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Abstract
Recently, artificial neural networks (ANNs) have been extensively studied and used in dif-
ferent areas such as pattern recognition, associative memory, combinatorial optimization, 
etc. In this paper, we investigate the ability of fuzzy neural networks to approximate so-
lution of a dual fuzzy polynomial of the form a1x + ... + anxn = b1x + ... + bnxn + d, where 
aj , bj , d ϵ E1 (for j = 1, ..., n). Since the operation of fuzzy neural networks is based on 
Zadeh’s extension principle. For this scope we train a fuzzified neural network by back-
propagation-type learning algorithm which has five layer where connection weights are 
crisp numbers. This neural network can get a crisp input signal and then calculates its 
corresponding fuzzy output. Presented method can give a real approximate solution for 
given polynomial by using a cost function which is defined for the level sets of fuzzy output 
and target output. The simulation results are presented to demonstrate the efficiency and 
effectiveness of the proposed approach.
Keywords: Fuzzy feed-back neural networks; Dual fuzzy polynomials; Cost function; Learning 
algorithm

1 Introduction

The study of dual fuzzy polynomials forms a suitable setting for mathematical 
modeling of real-world problems in which uncertainties or vagueness pervade. In recent 
years, many approaches have been utilized to the study of these polynomials. One 
approach is using
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fuzzy neural networks which is proposed in this paper. This is a new and a powerful
method, to obtain approximate solutions of dual fuzzy polynomials.
Ishibuchi et al. [8] proposed a learning algorithm of fuzzy neural networks with triangular
fuzzy weights and Hayashi et al. [7] used fuzzy delta learning rule for training fuzzy neural
network with fuzzy signals and weights. Also Buckley and Eslami [5] considered neural
net solutions for fuzzy problems. The topic of numerical solution of fuzzy polynomials by
fuzzy neural network investigated by Abbasbandy et al. [2], consist of finding solution to
polynomials like a1x+ ...+ anx

n = a0 where x ϵ R and a0, a1, . . . , an are fuzzy numbers.
Jafarian et al. [10] solved fuzzy polynomials by using the neural networks with a new
learning algorithm, also they proposed a feed-back neural network for solving a system of
fuzzy equations in [11]. Wang et al. [15] presented an iterative algorithm for solving dual
linear systems of the form x = Ax + u, where A is a real n×n matrix, the unknown x and
the constant u are all vectors whose components are fuzzy numbers. Abbasbandy et al.
[3] investigated the existence of a minimal solution of a general dual fuzzy linear system of
the form Ax + f = Bx + c, where A and B are two real m× n matrices and the unknown
x and the known f and c are vectors whose components are fuzzy numbers.
In this paper, the feed-back neural networks method, one of the most effective method, is
applied to obtain the approximate solution of the dual fuzzy polynomials to any desired
degree of accuracy. The proposed neural network has five layers with the identity activation
function that the input-output relation of each unit is defined by the extension principle
of Zadeh [16]. In computer simulations, such a fuzzified neural network is trained. The
important advantage of this method is that, it is capable of greatly reducing the size of
calculations while still maintaining high accuracy of the numerical solution.
The paper is organized into five section. In section 2, the necessary preliminaries for
defining the fuzzy numbers are briefly presented. In section 3, a cost function is defined
for the level sets of fuzzy output and fuzzy target that measures the difference between
the fuzzy target output and corresponding actual fuzzy output, afterward we describe
how to find a crisp solution of the dual fuzzy polynomials by using FFNs. In section
4 we report our numerical results and demonstrate the efficiency and accuracy of the
proposed numerical scheme by considering some numerical examples. Finally, conclusion
is summarized in section 5.

2 Preliminaries

In this section the basic notations used in fuzzy calculus are introduced. We start by
defining the fuzzy number.

