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Abstract— Pipelines have been extensively implemented to 

transfer oil as well as gas products at wide distances as they are 

safe, and suitable. However, numerous sorts of damages may 

happen to the pipeline, for instance erosion, cracks, and dent. 

Hence, if these faults are not properly refit will result in the 

pipeline demolitions having leak or segregation which leads to 

tremendously environment risks. Deep learning methods aid 

operators to recognize the earliest phases of threats to the 

pipeline, supplying them time and information in order to handle 

the problem efficiently. This paper illustrates fundamental 

implications of deep learning comprising convolutional neural 

networks. Furthermore the usages of deep learning approaches 

for hampering pipeline detriment through the earliest diagnosis 

of threats are introduced. 
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I. INTRODUCTION

The most significant challenge facing the industry today is 
an aging pipeline infrastructure which can result in leaks and 
disconnections, leading to economic as well as environmental 
disasters. Identifying leaks in early stage is essential to prevent 
serious problems. In order to improve levels of security, 
dependability and usefulness of operation, novel approaches 
for pipeline observation have been generated worldwide [1]. 
Distributed temperature monitoring approaches utilizing optical 
fibers have been considered as an effective method to identify 
and localize leakages throughout pipelines [2]. In [3] acoustic 
impact monitoring method is suggested to detect leakage along 
gas pipelines. In [4], artificial neural network technique is used 
to approximate the leak position in pipe networks. Rapid and 
precise leak identification and location, presents major 
challenges for recent techniques in the area of damage 
identification in pipe networks [5-9]. Leakage identification 

techniques still require to be improved in order to have great 
precision in specifying leak position. 

Recently, different types of artificial intelligence 
approaches, like artificial neural network are generally 
implemented in the engineering area. Artificial neural networks 
have been noticed as one of the useful approaches in recent 
years as they are widely used in an extensive sort of usages in 
several fields [10-18]. They are the most competent and 
operative tools. Artificial neural networks have learning skill 
and model-free features. Neural networks are made of 
interrelated groups of artificial neurons that have information 
which is obtainable by computations linked to them. Mostly, 
neural networks can adapt themselves to structural alterations 
while the training phase. Neural networks have been utilized in 
modeling complicated connections among inputs and outputs 
or acquiring patterns for the data [19-20]. Artificial neural 
networks have various noteworthy properties like universal 
function estimation abilities, as well as match of multiple non-
linear variables concerning with unknown interactions [21-24]. 
Due to these properties, most of the researchers consider the 
application of artificial neural networks for automatically 
recognizing the incidence of leakages in oil pipelines, 
substituting the human operator that observes the online trends 
from the sonic sensors. Supervised machine learning is 
identified as an effective implement for leakage recognition. 
That technology is considered as a part of artificial intelligence 
which contains the ability to initiate forecast with very little 
human intermediation. 

Currently, pattern recognition as well as machine-learning 
approaches have been successfully applied for certain 
structures [25]. In [26] machine learning approaches used for 
detecting the oil spills on the sea surface utilizing satellite radar 
images. In [27] machine learning technique is utilized for 
classifying oil spills. They used decision tree approach to 
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classify oil spills which is a tree-like model. The decision tree 
is similar to an inverted tree as it contains roots at the top 
whereas it grows downwards. In [28] feature-based classifiers 
are used for differentiating structural harm from surroundings 
troubles in an aluminum plate. In [29] support vector machines 
are used for pattern recognition in order to identify leaks in 
pipelines. In spite of the fact that some researches have been 
represented desirable results for leakage identification, 
however, there is an absence of realizing of how an effective 
system can be constructed. 

This paper presents the application of deep learning 
methods combined with classification methods for preventing 
pipeline damage through the earliest detection of threats. The 
remaining of the article is organized as follows. In Section 2, 
different types of damages of the pipeline system are 
demonstrated and explained. Deep learning methods for 
damage detection are given in Section 3. Section 4 concludes 
the work. 

II. TYPICAL DAMAGES RELATED TO THE DIFFERENT 

THREAT OF THE PIPELINE SYSTEM 

In this section typical damages related to different threats 
are introduced. 

A. Metal loss

Metal loss deficiencies happen in a case that the wall of the
pipe becomes thin because of the internal or external corrosion. 
Metal loss damage in pipeline is shown in Figure 1. 

Figure 1.  Metal loss in pipeline 

B. Dent

A dent in pipe networks is a permanent plastic
metamorphosis of the circular cross-section in regard to the 
pipe, see Figure 2. A dent causes a localized stress and also a 
local diminution in the pipe diameter.   

Figure 2.  Dent in pipeline  

C. Crack

A crack can be created due to a stress-induced dissociation
of the metal. Crack damage in a pipeline is shown in Figure 3. 

Figure 3.  Crack in pipeline 

D. Gouge

A gouge can be caused because of the removal of metal
from the pipe wall via mechanical processes. Gouge damage in 
a pipeline is shown in Figure 4. 

Figure 4.  Gouge in pipeline  



E. Free span

A free span on a pipeline is a place in which the seabed
fouling have been corroded such that the pipeline is not 
anymore supported on the seabed, see Figure 5. 

