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Abstract: This paper discusses the elimination of C.I. AY23 (Acid Yellow 23) using UV/Ag-TiO, process. To anticipate the
photocatalytic elimination of AY23 with the existence of Ag-TiO, nanoparticles processed under desired circumstances, two
computational techniques namely NN (neural network) and PSO (particle swarm optimization) modeling are developed. A summed up
of 100 data are used to establish the models, wherein introductory concentration of dye, UV light intensity, initial dosage of nano
Ag-TiO, and irradiation time are the four parameters applied as the input variables and elimination of AY?23 as the output variable. The

comparison among the predicted results by designed models and the experimental data proves that the performance of the NN model is

comparatively sophisticated than the PSO model.
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1. Introduction

The developed countries are facing a serious
problem of water pollution caused by dyes. Synthetic
dyes are the significant water contaminants and
industrial pollutants. Azo dyes, the greatest class of
synthetic dyes utilized in the food industries, are
specified by the appearance of one or more azo bonds
(=N = N-) at par with one or more aromatic systems.
In general, these dyes cannot be eliminated by
conventional water treatment systems [1]. Hence the
elimination of dyes from wastewater has become a
matter of concern for the relevant industries. The
advancement of highly efficient techniques for the
removal of dangerous pollutants from air, soil, and
water is one of the most active fields in environmental
research [2]. Therefore, it has become a necessity for
the development of highly efficient techniques for the
elimination of organic pollutants by transformation to
less adverse compounds or by thorough mineralization
[3]. Currently, chemical treatment techniques on the
basis of generating hydroxyl radicals, known as AOPs
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(advanced oxidation procedures) have been expanded
[1]. An intense study of TiO, as a photocatalyst has
been done for the reason of its immense chemical
stability, without any toxicity, low cost and exquisite
deterioration for organic pollutants [4]. The growth of
UV/TiO, process to attain entire mineralization of
organic pollutants has been extensively tested for a
broad variation of industrial dyes [5]. Heterogeneous
photocatalysis through amalgamation of TiO, and UV
light is considered as one of the promising AOPs for
the devastation of water-soluble organic pollutants
observed in water as well as waste water. The hydroxyl
radical is a dominant oxidizing factor that assails
organic pollutants existing at or close to the surface of
the TiO,. The ultimate result is the entire decay of toxic
as well as bioresistant compounds into non-injurious
species like CO, and H,O [6].

Generally, the Dbehavior associated  with
photochemical system is quite complicated. Therefore,
the advancement of reliable and robust predictive
models is still required for the elimination of organic
pollutants. Numerable modeling techniques based on
artificial intelligence, like NNs and PSO have appeared

as adsorbent tools and have represented a better
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potential for modeling complicated systems [3, 7-11].
Artificial NN is considered to be generalized models
related to the biological neuron system and it is
distributed

proneness  for

incorporated with hugely parallel
processors with a naturalistic
accumulating information and preparing its availability
for utilization. The training of NNs can be done with
real data in order to take up issues related to complex
and nonlinear problems where mathematical modeling
may be too unsuitable or complicated. NN is on the
basis of the empirical risk minimization that can make
the solution be captured in a local minimum and
over-fitting of the network [12].

PSO is a searching algorithm that is utilized for
searching large and non-linear spaces where the
knowledge of investigators is lagged and conventional
optimization methodologies are not of use [13-15]. It is
a strong evolutionary algorithm having the global
optimization capability. The method is initially
designed and generated by Kennedy and Eberhart [16].
In PSO, a set of arbitrarily produced agents (called
particles) spread in the design space towards the
optimal solution via a number of iterations. Every
particle demonstrates a candidate solution related to the
optimization problem. The location of a particle is
effected by the superior location visited by itself (i.e. its
own experience) as well as the location of the superior
particle in its total population. The excellent location
which is extracted is considered as the global best
particle. The performance of each particle (i.e. how
near the particle is from the global optimum) is
computed by employing a fitness function which
changes based on the optimization problem [17, 18].

Since a very fewer research works have been done
on the application of NN and PSO in water sector [19],
so the primary aim of this paper is the generalization of
two techniques based on the NN and PSO in order to
estimate the elimination of C.I. AY23 by UV/Ag —
TiO, process. Here we investigate the photocatalytic
proficiency of the Ag — TiO, particles for elimination
of AY23 (Acid Yellow 23) as a refractory pollutant.

