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Abstract: This paper discusses the elimination of C.I. AY23 (Acid Yellow 23) using UV/Ag-TiO2 process. To anticipate the 
photocatalytic elimination of AY23 with the existence of Ag-TiO2 nanoparticles processed under desired circumstances, two 
computational techniques namely NN (neural network) and PSO (particle swarm optimization) modeling are developed. A summed up 
of 100 data are used to establish the models, wherein introductory concentration of dye, UV light intensity, initial dosage of nano 
Ag-TiO2 and irradiation time are the four parameters applied as the input variables and elimination of AY23 as the output variable. The 
comparison among the predicted results by designed models and the experimental data proves that the performance of the NN model is 
comparatively sophisticated than the PSO model. 
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1. Introduction 

The developed countries are facing a serious 

problem of water pollution caused by dyes. Synthetic 

dyes are the significant water contaminants and 

industrial pollutants. Azo dyes, the greatest class of 

synthetic dyes utilized in the food industries, are 

specified by the appearance of one or more azo bonds 

ሺെN ൌ Nെሻ at par with one or more aromatic systems. 

In general, these dyes cannot be eliminated by 

conventional water treatment systems [1]. Hence the 

elimination of dyes from wastewater has become a 

matter of concern for the relevant industries. The 

advancement of highly efficient techniques for the 

removal of dangerous pollutants from air, soil, and 

water is one of the most active fields in environmental 

research [2]. Therefore, it has become a necessity for 

the development of highly efficient techniques for the 

elimination of organic pollutants by transformation to 

less adverse compounds or by thorough mineralization 

[3]. Currently, chemical treatment techniques on the 

basis of generating hydroxyl radicals, known as AOPs 
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(advanced oxidation procedures) have been expanded 

[1]. An intense study of TiOଶ as a photocatalyst has 

been done for the reason of its immense chemical 

stability, without any toxicity, low cost and exquisite 

deterioration for organic pollutants [4]. The growth of 

UV/TiOଶ process to attain entire mineralization of 

organic pollutants has been extensively tested for a 

broad variation of industrial dyes [5]. Heterogeneous 

photocatalysis through amalgamation of TiOଶ and UV 

light is considered as one of the promising AOPs for 

the devastation of water-soluble organic pollutants 

observed in water as well as waste water. The hydroxyl 

radical is a dominant oxidizing factor that assails 

organic pollutants existing at or close to the surface of 

the TiO2. The ultimate result is the entire decay of toxic 

as well as bioresistant compounds into non-injurious 

species like CO2 and H2O [6]. 

Generally, the behavior associated with 

photochemical system is quite complicated. Therefore, 

the advancement of reliable and robust predictive 

models is still required for the elimination of organic 

pollutants. Numerable modeling techniques based on 

artificial intelligence, like NNs and PSO have appeared 

as adsorbent tools and have represented a better 
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2.2. Ultrasonic Bath (T 460/H) 

The ultrasonic bath Elma (GmbH) is utilized via the 

operating frequency of 34 KHz as well as a rate output 

power of 169 W. The bath contains the dimensions of 

239 mm × 136 mm × 99 mm. The total internal 

structure is constructed from stainless steel. 

2.3. Analytical Method 

In the existence of Ag-TiO2 as photocatalyst, AY23 

is utilized as pollutant. Sample solutions are sonicated 

before irradiation for 4 min. At known irradiation time 

intervals, the samples (4 mL) are removed, afterward, 

analysis is carried out by UV-V which is 

spectrophotometer (Ultrospec 2000, Biotech 

Pharmacia, England) at 427 nm. A linear correlation is 

laid down in the midst of the AY23 concentration and 

the absorbance, in the range 0-50 mg/L having a 

correlation coefficient, ܴଶ ൌ 0.9981 . Eq. (1) is 

utilized in order to compute the photocatalytic 

eradication effectiveness (R, %) in the experiments 

ܴ ൌ ቀ
஼బି஼೟
஼బ

ቁ ൈ 100          (1) 

such that, C0 (mg/L) as well as Ct (mg/L) are taken to 

be the initial concentration of AY23 and the 

concentration of AY23 at time t respectively. 

2.4. Neural Network Method 

In this paper, a three-layer feed-forward back 

propagation neural network is used for modeling the 

UV/Ag-TiO2 process (Fig. 2). The input variables to 

the feed-forward neural network are stated as follows: 

initial concentration of dye (mg/L), UV light intensity 

(W/m2), initial dosage of nano Ag-TiO2 (mg/L), 

irradiation time (min). AY23 removal percentage 

(R, %) is chosen as the experimental response or output 

variable. The defined input-output variables in this 

proposed neural network have not been implemented in 

any other structures of neural network proposed by 

other researchers. 

