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Abstract: In this paper, a novel discrete-time sliding mode control is proposed in order to
attenuate structural vibration due to earthquake forces. The analysis is based on the lateral-
torsional vibration under the bidirectional waves. The proposed fuzzy modeling based sliding
mode control can reduce chattering due to its time-varying gain. In the modeling equation of the
structural system, the uncertainty exists in terms of stiffness, damping forces and earthquake.
Fuzzy logic model is used to identify and compensate the uncertainty associated with the
modeling equation. We prove that the closed-loop system is uniformly stable using Lyapunov
stability analysis. The experimental result reveals that discrete-time sliding mode controller
offers significant vibration attenuation with active mass damper and torsional actuator.
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1. INTRODUCTION

The devastating earthquakes, like 1985 Mexico City, 1994
Northridge, 2008 Chile, and 2012 Emilia, have caused
severe damage in civil structures which are evident from
the exhaustive research .The control of building struc-
tures from the hazardous earthquake waves is an area
of great interest for the researchers that is growing
rapidly (Fisco and Adeli, 2011). The seismic analysis
should be considered bidirectionally in horizon (Lin and
Tsai, 2008). The bidirectional movements also induce
translation-torsion coupled vibrations in building struc-
ture (Chang, 1999; Hochrainer et al., 2000). Magneto-
rheological (IMR) damper is combined with the magneto-
rheological mass damper (MR-MD) scheme from bidi-
rectional seismic excitations in Yanik et al. (2013). The
controller used the mechanism of PD control. In Nigdeli
and Boduroglu (2013), the active tendon is used to control
torsionally irregular and multistory structures under the
grip of near fault ground motion excitation. The problems
of existed bidirectional control are: 1) they do not consider
the lateral-torsional control mechanism that is only hor-
izontal actuator id used to mitigate the lateral-torsional
vibration but a combination of horizontal actuator and
torsional actuator are not implemented; 2) they do not
analyze the stability of closed-loop system.

If the model of the building structure is unknown, fuzzy
logic can be used. Fuzzy logic method is very popular due

to its ability to map nonlinearity, simple and robust in na-
ture. There are some applications in structural control due
to its simple nature, robustness and nonlinear mapping
capability (Choi et al., 2005; Reigles and Syman, 2006).
The use of fuzzy logic to mitigate earthquake induced
vibrations on structure has multi degree of freedom when
utilizing active tuned mass damper (ATMD) (Guclu and
Yazici, 2008). In Park et al. (2002), a fuzzy supervisory
technique is applied for the active control of earthquake
induced building structures. The theory analysis of the
above papers are not presented.

The sliding mode control is designed for uncertain non-
linear systems (Utkin, 1992). It is very much effective in
terms of robustness against the changes in the parameters
and external. . In Iwamoto et al. (2002), it is used to
control bending and torsional vibration of a six-story flex-
ible structure. In Soleymani et al. (2016) a robust control
system for an active tuned mass damper (AMD) is im-
plemented in a high-rise building. Maria et al. (2016) pro-
posed an active vibration control for a two storeyed flexible
structure where the sliding mode controller is designed
utilizing LQR approach in order to validate stable motion
while undergoing sliding. An approach related to adaptive
fuzzy sliding mode in order to eliminate the damage of the
nonlinear structure was suggested by Dai (2010). The im-
plementation of computer based control require the system
and controller are in the form of discrete-time. Generally,
discrete-time control or sampling control is suitable for
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Fig. 1. The torsional oscillation of a two-floor building

the structural control, because the sampling period can be
considered the important feature in the performance of the
vibration control.

In this paper, we present a fuzzy modeling based discrete-
time sliding mode control to minimize the structural vi-
bration under the effect of bidirectional earthquake forces.
The active vibration control is based on the lateral-
torsional vibration under the bidirectional waves. By in-
troducing time-varying gain to the discrete-time sliding
mode control, the chattering is reduced. The stability of
the closed-loop system with sliding mode control and fuzzy
modeling is given. The experimental results validate the
effectiveness of the proposed methods.

2. BIDIRECTIONAL ACTIVE CONTROL OF
BUILDING STRUCTURE

For a n-floor building structure, the motion equation with
one-direction external force is (Chopra, 2011)

M3(t) + CX(t) + fu(x) = —f, (1)

where M = diag (M, M,, J;) € RC*CM diag(-) is a
diagonal matrix, M, = M, = diag (mq ---m,,), m; is the
mass of the i-th floor, J; = diag (mlr% . ~-mnr%) is the
polar moment of inertia, f; = [fs1- - fs,n] is the structure
stifflness force vector and f. is the external force vector
applied to the structure.