Definition 2.1. A fuzzy number is a fuzzy set u : R1 → I = [0, 1] such that

i u is upper semi-continuous.

ii u(x) = 0 outside some interval [a, d].

iii There are real numbers b and c, a ≤ b ≤ c ≤ d, for which

1. u(x) is monotonically increasing on [a, b],
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2. u(x) is monotonically decreasing on [c, d],

3. u(x) = 1, b ≤ x ≤ c.

The set of all fuzzy numbers (as given in 2.1) is denoted by E1. An equivalent parametric
is also given in [12] as follows.

Definition 2.2. A fuzzy number v is a pair (v,v) of functions v(r) and v(r), 0 ≤ r ≤ 1,
which satisfy the following requirements:

i v(r) is a bounded monotonically increasing, left continuous function on (0, 1] and right
continuous at 0.

ii v(r) is a bounded monotonically decreasing, left continuous function on (0, 1] and
right continuous at 0.

iii v(r) ≤ v(r), 0 ≤ r ≤ 1.

A popular fuzzy number is the triangular fuzzy number v = (vm, vl, vu) where vm denotes
the modal value and the real values vl ≥ 0 and vu ≥ 0 represent the left and right fuzziness,
respectively. The membership function of a triangular fuzzy number is defined as follows:

µv(x) =


x−vm
vl

+ 1, vm − vl ≤ x ≤ vm,
vm−x
vu

+ 1, vm ≤ x ≤ vm + vu,

0, otherwise.

Its parametric form is:

v(r) = vm + vl(r − 1), v(r) = vm + vu(1− r), 0 ≤ r ≤ 1.

Triangular fuzzy numbers are fuzzy numbers in LR representation where the reference
functions L and R are linear.

2.1 Operation on fuzzy numbers

We briefly mention fuzzy number operations defined by the extension principle [16, 17].

µA+B(z) = max{µA(x) ∧ µB(y)| z = x+ y},
µAB(z) = max{µA(x) ∧ µB(y)| z = xy},
µf(Net)(z) = max{µNet(x)| z = f(x)},

where A and B are fuzzy numbers, µ∗(.) denotes the membership function of each fuzzy
number, ∧ is the minimum operator, and f(x) = x is a activation function inside units
of our fuzzy neural network. The above operations of fuzzy numbers are numerically
performed on level sets (i.e. α-cuts). For 0 < α ≤ 1, a α-level set of a fuzzy number A is
defined as

[A]α = {x| µA(x) ≥ α, x ∈ R},

and [A]0 =
∪

α∈(0,1][A]
α. Since level sets of fuzzy numbers become closed intervals, we

denote [A]α as
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[A]α = [[A]αl , [A]
α
u ],

where [A]αl and [A]αu are the lower and the upper limits of the α-level set [A]α, respectively.
From interval arithmetic [4], the above operations on fuzzy numbers are written for the
α-level sets as follows:

[A]α + [B]α = [[A]αl , [A]αu ] + [[B]αl , [B]αu ] = [[A]αl + [B]αl , [A]αu + [B]αu ], (2.1)

[A]α.[B]α = [[A]αl , [A]αu ].[[B]αl , [B]αu ] (2.2)

= [min{[A]αl .[B]αl , [A]αl .[B]αu , [A]αu .[B]αl , [A]αu .[B]αu},

max{[A]αl .[B]αl , [A]αl .[B]αu , [A]αu .[B]αl , [A]αu .[B]αu}].

In the case of
0 ≤ [A]αl ≤ [A]αu ,

Eq. (2.2) can be simplified as

[A]α.[B]α = [min{[A]αl .[B]αl , [A]αl .[B]αu},max{[A]αu .[B]αl , [A]αu .[B]αu}],

f([Net]α) = f([[Net]αl , [Net]αu ]) = [f([Net]αl ), f([Net]αu)], (2.3)

k.[A]α = k.[[A]αl , [A]αu ] = [k.[A]αl , k.[A]αu ], if k ≥ 0,

k.[A]α = k.[[A]αl , [A]αu ] = [k.[A]αu , k.[A]αl ], if k < 0. (2.4)

For arbitrary u = (u, u) and v = (v, v) we define addition (u+ v) and multiplication by k
as [13]:

(u+ v)(r) = u(r) + v(r),
(u+ v)(r) = u(r) + v(r),

(ku)(r) = k.u(r), (kv)(r) = k.u(r), if k ≥ 0,

(ku)(r) = k.u(r), (kv)(r) = k.u(r), if k < 0.