The consequence of utilizable key factors such as
initial dye concentration, UV light intensity, irradiation
time and dosage of Ag — TiO, nanoparticles has been
discussed. A limited data set obtained from the
literature has been utilized, and the NN and PSO
techniques have been generalized on the basis of
predictive models for the elimination of AY?23 in water
by using a set of selected water quality. Predictive
potencies of the generalized models are verified by
utilizing multiple statistical performance criteria
parameters. This paper has a significant contribution
and is the first attempt in initializing a superior starting
point for the removal of AY23 in water by UV/Ag —
TiO, process and PSO and NN modeling.

2. Materials and Methods
2.1 Materials

Tetraisopropyl orthotitanate Ti(OC;H;)s, methanol
(MeOH) as well as silver nitrate (AgNOs) are extracted
from Merck (Germany) and utilized without any
additional purifications. Acid Yellow 23 is brought
from Acros (USA) and utilized without additional
purification. Fig. 1 displays the chemical structure of
this dye. Deionized water is employed throughout the

work.
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Fig. 1 Chemical formation of Acid Yellow 23 (AY23).
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2.2. Ultrasonic Bath (T 460/H)

The ultrasonic bath Elma (GmbH) is utilized via the
operating frequency of 34 KHz as well as a rate output
power of 169 W. The bath contains the dimensions of
239 mm x 136 mm x 99 mm. The total internal

structure is constructed from stainless steel.

2.3. Analytical Method

In the existence of Ag-TiO, as photocatalyst, AY23
is utilized as pollutant. Sample solutions are sonicated
before irradiation for 4 min. At known irradiation time
intervals, the samples (4 mL) are removed, afterward,
by UV-V  which is
2000, Biotech

Pharmacia, England) at 427 nm. A linear correlation is

analysis 1is carried out

spectrophotometer  (Ultrospec
laid down in the midst of the AY?23 concentration and
the absorbance, in the range 0-50 mg/L having a
correlation coefficient, R? =0.9981 . Eq. (1) is
utilized in order to compute the photocatalytic
eradication effectiveness (R, %) in the experiments
_ (Co—=Cy

R= (—Co ) x 100 (1)
such that, Cy (mg/L) as well as C; (mg/L) are taken to
be the initial concentration of AY23 and the

concentration of AY23 at time t respectively.
2.4. Neural Network Method

In this paper, a three-layer feed-forward back
propagation neural network is used for modeling the
UV/Ag-TiO, process (Fig. 2). The input variables to
the feed-forward neural network are stated as follows:
initial concentration of dye (mg/L), UV light intensity
(W/m?), initial dosage of nano Ag-TiO, (mg/L),
irradiation time (min). AY23 removal percentage
(R, %) is chosen as the experimental response or output
variable. The defined input-output variables in this
proposed neural network have not been implemented in
any other structures of neural network proposed by
other researchers.

The MSE (mean square error) is utilized as the error

function. MSE is calculated from the model predicted

and actual measured values of the response variable as
2
MSE = 1/N Y}, (4; - Y;) )

here, A; and Y;

measured values of the response variable, respectively,

are the model predicted and

as well as N is total number of data points.

The train gradient descent is utilized with
momentum and adaptive learning rate (traingdx), as a
transfer function and the training-and-test technique to
estimate the NN. Traingdx is a network training
function which updates weight and bias values via
gradient descent and an adaptive learning rate.

Here, feed-forward back propagation NN model is
laid down to forecast the eradication of AY23 in water.
The transfer functions in the hidden layer are
considered to be linear, as well as in the output layer
are taken to be log sigmoid. NN computations are
carried out by utilizing Matlab 7.8 (2009R)

mathematical software at par with NN toolbox.
2.5. Particle Swarm Optimization Method

PSO methodology is considered as an algorithm
which utilizes plural points. The PSO on the basis of
algorithm is generated in MATLAB environment. It is
user friendly, also runs the algorithm for producing the
outcomes more effectively with optimal error. One of
the primary advantages of these kinds of concepts in
comparison to other global minimization techniques is

that the large number of members which generates the

Input layer Hidden layer Output layer

[Ag-TiO2]o

[AY23]y

CR (%)

UV light

Time

Fig. 2 Schematic diagram of the NN modeling approaches.
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particle swarm causes the methodology impressively
resilient to the problem of local minima.

