopkinson pressure bar signal, showing a) the complete signal and b) the

main loading wave in detail. The ’no correction’ signal is represented by the original recorded signal timeshifted using the one-dimensional

wave speed of the bar, c0.
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Figure 11: Stress waves propagating in Modes 1–4 in the four-mode corrected signal shown in Figure 10. Modes 2–4 are each offset by -100

MPa for clarity.

four-mode corrected signals have total impulses of 91.9 N s and 92.0 N s, respectively: both methods correct the244

4% under-prediction from the recorded signal.245

For applications requiring local accuracy of the signal, the correction is greatly improved by the inclusion of246

the higher modes, which minimise spurious oscillations while resolving the shape and rise time of the main stress247

wave. For example, the peak overpressure measured by the strain gauge is 275 MPa, and four-mode dispersion248

correction calculates that this peak would be 289 MPa at the loaded face of the bar. The additional oscillations in249

the one-mode signal result in a calculated peak overpressure of 320 MPa, over-predicting the four-mode value by250

11%.251

The contribution of each mode to the four-mode corrected signal is shown in Figure 11. Although the majority252

of the signal propagates in Mode 1, the waves propagating in higher modes have amplitudes of up to 40 MPa,253

illustrating why one-mode correction is inadequate in this example. The accurate temporal positioning of the254

stress in higher modes is of particular importance when identifying key high-frequency features in blast loading255

recordings, such as rise time, peak overpressure and wave reflections observed within the signal. Without higher-256

mode correction, these features can appear at the wrong position in the signal, have the wrong magnitude, or be257

lost altogether due to interference of the frequency components. In the example shown the oscillations following258
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the main wave are not entirely removed by either correction method, but this is likely to be due to the data lost on259

the arrival of the reflected wave after 550 µs, and experiments could be designed to eliminate this issue.260

5. Summary and conclusions261

A pressure signal will disperse as it travels down a Hopkinson pressure bar because each component propagates262

at a velocity which is dependent on its frequency. Whilst methods exist for correcting this dispersion at lower263

frequencies, above a certain frequency a signal will propagate in multiple modes, at which point existing methods264

lose accuracy and validity. In this paper, we developed a method for correcting dispersion in higher modes based265

on a comprehensive numerical study using a validated finite element model.266

First, we determined that finite element modelling of a Hopkinson pressure bar could provide quantitative267

data on the modal distribution of stress with frequency for use in higher-mode dispersion correction. Numerical268

simulations demonstrated that the dispersion and cross-sectional variation of both single-mode and multiple-mode269

stress waves in a cylindrical bar were accurately predicted, and so there was confidence that the distribution of270

stress between modes would also be modelled accurately.271

Propagation in higher modes was assessed using short raised-cosine windowed pulses, which dispersed into272

multiple modal pulses as the signal propagated along the bar, enabling the contribution of each mode to be mea-273

sured up to a normalised frequency of 0.90. All four modes in this range were shown to contribute significantly at274

frequencies above their cutoff frequency, and dominance of a mode did not closely relate to group velocity.275

Finally, we presented four-mode dispersion correction of an experimental signal. The results showed a marked276

improvement over the existing single-mode method, highlighting the importance of multi-mode dispersion correc-277

tion, as well as demonstrating the applicability and validity of finite element modelling as a tool for understanding278

multi-mode wave propagation behaviour. The dispersion correction algorithm allows for correction of the first279

four modes, up to normalised frequencies of f a/c0 = 0.90, extending the accuracy and applicability of established280

frequency-domain techniques well beyond the Mode 2 cutoff frequency of f a/c0 ≈ 0.35.281
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