2.2 Input-output relation of each unit

Let fuzzify a five layer feed-back neural network with one input unit, 2 neurons in first
hidden units, 2n neurons in second hidden units and one output unit. Input vector, target
vector are fuzzified and weights are crisp. In order to derive a learning rule, we restrict
fuzzy inputs and fuzzy target within triangular fuzzy numbers. The input-output relation
of each unit of the fuzzified neural network can be written as follows:

• Input unit:

(2.5)

• The first hidden units:
(2.6)

and
(2.7)

O = x0.

O1 = f1(net11), net11 = O, 

O ′1 = f2(net ′11), net ′11 = O. 
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• The second hidden units:

O2j = f1j(net2j), net2j = O1.wj , j = 1, ..., n, (2.8)

and
O ′

2j = f2j(net
′
2j), net ′

2j = O ′
1.wj , j = 1, ..., n. (2.9)

• The third hidden units:

O3 = g1(net3), net3 =

n∑
j=1

aj .O2j , (2.10)

and

O ′
3 = g2(net

′
3), net ′

3 =

n∑
j=1

bj .O
′
2j . (2.11)

• Output unit:
Y = f(Net), (2.12)

Net = (O3 +O ′
3),

where A = (a1, ..., an) and B = (b1, ..., bn) are fuzzy input vectors and wj is a crisp weight.
The relations between input unit and output unit in Eqs. (2.5)-(2.12) are defined by the
extension principle [16] as in Hayashi et al. [7] and Ishibuchi et al. [9].

2.3 Calculation of fuzzy output

The fuzzy output from each unit in Eqs. (2.5)-(2.12) is numerically calculated for crisp
weights and level sets of fuzzy inputs. The input-output relations of the neural network
can be written for the α-level sets as follows:

• Input unit:

O = x0. (2.13)

• The first hidden units:
O1 = f1(net11), net11 = O, (2.14)

and
O ′

1 = f2(net
′
11), net ′

11 = O. (2.15)

• The second hidden units:

O2j = f1j(net2j), net2j = O1.wj , j = 1, ..., n, (2.16)

and
O ′

2j = f2j(net
′
2j), net ′

2j = O ′
1.wj , j = 1, ..., n. (2.17)

• The third hidden units:

[O3]
α = g1([net3]

α), [net3]
α =

n∑
j=1

aj .O2j , (2.18)
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and

[O ′
3]
α = g2([net

′
3]
α), [net ′

3]
α =

n∑
j=1

bj .O
′
2j . (2.19)

• Output unit:
[Y ]α = f([Net]α), (2.20)

[Net]α = ([O3]
α + [O ′

3]
α).

From Eqs. (2.1)-(2.4), the above relations are written as follows when the α-level sets of
the fuzzy coefficient aj and bj be nonnegative, i.e., 0 ≤ [aj ]

α
l ≤ [aj ]

α
u and 0 ≤ [bj ]

α
l ≤ [bj ]

α
u

for all j’s:

• Input unit:

O = x0. (2.21)

• The first hidden units:
O1 = f1(net11), net11 = O, (2.22)

and
O ′

1 = f2(net
′
11), net ′

11 = O. (2.23)

• The second hidden units:

O2j = f1j(net2j), net2j = O1.wj , j = 1, ..., n, (2.24)

and
O ′

2j = f2j(net
′
2j), net ′

2j = O ′
1.wj , j = 1, ..., n. (2.25)