Here, the capability of the PSO technique is proved
to forecast the eradication of AY23 in water by
utilizing the set of four operational variables termed as
estimators. The total process of PSO is illustrated as a
flowchart which is shown in Fig. 3.

2.6. The Dataset

This study attempts to generate artificial intelligence
concept on the basis of predictive model for eradication
of AY23 in water by utilizing a set of chosen variables
termed as the estimators. Dataset which is utilized to
generate the NN as well as PSO models in this paper, is
based on the laboratory studies performed under
statistical experimental design. Four parameters to be
mentioned as primary dye concentration, UV light
intensity, primary dosage of nano Ag-TiO, as well as
irradiation time are selected as the input variables and
eradication of AY23 as output variable. The range of

variables which are discussed is summarized in Table 1.

Out of the 100 data sets extracted via statistical design
related to the study, 80 are utilized in order to train the
models. The remaining 20 that were not included in the
training, are demonstrated in order to test the models.

3. Models, Results and Discussion

In this work, two different techniques, NN and PSO
have been applied in order to construct the predictive
models for removal of AY23 in wastewater by
implementing a set of four operational variables as the

estimators.
3.1. Results and Discussion

Two different modeling methods NN and PSO are
utilized in order to construct the predictive models for
removal of AY23 in wastewater by implementing the
same set of estimators. Here different numbers of
neurons are tested from 2 to 16 in the hidden layer.
Each topology is repeated six times to prevent random

‘ Randomly select PSO particles with initial position and velocity |

| Calculate the adaptability value of each particle |17
| Update the best fitness value and global best value |
‘ No

| Update particle velocity and position |

Has the maximum number of searches
been reached?

Fig. 3 Flowchart of PSO algorithm.

Table 1 Range of studied variables.

Variable Range
Input layer

Ag-TiO; initial dosage (g/L) 0.01-0.05
AY23 initial concentration (mg/L) 5-60

UV light intensity (W/m?) 0-60
Irradiation time (min) 0-60
Output layer

Removal of AY23 (%) 0-100

correlation considering random initialization of the
weights. Figs. 4A and 4B state the relation between the
network error and the number of neurons in the hidden
layer in NN and PSO models respectively. It can be
noticed that the performance of the network stabilized
after inclusion of an adequate number of hidden units
just about seven and six in NN and PSO models
respectively. The network which includes more
neurons in the hidden Ilayer cannot approach
effectively.

The training and validation outcomes extracted from
NN along with PSO models are utilized to calculate
several statistical validated specifications, as
coefficient of determination (R?), the root mean
squared error (RMSE), the accuracy factor (A¢) as well
as the Nash-Sutcliffe coefficient of efficiency (Ey). The
chosen validated specifications are stated as mentioned

below [20]:
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Fig. 4 Effect of the number of neurons in the hidden layer
on the performance of the (A) NN and (B) PSO modeling
approaches.
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where, Y is the mean of the computed value related to
the response variable. The coefficient of determination
(R?) exhibits the level of variability which is possible to
be stated using the models along with RMSE which
depicts an average measure of the error in forecasting
related to the dependent variable. The preciseness
factor (Af), a straightforward multiplicative factor
exhibits the diffusion of outcomes around the

prediction. Forwardly, the greater the value of Ay, the
minimal precise is the average estimate. The value of
one designates that there exists a flawless consent
between all the forecasted and the measured values
[21]. The Nash-Sutcliffe coefficient of efficiency (Es)
which shows the model fit is a normalized measure (-co
to 1) which compares the mean square error produced
with the help of distinct model simulation to the
variance of the target output sequence [22].
Considering both of the training as well as the
validation sets, the model forecasted and
experimentally computed values of the withdrawal of
AY23 in water are displayed in Figs. 5 and 6,
respectively. It distinctly reveals that the outcomes
resulted from the NN model are in superior agreement
along with corresponding experimental outcomes
taking into account both the cases for the training

(Fig. 5A) along with the validation sets (Fig. 6A).
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Fig.5 Plot of the measured and predicted removal of AY23
in water by (A) NN, (B) PSO models in training set.
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Fig. 6 Plot of the measured and predicted removal of AY23
in water by (A) NN, (B) PSO models in validation set.

Comparable values of the coefficient of
determination (R?) between the predicted and the
measured levels of AY23 elimination authenticate the
adequacy of the both modeling concepts for AY23
elimination forecast. The R* value of above 0.8 among
two groups states that the two data are notably
correlated [21]. Values related to A¢ as well as E; close
to unity and low RMSE by NN and PSO models for
both the training and validation sets affirm the superior
extension and predictive capabilities of the two
modeling techniques for the given data set.

