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 6 

Inequality in energy consumption, both direct and indirect, affects the distribution of benefits 7 

resulting from energy use. Detailed measures of this inequality are required to ensure an equitable 8 

and just energy transition. Here, we calculate final energy footprints: the energy embodied in goods 9 

and services across income classes in 86 countries, both highly industrialised and developing. We 10 

analyse the energy intensity of goods and services used by different income groups, as well as their 11 

income elasticity of demand. We find that inequality in the distribution of energy footprints varies 12 

across different goods and services. Energy intensive goods tend to be more elastic, leading to 13 

higher energy footprints of high-income individuals. Our results consequently expose large 14 

inequality in international energy footprints: the consumption share of the bottom half of the 15 

population is less than 20% of final energy footprints, which in turn is less than what the top 5% 16 

consume.  17 

Income and wealth inequality have been increasing within most major economies since the 1980s. 18 

The top 1% of global income earners benefit the most from economic growth, having increased their 19 

income share substantially, from 15% to more than 20%1. Oxfam adds that in 2017, “82% of all wealth 20 

created went to the top 1%”2. Inequality is now recognized as a decisive force of our time and has been 21 

linked to issues ranging from the environmental performance of nations to domestic terrorism3,4. 22 

Climate change is likewise high on the global agenda and so is energy’s role in decarbonizing the 23 

economy5,6. Numerous studies have shown that economic inequality translates to inequality in energy 24 

consumption as well as in emissions7–9. This is largely because people with different purchasing power 25 

make use of different goods and services10 and different goods and services are sustained by different 26 

energy quantities and carriers.  27 

Most studies considering energy footprints and inequality focus on single countries. International and 28 

consumption-granular comparisons remain restricted to carbon inequality instead of energy3,9. 29 

Moreover, in energy transition research, the production and supply side have been the dominant 30 

focus. The demand side has received much less attention – and when it is considered, it is usually from 31 

a technological perspective11,12. Recent scenario work demonstrates that reorganizing and reducing 32 

energy demand can ease the shift to a low-carbon energy system13 but it is  largely projected to happen 33 

through techno-economic means. A starting point for change can be to understand how people’s 34 

everyday practices constitute the foundations for the energy system. What do people need energy 35 

for? And how much? Shove and Walker (2014) argue that different social practices entail different 36 

patterns of energy consumption14. Whatever a person does in her or his life affects the energy 37 

footprint left behind. Going to work by internal-combustion-engine car instead of electric bicycle 38 

reinforces distinct supply chains building their products upon distinct amounts of energy and upon 39 

distinct fuels, oil in the first case, electricity in the latter. Consequently, energy system design is not 40 

just an engineering issue but a social one too.  41 
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Energy is not purchased or used for its own sake, but for the end-use services it delivers15. Some end-42 

use services are essential to people’s life while others are “luxuries” that people enjoy16. For example, 43 

cooking, heating, and access to health or education infrastructure are fundamental to individual well-44 

being and even to survival. In contrast, travel holidays and plasma TVs may be desirable, but are not 45 

essential. Not all people on earth benefit from essential energy services. Roughly one billion people 46 

still do not have access to electricity17. Some studies highlight that if we increase living standards of 47 

the poor we jeopardize achieving climate goals18–20. Various authors, however, have raised the 48 

question of whether providing the poor with a “decent living standard” requires curbing “luxury” 49 

elsewhere16,21. Some have suggested limiting per capita energy consumption and emissions of high-50 

consumers to create space to provide essential energy services to those left behind22–24. Indeed, 51 

international climate goals are threatened by the emissions of high-income countries and individuals. 52 

Chakravarty et al. (2009), for instance, have shown that the potential for climate change mitigation 53 

through the reduction in emissions of one billion high emitters is far greater than the threat of granting 54 

the poorest 2.7 billion a basic level of emissions that comes with decent living standards24.Thinking in 55 

terms of emissions is crucial to climate change mitigation but it is secondary in thinking about living 56 

standards. Energy enables living standards, not emissions25. This is why we have to consider the 57 

distribution of energy in the first place. In this context, it is important to consider both the global 58 

distribution and the purpose-specific consumption of energy by income classes. 59 

We built an energy and expenditure extended input-output model that distinguishes between income 60 

groups of households. Input-output models draw on a long tradition of calculating the environmental 61 

impacts related to the production, flows and consumption of goods including their emissions, water, 62 

land, material and energy footprints26–30. We employ a Global Trade Analysis Project (GTAP 9) based 63 

Multi-Regional-Input Model (MRIO) for the year 201131. This model is then extended via household 64 

expenditure patterns from two different sources: the Global Consumption Database (GCD) of the 65 

World Bank, which comprises developing and emerging economies including the BRICS states32 (Brazil, 66 

Russia, India, China, South Africa), and Eurostat Household Budget Surveys, which includes all 28 67 

economies of the European Union plus Norway and Turkey33. We find that international and 68 

intranational inequality both are large, to the extent that the bottom half consumes less than the top 69 

5%.  70 
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Energy footprints and expenditure 71 