When the external force is in two-direction as in Fig.
1, building structure not only have vibrations in X and
Y axes, but also the torsional oscillation. torsional force
comes from the asymmetric characteristic of the building,
i.e., the physical center (cy) is different with the mass
center (¢, ), see Fig. 1.

The bidirectional external forces are expressed as

—-M, O
fe:[f:rvfy]T: [ 0 _Mu‘| |:az:|
0 0

where a, are a, are the accelerations of the external force
in X and Y directions. The structure stiffness force f; is
modeled nonlinear model. The displacements of the build-
ing structure have three components x = [z, , O}T , 0 is the
torsional angle. The damping matrix C' is proportional to
mass matrix M and stiffness matrix K, C = aM + bK.
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Fig. 2. Bidirectional active control of building structures

In order to minimize the vibrations caused by the bidirec-
tional external forces (f, and f,), we design two actuators,
active mass damper (AMD) and torsion actuator (TA),
see Fig. 2. The AMD is placed near the mass centre of
the building. The TA is placed on the physical center of
the building. The TA is a rotating disc equipped with DC
motor and is placed at the center of physical center. The
control object of TA is to decrease the torsional response
of the building structures due to the bidirectional move-
ments, and the mass center and the physical center being
difference.

The control forces have three components, u = [z, uy, ue]T
The closed-loop system with the control u is

Mx%(t) + Cx(t) + f5(x) + f.(t) =T[u(t) —du] (2)
where u(t) € #3", n is the level number of the building, dy
is the damping and friction force vector of the dampers, T’
is the location matrix of the dampers. The main role of the
AMD is to reduce the response of acceleration of building
in X and Y directions whereas the main role of the TA
is to minimize the torsional effect on the building. In the
closed-loop system (2), d,, becomes
T + €mg;g tanh [BE; ;]
iy + emg;g tanh [B; ] (3)
cf; + F.tanh(56;)

d, =

In order to design computer based controller, we use
discrete-time model for the building structure. We define
z1(t) = x and 29(t) = % , the model (2) can be
transformed into the following state space model

2=Az+Bu+F, + f. (4)

0 0 0

where z(t) = [253] , A= [0 —M_lC] , B= {M‘lF} ,
F,=M"'f, f.=M"f..

Here F, and f. can be regarded as the uncertainty parts
of the linear system Z=Az+Bu. Obviously, without the
external forces, the building structure is stable. It is
reasonable to assume that F and f. are bounded, ||Fy|| <
ds, |fell < de. We assume that the control force and the
external forces are constant during the sampling period T,

u(t) =u(kT), fo(t)= fe(kT), KT<t<(k+1)T
The discrete time model of (2) is (Lu and Zhao, 2001),
2(k+1) =Agz(k)+Bau(k)+Fas [2(k)] + fae (k) (5)
where z(k) is a state vector, A4 is a state matrix, Ag =

eAT By is the input vector, By = (/GATdT) B, u(k) is a
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scalar input, Fys(k) is the model uncertainty matrix and
fae(k) is the excitation. Since A4 and By are unknown, (5)
is written as the following general nonlinear model

z(k+1) = f[2(k)] + g [2(k)] u(k) + d [z(K)]
flz(k)] = Aaz(k), glz(k)] =T
d[2(k)] = Fas [2(K)] + fae ()

3. FUZZY MODELING AND CONTROL

i.jBa,

flz(k)] and g [2(k)] in the model (6) are unknown, in order
to design a model based control, we use following fuzzy
system to model them. The fuzzy rules have the following
form
R IF (z;is Ay;) and (y; is Asg;)
and (07 is A37) and (CCZ is A4l) and (y7 is A5l)
ami(@isA&)fﬂﬂﬂJfkwﬂisBu
R': IF (x; is Ay;) and (y; is Ag;) (7)
and (0, is Agi) and (SL‘Z is A4L) and (yz is A5z)
ami(misA&)IﬂEngumisBm

By product inference, center-average defuzzification, and
a singleton fuzzifier, the output of the fuzzy system is
(Wang, 1994)