The MSE (mean square error) is utilized as the error 

function. MSE is calculated from the model predicted 

and actual measured values of the response variable as  

ܧܵܯ ൌ 1/ܰ∑ ൫ܣ௝ െ ௝ܻ൯
ଶே

௝ୀଵ         (2) 

here, ܣ௝  and ௝ܻ  are the model predicted and 

measured values of the response variable, respectively, 

as well as N is total number of data points. 

The train gradient descent is utilized with 

momentum and adaptive learning rate (traingdx), as a 

transfer function and the training-and-test technique to 

estimate the NN. Traingdx is a network training 

function which updates weight and bias values via 

gradient descent and an adaptive learning rate. 

Here, feed-forward back propagation NN model is 

laid down to forecast the eradication of AY23 in water. 

The transfer functions in the hidden layer are 

considered to be linear, as well as in the output layer 

are taken to be log sigmoid. NN computations are 

carried out by utilizing Matlab 7.8 (2009R) 

mathematical software at par with NN toolbox. 

2.5. Particle Swarm Optimization Method 

PSO methodology is considered as an algorithm 

which utilizes plural points. The PSO on the basis of 

algorithm is generated in MATLAB environment. It is 

user friendly, also runs the algorithm for producing the 

outcomes more effectively with optimal error. One of 

the primary advantages of these kinds of concepts in 

comparison to other global minimization techniques is 

that the large number of members which generates the  
 

 
Fig. 2  Schematic diagram of the NN modeling approaches.  
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particle swarm causes the methodology impressively 

resilient to the problem of local minima. 

Here, the capability of the PSO technique is proved 

to forecast the eradication of AY23 in water by 

utilizing the set of four operational variables termed as 

estimators. The total process of PSO is illustrated as a 

flowchart which is shown in Fig. 3. 

2.6. The Dataset 

This study attempts to generate artificial intelligence 

concept on the basis of predictive model for eradication 

of AY23 in water by utilizing a set of chosen variables 

termed as the estimators. Dataset which is utilized to 

generate the NN as well as PSO models in this paper, is 

based on the laboratory studies performed under 

statistical experimental design. Four parameters to be 

mentioned as primary dye concentration, UV light 

intensity, primary dosage of nano Ag-TiO2 as well as 

irradiation time are selected as the input variables and 

eradication of AY23 as output variable. The range of 

variables which are discussed is summarized in Table 1. 

Out of the 100 data sets extracted via statistical design 

related to the study, 80 are utilized in order to train the 

models. The remaining 20 that were not included in the 

training, are demonstrated in order to test the models. 

3. Models, Results and Discussion 

In this work, two different techniques, NN and PSO 

have been applied in order to construct the predictive 

models for removal of AY23 in wastewater by 

implementing a set of four operational variables as the 

estimators. 

3.1. Results and Discussion 

Two different modeling methods NN and PSO are 

utilized in order to construct the predictive models for 

removal of AY23 in wastewater by implementing the 

same set of estimators. Here different numbers of 

neurons are tested from 2 to 16 in the hidden layer. 

Each topology is repeated six times to prevent random  

 

 
Fig. 3  Flowchart of PSO algorithm.  

 

Table 1  Range of studied variables.  

Variable Range 

Input layer  

Ag-TiO2 initial dosage (g/L) 0.01-0.05 

AY23 initial concentration (mg/L) 5-60 

UV light intensity (W/m2) 0-60 

Irradiation time (min) 0-60 

Output layer  

Removal of AY23 (%) 0-100 
 

correlation considering random initialization of the 

weights. Figs. 4A and 4B state the relation between the 

network error and the number of neurons in the hidden 

layer in NN and PSO models respectively. It can be 

noticed that the performance of the network stabilized 

after inclusion of an adequate number of hidden units 

just about seven and six in NN and PSO models 

respectively. The network which includes more 

neurons in the hidden layer cannot approach 

effectively. 

The training and validation outcomes extracted from 

NN along with PSO models are utilized to calculate 

several statistical validated specifications, as 

coefficient of determination (R2), the root mean 

squared error (RMSE), the accuracy factor (Af) as well 

as the Nash-Sutcliffe coefficient of efficiency (Ef). The 

chosen validated specifications are stated as mentioned 

below [20]: 
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