Table 2 Performance statistics of the NN and PSO models.

Anyway, through the association amidst the
measured and the predicted values of the response
variable, both in the training and validation set (Table
2), it can be seen that the NN model carried out is
relatively superior in comparison with PSO model.

The weights which are generated are listed in Tables
3 and 4 by gradient descent and PSO as training
algorithms, respectively. The weights are coefficients
among the artificial neurons, which are analogous to
synapse strengths between the axons and dendrites in
real biological neurons. Hence, every weight decides
what proportion of the incoming signal will be
transferred into the neuron’s body [23].

The neural network weight matrix can be utilized in
order to evaluate the relative importance of the multiple
input variables on the output variables. An equation on
the basis of the partitioning of connection weights is
stated as follows [24]:

=N . N;: .
e ((wiml/ iy Wik )xIwhea])

j= Shr {Emaa (it ]/ it Wit ) xIwhaa] )}

3)

where, |; is termed as the relative significance of the jth
input variable on the output variable. W, are termed as
connection weights. N; and Ny, are the numbers of input
as well as hidden neurons, respectively. The
superscripts “i”’, ““h” and *““0” signify input, hidden as
well as output layers, respectively. Subscripts “k™, “m”

and “n” signify input, hidden as well as output neurons,
respectively.

The relative importance of input variables on the

AY23 removal efficiency is exhibited in Fig. 7. It
can be noticed that all variables have influences on the

Model Sub-set RMSE E¢

NN Training 0.04039 1.01256
Validation 0.08076 1.04562

PSO Training 0.17989 0.92895
Validation 0.19699 0.91978

Model Sub-set As R’

NN Training 1.00103 1.00685
Validation 0.99001 1.02212

PSO Training 0.96541 0.95131
Validation 0.92142 0.91089
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Table 3 Matrices of weights by gradient descent as training algorithm. W1: weights between input and hidden layers, W2:

weights between hidden and output layers.

W1 w2

Neuron [Ag-TiO,]y [AY23], UV light Time Bias Neuron Weight

2 -0.082 3.940 14.211 1.286 9.752 2 -0.15

3 0.070 0.204 -0.092 0.221 -1.344 3 25.6

4 28.311 -15.42 -5.464 -13.37 -20.03 4 -0.10

5 -2.917 2.188 -2.978 0.235 -0.657 5 -0.27

6 3.043 1.473 2.946 2.971 1.648 6 0.29

7 -0.374 1.921 1.376 2.425 -3.305 7 -0.75
Bias 21.2

Table 4 Matrices of weights by PSO as training algorithm.

between hidden and output layers.

W1: weights between input and hidden layers, W2: weights

Wi w2
Neuron [Ag-TiO,]y [AY23], UV light Time Bias Neuron Weight
2 -0.142 -0.719 0.951 -0.622 -0.999 2 0.462
3 0.012 -0.759 -0.379 0.832 0.867 3 0.497
4 -0.687 -0.251 0.101 -0.454 -0.002 4 -0.711
5 -0.549 -0.111 -0.571 0.291 -0.321 5 -0.402
6 -0.351 0.559 -0.889 -0.211 -0.101 6 -0.711
Bias -0.701

[Ag-TiO,]|

Fig. 7 Relative importance (%) of input variables on AY23
eradication effectiveness.

AY23 removal efficiency. However, the influence of
AY?23 initial concentration in comparison with others
is more. So, none of the variables investigated in this
paper could be neglected in the present analysis.

4. Concluding Remarks

In this paper, the withdrawal of AY23 by utilization

of UV/Ag-TiO, operation is researched. Predictive and
universalization abilities of the NN and PSO models in
order to eliminate the AY?23 in water are unearthed by
the implementation of a statistically designed dataset
gathered from the literature. The elimination of AY23
is successfully forecasted by implementing a
three-layer neural network along with seven neurons
related to the hidden layer in NN model as well as by
implementing a three-layer neural network in addition
to six neurons in PSO model. The comparison between
the measured and the predicted values, in case of both
training and validation set, shows that the NN model
outperforms than the PSO model. As the progress of
artificial intelligent methodology has been affected
significantly from deficiency of training techniques, so
it is taken into our consideration that our schemes cover
up this emptiness and wish that they will result in

several new applications.
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