• The third hidden units:

[O3]
α = [[O3]

α
l , [O3]

α
u ] = g1([[net3]

α
l , [net3]

α
u ]), (2.26)

g1([[net3]
α
l , [net3]

α
u ]) = [[net3]

α
l , [net3]

α
u ],

[net3]
α
l =

∑
jϵM

O2j .[aj ]
α
l +

∑
jϵC

O2j .[aj ]
α
u ,

[net3]
α
u =

∑
jϵM

O2j .[aj ]
α
u +

∑
jϵC

O2j .[aj ]
α
l ,

where M = {O2j ≥ 0}, C = {O2j < 0} and M ∪ C = {1, ..., n},

[O ′
3]
α = [[O ′

3]
α
l , [O

′
3]
α
u ] = g2([[net

′
3]
α
l , [net

′
3]
α
u ]), (2.27)

g2([[net
′
3]
α
l , [net

′
3]
α
u ]) = [−[net ′

3]
α
l ,−[net ′

3]
α
u ],

[net ′
3]
α
l =

∑
jϵM

O ′
2j .[bj ]

α
l +

∑
jϵC

O ′
2j .[bj ]

α
u ,

[net ′
3]
α
u =

∑
jϵM

O ′
2j .[bj ]

α
u +

∑
jϵC

O ′
2j .[bj ]

α
l ,

where M = {O ′
2j ≥ 0}, C = {O ′

2j < 0} and M ∪ C = {1, ..., n}.
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• Output unit:
[Y ]α = [[Y ]αl , [Y ]αu ] = f([Net]αl , [Net]αu), (2.28)

([Net]αl , [Net]αu) = ([O3]
α
l + [O ′

3]
α
l , [O3]

α
u + [O ′

3]
α
u).

3 Dual fuzzy polynomials

We are interested in finding the solution of dual fuzzy polynomials of the form

a1x+ ...+ anx
n = b1x+ ...+ bnx

n + d, (3.29)

where aj , bj , d ϵ E1 (for j = 1, ..., n). For getting an approximate solution, an architecture
of FNN2 (fuzzy neural network with fuzzy inputs, fuzzy output signal and crisp weights)
equivalent to Eq. (3.29) is built. The network is shown in Fig. 1.
Usually, there is no inverse element for an arbitrary fuzzy number u ϵ E1, i.e., there exists
no element v ϵ E1 such that

u+ v = 0.

Actually, for all non-crisp fuzzy number u ϵ E1 we have

u+ (−u) ̸= 0.

Therefore, the dual fuzzy polynomial in Eq. (3.29) cannot be equivalently replaced by

(a1 − b1)x+ ...+ (an − bn)x
n = d,

which had been investigated.

Fig. 1. Feed-back fuzzy neural network for solving dual fuzzy polynomials.

3.1 Cost function

Let d be the fuzzy target output corresponding to the fuzzy coefficient vectors (aj , bj). We
want to introduce how to deduce a learning algorithm for training the connection weights.
For this scope, we defined a cost function for α-level sets of the fuzzy output Y and the
corresponding target output d as follows:

(3.30)eα = el
α + eu

α, 
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where

eαl = α.
([d]αl − [Y ]αl )

2

2
, (3.31)

eαu = α.
([d]αu − [Y ]αu)

2

2
. (3.32)

In the cost function, eαl and eαu can be viewed as the squared errors for the lower limits and
the upper limits of the α-level sets of the fuzzy output Y and target output d, respectively.
Then the total error of the given neural network is obtained as [1]:

e =
∑
α

eα. (3.33)

Theoretically this cost function satisfies the following equation if we use infinite number
of α-level sets in Eq. (3.33)

e −→ 0 ⇐⇒ [Y ]α −→ [d]α.