Figure 5.  Free span 

F. Buckling

Buckling is defined as an instability which results in
structural failure and creates gross deformation of the pipe 
cross-section, see Figure 6. 

Figure 6.  Pipeline buckling 

G. Coating damage

Coating damage can be happened if a pipe being pulled
through an excavation. The pipe coating damage is 
demonstrated in Figure 7. 

Figure 7.  Coating damage 

Anode damage 

Anodes are at risk of damage when the pipeline travels over 
the stinger on the back of the lay barge. The pipe anode 
damage is demonstrated in Figure 8. 

Figure 8.  Anode damage  

III. NEURAL SYSTEMS

Neural networks are constructed from neurons and 
synapses. They alter their rates in reply from nearby neurons as 
well as synapses. Neural networks operate similar to computer 
as they map inputs to outputs. Neurons, as well as synapses, are 
silicon members, which mimic their treatment. A neuron 
gathers the total incoming signals from other neurons, 
afterward simulate its reply represented by a number. Signals 
move among the synapses, which contain numerical rates. 
Neural networks learn once they vary the value of their 
synapsis. 

In this Section effective intelligent techniques for damage 
detection are presented. 

A. Artificial neural networks

In 1940, McCulloch-Pitts suggested the initial artificial
neuron model that is later utilized in different feed-forward 



artificial neural networks like multilayer perceptrons [30]. The 
artificial neuron carries out a linear conversion via a weighted 
addition using the scalar weights. According to Figure 9, the 
activation function is computed by obtaining the addition of the 

input and its corresponding weight  for every input 

unit. The bias amount, can be added to the addition 
outcome,  . Afterward, the new    suits into the activation 

function  . Finally, the outcome of the activation function 

is applied for predicting the output neuron   . 

Figure 9.  Structure of an artificial neuron 

Artificial neural network technique can be used for 
detection and identification of multiple leaks in a pipeline [31]. 
The dynamic of the fluid throughout the pipeline (see Figure 
10) can be defined as following mathematical model,

(1) 

 such that    is taken to be the pressure head,   is taken 

to be the flow,   is taken to be the length coordinate,   is 

taken to be the time coordinate, is considered as the 

acceleration of the gravity, is considered as the cross-

section area, is taken to be the speed of sound, and 

  .   is considered as the pipeline diameter, and 

  is the Darcy-Weissbach friction coefficient. 

Figure 10.  The structure of the pipeline 

A detector system can be constructed consists of an 
artificial neural network which detects the leak and its position 
in the pipeline. The detection of the leak is mostly based on the 
performance of the artificial neural network. The artificial 
neural network utilizes merely the inlet/outlet flow 
measurements. The detector system recognizes the feasible 
pipeline operating states which can be used in detection of leak. 

B. Recurrent neural networks

Recurrent neural networks have been considered as
artificial neural networks models which are established in [32] 
in order to permit us to work with sequences of data. Recurrent 
neural network saves the old information of the prior sequences 
so that transits it to the subsequent sequences. A simple 
recurrent neural network is shown in Figure 11 which has input 

 , output  and also a loop   between them. 

Figure 11.  The structure of a simple recurrent neural network 

  Loop saves information from a recurrent cell and 
afterwards crosses it to the subsequent cell in the subsequent 
recurrent network. 

Leak detection systems have been divided into internally 
and externally based systems. Internally based systems use 
flow, pressure as well as fluid temperature for monitoring 
internal parameters of the pipeline, whereas, externally based 
systems apply local dedicated sensors. However, recurrent 
neural networks can also be used for nonlinear system 
identification for fuel oil leak detection [33]. In order to train 
the network, data can be taken from inlet and outlet flow 
parameters of the pipeline. 

C. Convolutional neural networks

Convolutional neural network contains convolutional and
pooling layers [34-38]. Convolutional neural networks 
combine the feature extraction and feature classification 
procedures into a sole learning frame. They have the ability for 
adapting to various input sizes and can also learn to optimize 
the features while training stage straightly from the raw input. 



Figure 12.  The structure of a simple convolutional neural network 

A sample convolutional neural network having two 
convolution and one fully-connected layers is shown in Figure 
12 that categorizes a 24×24-pixel grayscaling image into two 
classes. 

The acoustic signals gathered by an audition device on 
pipeline systems are mostly used for identifying leakage in 
buried water pipe networks. Practically, the process is based on 
a listening tool to gather the sonic signal on the road along the 
path of pipelines and validates the sonic signal if it is the 
leakage or not. Nevertheless, the leak signals are constantly 
corrupting with non-leak sonic sources, which impacts not only 
the precision of leakage identification but also the time to 
locate the leakage. Convolutional neural networks can be used 
for leak identification in water distribution pipelines [39]. The 
precision of the classification of the convolutional neural 
network is significantly high. 

IV. CONCLUSION

Protecting pipelines from stealing as well as leakage is one 
of the major objectives of the oil as well as gas companies. 
Several types of defects can threaten the pipeline such as 
corrosion, exhaustion cracks, metal loss, gouge, and dent. 
Thus, if these defects are not correctly fixed can lead to the 
pipeline destructions having leak or dissociation which causes 
exceedingly downtime and environment risks. In this paper, 
different types of damages of the pipeline system are given. 
Furthermore deep learning methods for damage detection are 
presented. 
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