1

, w7 iy !
P (>iz1 Wil 3_1MAJ1D _ Zwm"’i ®)
1=1

T (D)

where g A, 18 the membership functions of the fuzzy sets
Aji, wp; is the point at which fe,, = 1,if we define
H;':1M4ji
Zi:l 1y,
as f1y,, = exp (—%
variance of the Gaussian function, the matrix form of (8)
is

o; = , the Gaussian functions are chosen

), ¢ji and p;; are the mean and

Fy = w(k)olz(k) (9)
wi (k) wi(k)

where w(k) = eR™, a2(k)] =

wna())  w(k)
[o1, - 07]eR™ . So f[2(k)] and g[z(k)] are estimated as
f=wik)oslz(k)],  §=wy(k)ogz(k)]  (10)
We use the following learning law for the weights in (10),
wy(k +1) = wy(k) —n(k)oy[z(k)le; (k)
wy(k +1) = wy(k) = n(k)ulk)og[=(k))e] (k)
where £ is the dead-zone parameter, n (k) satisfies
n .
n“0:{1+ww)fﬁﬂﬁ%+lﬂbﬂq%ﬂ
0 if B e(k+1) [I<[l es(k) |

(11)

0<n<l,
n(k) =l of I + | ogu |
e;(k) is the modeling error
ei(k) = 2(k) — 2(k)
2(k) is the state of the fuzzy model

Ba(k+1) = f[2(k)] + § [2(k)] u(k) (15)
where ( is a positive constant and 8 > 1 which is a design
parameter.

(13)

(14)

In order to analyze the stability of the training algorithm
(11), we need the dynamics of the modeling error e;(k).
(15) can be expressed as
B2(k-+1) = wi (K)o [=06))+107 (6)0r (=) (k) e +e ()
(16)
where w} and wy are unknown optimal weights, €y are ¢4
are approximation errors, such as f = w}(k)o¢[z(k)] + ey,
g = w}(k)og[z(k)] + €4. The error dynamics is from (15)

g
and (16),

Besll+1) = (W) (0] + 5, (B, LRu(h) (1
5+ Egu(k)

where wy(k) = wyp(k) — wi(k),dy(k) = wy(k) —

wy(k),§; = Ry + ¢y and §, = Ry + ¢4, Ry and R, are

the remainders of the Taylor formula for f and §. The

next theorem gives the proof of the stability of the fuzzy

modeling.

Theorem 1. If we use fuzzy model (15) to identify non-
linear system (6) with the updating law (11), then the
identification error e;(k) is bounded as
1- . 2: n =
Jim [ es(k) 7= 455 ¢
provided that (12) and the dead zone 8 || e;(k + 1) ||>||
ei(k) [ -

(18)

For active vibration control, the desired reference should
be zero (without vibration), 2¢(k) = 0. The control error
is defined as

e (k) = 2(k) — 2(k) = —z(k) (19)
We propose the following quasi-sliding mode control
1 ~
u(k) = 5{—f + KTe(k) 4 osign [s(k)]} (20)

where e(k) = [e(k+1—n)---e(k)]”, K = [kn---ki]" €
R™ the feedback gain vector, o is the sliding mode gain,
s(k) is switching function which is defined as

s(k) = e(k) + KTe(k — 1) (21)
Because e(k + 1) = —KTe(k) + s(k + 1),
e(k+1) = Ae(k)+ Bs(k+1) (22)
0o 1 0 .- 0
0o o 1 .--- 0
where A = € R™" B =
0 «vv -- 0 1
—k, ek

[0,---0,1]7 € R"*!. As the proof of (Horn and John-
son, 1985) , det (s — aA) = a"k, + a" Yk, 15+ - +
ak;s" 1t + 5" We select K = [ky--- k:n]T such that the
polynomial A" + 2k A" ! + ... 4 2%k, is stable, i.e., A
is stable. A stable A can assure the following Lyapunov
equation have positive definite solutions for P

2ATPA—P=-Q
where Q = Q7 > 0.

Now we discuss the upper bound of the sliding surface
s(k). From (6), (15) and (16), the modeling error satisfies

Bei(k +1) = f + gu(k) (24)

(23)
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where f = f — f, § = § — g. Substitute the control (20)
into the plant (6), the closed-loop system is

z(k+1)= f- f+T[ f+KTe (k) + osign[s(k)]]

= —f + KTe(k) + osign[s(k)] — g(k)u(k)
Because s(k+1) = e(k+1)+KTe(k) = —z(k+1)+KTe(k),
from (20)
e(k+ 1)+ KTe(k) = —osign [s(k)] + f + gu(k)
Use (24),
s(k+1) = —osign[s(k)] + Be;(k+ 1) (25)
Since |sign[s(k)]| <1 and |e;(k+1)| < H
|s(k+1)| <o+ pH (26)

where H is the upper bound of the modeling error, 3 is
the design parameter of the fuzzy model (15)

The following theorem gives the stability of the discrete-
time sliding mode control for building structure.