3.1.1 Learning of fuzzy neural network

Let us derive a learning algorithm of the fuzzy neural network from the cost function e
defined for the α-level sets in the last subsection. Our main aim is adjusting the crisp
parameter x0 by using the learning algorithm which is introduced in below. The weight
is updated by the following rule [8, 14]

x0(t+ 1) = x0(t) + ∆x0(t), (3.34)

∆x0(t) = −η.
∂eα

∂x0
+ γ.∆x0(t− 1), (3.35)

where t is the number of adjustments, η is the learning rate and γ is the momentum term
constant. Thus our problem is to calculate the derivative ∂eα

∂x0
in Eq. (3.35). The derivative

∂eα

∂x0
can be calculated from the cost function eα by using the input-output relation of the

fuzzy neural network for the α-level sets in Eqs. (2.13)-(2.28). We calculated ∂eα

∂x0
as

follows:
∂eα

∂x0
=

∂eαl
∂x0

+
∂eαu
∂x0

. (3.36)

Thus our problem is calculating of the derivatives
∂eαl
∂x0

and ∂eαu
∂x0

. So we have:

∂eαl
∂x0

=
∂eαl
∂[Y ]αl

.
∂[Y ]αl
∂[Net]αl

.
∂[Net]αl
∂[O3]αl

.
∂[O3]

α
l

∂[net3]αl
.
∂[net3]

α
l

∂x0

+
∂eαl
∂[Y ]αl

.
∂[Y ]αl
∂[Net]αl

.
∂[Net]αl
∂[O ′

3]
α
l

.
∂[O ′

3]
α
l

∂[net ′
3]
α
l

.
∂[net ′

3]
α
l

∂x0
,

where

∂[net3]
α
l

∂x0
=

n∑
j=1

(
∂[net3]

α
l

∂O2j
.

∂O2j

∂net2j
.
∂net2j
∂O1

.
∂O1

∂net11
.
∂net11
∂x0

),
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∂[net ′
3]
α
l

∂x0
=

n∑
j=1

(
∂[net ′

3]
α
l

∂O ′
2j

.
∂O ′

2j

∂net ′
2j

.
∂net ′

2j

∂O ′
1

.
∂O ′

1

∂net ′
11

.
∂net ′

11

∂x0
),

and

∂eαu
∂x0

=
∂eαu
∂[Y ]αu

.
∂[Y ]αu
∂[Net]αu

.
∂[Net]αu
∂[O3]αu

.
∂[O3]

α
u

∂[net3]αu
.
∂[net3]

α
u

∂x0

+
∂eαu
∂[Y ]αu

.
∂[Y ]αu
∂[Net]αu

.
∂[Net]αu
∂[O ′

3]
α
u

.
∂[O ′

3]
α
u

∂[net ′
3]
α
u

.
∂[net ′

3]
α
u

∂x0
,

where

∂[net3]
α
u

∂x0
=

n∑
j=1

(
∂[net3]

α
u

∂O2j
.

∂O2j

∂net2j
.
∂net2j
∂O1

.
∂O1

∂net11
.
∂net11
∂x0

),

∂[net ′
3]
α
u

∂x0
=

n∑
j=1

(
∂[net ′

3]
α
u

∂O ′
2j

.
∂O ′

2j

∂net ′
2j

.
∂net ′

2j

∂O ′
1

.
∂O ′

1

∂net ′
11

.
∂net ′

11

∂x0
).

If O2j ≥ 0 and O ′
2j ≥ 0,

∂eαl
∂x0

=
n∑

j=1

(
−α.([d]αl − [Y ]αl ).[aj ]

α
l .j.x

j−1
0 + α.([d]αl − [Y ]αl ).[bj ]

α
l .j.x

j−1
0

)
,

∂eαu
∂x0

=

n∑
j=1

(
−α.([d]αu − [Y ]αu).[aj ]

α
u .j.x

j−1
0 + α.([d]αu − [Y ]αu).[bj ]

α
u .j.x

j−1
0

)
.

Otherwise,

∂eαl
∂x0

=
∑
jϵM

(
−α.([d]αl − [Y ]αl ).[aj ]

α
l .j.x

j−1
0 + α.([d]αl − [Y ]αl ).[bj ]

α
l .j.x

j−1
0

)
+
∑
jϵC

(
−α.([d]αl − [Y ]αl ).[aj ]

α
u .j.x

j−1
0 + α.([d]αl − [Y ]αl ).[bj ]

α
u .j.x

j−1
0

)
,

∂eαu
∂x0

=
∑
jϵM

(
−α.([d]αu − [Y ]αu).[aj ]

α
u .j.x

j−1
0 + α.([d]αu − [Y ]αu).[bj ]

α
u .j.x

j−1
0

)
+
∑
jϵC

(
−α.([d]αu − [Y ]αu).[aj ]

α
l .j.x

j−1
0 + α.([d]αu − [Y ]αu).[bj ]

α
l .j.x

j−1
0

)
,

where M = {j| j be an even number}, C = {j| j be an odd number} and M ∪ C =
{1, ..., n}.

Now we can update the connection weights wj by using Eq. (2.4) as follows:

wj = xj−1
0 , j = 1, ..., n. (3.37)

Learning algorithm
Step 1: η > 0, γ > 0, and Emax > 0 are chosen. Then the crisp quantity x0 is initialized
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at a small random value.
Step 2: Let t := 0 where t is the number of iterations of the learning algorithm. Then the
running error E is set to 0.
Step 3: Calculate the corresponding connection weights to the hidden layer as wj(t) =
x0(t)

j−1, (for j = 1, ..., n).
Step 4: Let t := t+ 1. Repeat Step 3 for α = α1, ..., αm.
Step 5: The following procedures are calculated:

[i] Forward calculation: Calculate the α-level set of the fuzzy output Y by presenting
the α-level set of the fuzzy coefficients vector A and B.

[ii] Back-propagation: Adjust crisp parameter x0 by using the cost function for the α-
level sets of the fuzzy output Y and the target output d then update. Then update
the other connection weights as has been described in Eq. (3.37).

Step 6: Cumulative cycle error is computed by adding the present error to E.
Step 7: The training cycle is completed. For E < Emax terminate the training session.
If E > Emax then E is set to 0 and we initiate a new training cycle by going back to Step 4.

The following theorem illustrates the convergence properties of the neural networks.

Theorem 3.1. If the presented fuzzy problem has solutions then the perceptron learning
algorithm will find one of them.
Proof. [6].

4 Numerical examples

To illustrate the technique proposed in this paper, consider the following examples.

Example 4.1. Consider the following dual fuzzy polynomial:

(2, 4, 5)x+ (2, 8, 9, 12)x2 = (1, 2, 3)x+ (1, 7, 8, 10)x2 + d,

where

(d(r), d(r)) = (3r + 12 , −9r + 24), 0 ≤ r ≤ 1.

where the exact solution is x = 3. This problem is solved with the help of fuzzy neural
network as described in this paper. Let x0 = 0.25, η = 2 × 10−3 and γ = 2 × 10−3.
Table 1 shows the approximated solution over a number of iterations and Fig. 2 shows
the accuracy of the solution x0(t) where t is the number of iterations, its noticeable that
by increasing the iterations the cost function goes to zero. Fig. 3 shows the convergence
of the approximated solution, in this figure by increasing the iterations the calculated
solution goes to exact one.
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Table 1
The approximated solutions with error analysis for Example 4.1.

t x0(t) e t x0(t) e

1 0.2605 3280.83271 14 2.9556 3.26918351
2 0.6026 2806.78532 15 2.9707 1.43256751
3 0.9734 2479.27170 16 2.9807 0.62312887
4 1.2653 2083.46845 17 2.9874 0.26971343
5 1.5653 1643.47612 18 2.9917 0.11636229
6 1.8568 1201.95976 19 2.9946 0.05009436
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Fig. 2. The cost function for Example 4.1 over the number of iterations.
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Fig. 3. Convergence of the approximated solution for Example 4.1.