Theorem 2. If the gain o of the discrete-time sliding mode
controller (20) satisfies

BH

0>

1Kl

where H is the upper bound of the modeling error, 3 is

the design parameter of the fuzzy model (15), K salsifies

the polynomial A" +v/2k; \" " +- .. 4+2% k,, is stable, then

the closed-loop system is uniformly stable and the upper

bound of the tracking error satisfies

H

) (1 + p ) (28)

P
hm_Z”e ||_% .

where P and Q are given in (23).

(27)

4. EXPERIMENTAL ANALYSIS

To evaluate the theory analysis results, a two-story build-
ing prototype is constructed. The building structure is
mounted on a shake table which can move in two di-
rections. The bidirectional shake table uses two Quanser
one degree of freedom actuators (I-40). The actuator is
the hydraulic control system (FEEDBACK EHS 160).
The building structure is constructed of aluminum. The
active vibration controller AMD is a linear servo motor
(STB1108, Copley Controls Corp.), which is mounted on
the second floor. The TA actuator is also placed on the
second floor. It has a 12V DC motor with an aluminium
disc. The entire experimental setup is shown in see Fig. 3.

The moving mass of the damper weights 5% (0.45kg) of
the total building mass. The linear servo mechanism is
driven by a digital servo drive (Accelnet Micro Panel,
Copley Controls Corp). The control software is in Win-
dows 7 with Matlab R2011a/Simulink. The vibrations
are measured by the two-axis accelerometers (XL403A),
which are mounted on each floor. The relative acceleration
in the second floor is subtracted from the ground floor
acceleration. Numerical integrators are used to compute
the velocity and position from the accelerometer signal.
The gains of the controllers are same as K, = 1800,
Ky, = 2000, Kpy = 2200, K4, = 160, Kqy = 220,
Ka9 = 300, K;, = 2000, K;, = 2300, K;p = 3500. From
Theorem 2, the gain of SMC is: ¢ = 3 for the AMD,
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Fig. 3. Experimental setup with actuators arrangement
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Fig. 4. Discrete sliding mode control of the second floor in
the X direction.
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Fig. 5. Discrete sliding mode control of the second floor in
the 0 direction.

Fig. 6. Control signal of discrete-time sliding mode control

o = 0.17 for the TA. The value of n(k) is chosen to be
0.9, z(k) € [-1,1].For the formulation of fuzzy rules, the
FIS variables selected as input variables (position error
and velocity error) and output variable (control force).
IF-THEN rules are applied. IF' and AND conditions are
applied between position error and velocity error, whereas
THEN conditions gives the required control force. We use
six fuzzy rules f , and four rules for §. Three membership
functions are used to extract the linguistic variables.

We use the Northridge earthquake signal for the shake
table. For this prototype, the displacement of the North-
ridge earthquake is scaled from 16.92cm to 1.50c¢m, and
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the time is scaled from 39.98s to 11.91s. The control
object is to minimize the relative displacement of each
floor in bidirection. The experiments are carried out in
three cases: 1) without any active control (No Control); 2)
with only TA; 3) with both AMD and TA. The vibration
attenuation along X-direction and #-direction for discrete
time sliding mode control are shown in Fig. 4-Fig. 5.
The control signal of discrete-time sliding mode control
is shown in Fig. 6. For clarity of the results, the vibration
responses are displayed for the period of 4s to 10s,whereas
the control signals are scaled from the time period of 4s
to 8s.The experimental plots validate that discrete-time
sliding mode controller successfully attenuate the vibra-
tion of the structure due to earthquake forces. The most
effective solution is achieved when AMD and TA works
in combination as AMD significantly attenuate vibration
along X-direction and Y —direction whereas TA effect is
superior along 6—direction.

5. CONCLUSION

In this paper, we first the model of the controlled building
structures. The discrete-time sliding mode control along
with fuzzy modeling achieves superior vibration control
under bidirectional seismic forces. The time varying gain of
SMC helps to reduce the chattering. A two-floor structure
associated with AMD and TA is proposed for active
vibration control. The stability of the proposed controller
has been established using Lyapunov stability theory. The
experimental results show that discrete time sliding mode
controller works well with AMD and TA. The discrete-time
sliding mode controller in combination with both AMD
and TA is efficient in mitigation of vibration along X-
direction,Y —direction, and 6—direction.The advantage of
this work is that, the stability of the proposed controller is
verified using Lyapunov candidate which is very essential
in structural control. Also, the development of TA for
torsional control is an important contribution of this
research.
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