Example 4.2. Let fuzzy equation

(7, 8, 10)x+ (6, 7, 8)x2 + (1, 2, 4)x3 = (2, 3, 4)x+ (4, 6, 7)x2 + (1, 2, 3)x3 + d,

where

(d(r), d(r)) = (−16r + 52 , −68r + 104), 0 ≤ r ≤ 1.
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The exact solution is x = 4. This problem is solved with the help of fuzzy neural network
as described in this paper. Let x0 = 6.5, η = 2 × 10−3 and γ = 2 × 10−3. Table 2 shows
the approximated solution over a number of iterations and Fig. 4 shows the accuracy of
the solution x0(t) where t is the number of iterations, its noticeable that by increasing the
iterations the cost function goes to zero. Fig. 5 shows the convergence of the approxi-
mated solution, in this figure by increasing the iterations the calculated solution goes to
exact one.

Table 2
The approximated solutions with error analysis for Example 4.2.

t x0(t) e t x0(t) e

1 6.2031 58756.6573 9 4.0169 5.25800333
2 5.7529 6479.79005 10 4.0108 2.15630978
3 5.1686 1741.48377 11 4.0070 0.88820022
4 4.8779 577.759761 12 4.0045 0.36688350
5 4.4654 210.882238 13 4.0029 0.15181854
6 4.2714 81.0081877 14 4.0019 0.06289576
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Fig. 4. The cost function for Example 4.2 over the number of iterations.
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Fig. 5. Convergence of the approximated solution for Example 4.2.

Example 4.3. Consider the following dual fuzzy polynomial:

(2, 4, 8)x+ (4, 5, 6)x2 = (1, 2, 8)x+ (1, 3, 7)x2 + d,

where

(d(r), d(r)) = (−2r + 14 , 16r − 4), 0 ≤ r ≤ 1.

where the exact solution is x = 2. This problem is solved with the help of fuzzy neural
network as described in this paper. Let x0 = 5, η = 2 × 10−3 and γ = 2 × 10−3. Table
3 shows the approximated solution over a number of iterations and Fig. 6 shows the
accuracy of the solution x0(t) where t is the number of iterations, its noticeable that by
increasing the iterations the cost function goes to zero. Fig. 7 shows the convergence of
the approximated solution, in this figure by increasing the iterations the calculated solu-
tion goes to exact one.

Table 3
The approximated solutions with error analysis for Example 4.3.

t x0(t) e t x0(t) e

1 4.7105 10579.0969 8 2.0472 3.31740504
2 3.9026 1098.42115 9 2.0321 1.51112723
3 3.1825 295.362973 10 2.0219 0.69584803
4 2.6308 102.803950 11 2.0149 0.32276080
5 2.3786 40.3674858 12 2.0102 0.15044391
6 2.2398 16.9441451 13 2.0070 0.07035772
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Fig. 6. The cost function for Example 4.3 over the number of iterations.
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Fig. 7. Convergence of the approximated solution for Example 4.3.

5 Conclusions

The topics of fuzzy neural networks which attracted growing interest for some time, have
been developed in recent years. In this paper we propose a Perceptron Neural Network
consisting of a learning algorithm based on the gradient descent method applied in order
to approximate the solution of dual fuzzy polynomials. The proposed neural network is
a five layer feed-back neural network where connection weights are crisp numbers and its
input-output relation was defined by the extension principle. Due to the application of
gradient descent learning, this method presents a rapid convergence for the solutions. The
approach is simulated in MATLAB. The simulation shows the method is effective; fast in
response, minimal in overshoot, robust and very powerful technique in finding analytical
solutions for dual fuzzy polynomials.
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