Energy footprints per capita generally grow as a function of income or expenditure28,34. We now test 72 

this hypothesis across a significant sample of 86 countries and 4-5 income groups resulting into 374 73 

population segments, shown in Figure 1. We fit a power law and find that energy footprints scale 74 

sublinearly with expenditure. Expenditure at higher levels becomes mildly less energy intense, 75 

corresponding to weak relative decoupling. However, this result does not differentiate between 76 

different consumption categories. It is notable that the European income quintiles and their 77 

corresponding energy footprints per capita exhibit low variation with the respective expenditure 78 

amounts. On the other hand, the data for developing countries reveals four, clearly distinct, clusters 79 

with considerable vertical variation, both above and below the EU range of energy intensities. This is 80 

caused by the structure of the Global Consumption database and its four invariant income thresholds 81 

(<$2.97, <$8.44, <$23.03 and >$23.03 per capita a day). They comprise technological, geographical 82 

and consumption differences. For example, in Belarus there is much more heating gas used than in 83 

Thailand, at a similar expenditure level, resulting in very different energy footprints.  84 

   85 

Figure 1: Energy footprints vs. expenditure. Energy footprints scale sublinearly with expenditure. Adj. R-squared 0.77, p-86 
value= 1.91e-119. Triangles represent GCD data and dots Eurostat data. 87 

Intranational inequality 88 

In terms of intranational inequality, the Gini coefficients of expenditure have a slightly narrower range 89 

than the Gini coefficients of energy footprints, as shown in Figure 2, implying that energy footprints 90 

differ more widely in their inequality than expenditure does. When expenditure is highly unequal 91 

within a country, i.e. has a high Gini Coefficient, the corresponding inequality in energy footprints will 92 

tend to be even larger. This is particularly the case for Sub-Saharan and Latin American economies 93 

(e.g. Gini coefficients in Namibia are 0.7 for expenditure vs. 0.8 for energy, Paraguay: 0.64 for 94 

expenditure vs. 0.77 for energy). At lower expenditure inequality, metrics are more likely to be similar. 95 
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This is the case for many of the European countries considered. This pattern is even more pronounced 96 

when comparing income inequality and energy inequality, see Supplementary Note 9. South Africa, 97 

for example, is consistently reported to be one of the most unequal societies in the world, with high 98 

unemployment and with substantial energy poverty35. Failure in economic inclusion causes exclusion 99 

from energy provision. Most people cannot afford electricity and thus retreat to consuming dirty fuels 100 

or very little energy. 101 

 102 

Figure 2: Energy footprint inequality vs. expenditure inequality for 2011. Energy footprint inequality scales in a superlinear 103 
way with expenditure inequality (Adj. R-squared 0.75). The energy footprint inequality is generally larger than expenditure 104 
inequality. Therefore, the best fit (red line) has a lower slope than the line of linear scaling (blue line).  105 
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The interaction of income elasticity of demand and energy intensity 106 

We measured the energy intensity and income elasticity of demand of different consumption 107 

categories over all countries in the sample. We defined energy intensity as the energy footprint 108 

intensity, which is the energy footprint of a consumption category divided by the money spent by the 109 

end-consumer. Income elasticity of demand measures how much more % of a good is consumed if 110 

income rises by 1%. If it increases by exactly 1%, then the elasticity is 1. If it is less, the elasticity is less 111 

than 1 (basic good), and if it is more the elasticity is above 1 (luxury good)8.  112 

We observe wide variations in energy intensities and elasticities across consumption categories. 113 

Package Holidays, for instance, comprises all sorts of transport services, including flights, and thus 114 

exhibits large energy intensities and large variation. Food products and “Dwelling Maintenance and 115 

Water supply” (denoted here as “Other Housing”) feature lower energy intensities around the world. 116 

This is depicted in Figure 3 (a) and (c) using probability density functions. The upper row, with (a) and 117 

(b), depicts the indirect energy use categories Food, Package Holiday or Other Housing. The lower row 118 

, with (c) and (d), shows the direct energy use categories Heat and Electricity as well as Vehicle Fuel 119 

and Operation (for simplicity summarised as Vehicle Fuel). The averages of the distributions are shown 120 

as dashed lines. The average energy intensities of Food and Other Housing are similar whereas that of 121 

Package Holidays is clearly distinct (at 24MJ/$). The corresponding elasticities of Package Holidays, in 122 

Figure 3 (b) are high too, with an average elasticity ~2. The elasticity of “Food” is on average ~0.6 and 123 

of “Other Housing” ~1.  124 

In Figure 3 (c) we show the spectrum of energy intensities in the direct energy use categories Heat 125 

and Electricity as well as Vehicle Fuel. Besides gas, heat often includes bio-based cooking fuels, 126 

particularly in developing countries. We see that the energy intensity distributions of both are similar, 127 

long tailed to the right, with the bulk of their measurements in the wide interval 25 – 150 MJ/$. The 128 

wide range in these categories is a result of both technological and price differences. Figure 3 (d), in 129 

contrast, demonstrates that the elasticity spectra of both categories are distinct, with Heat and 130 

Electricity elasticities mostly below 1, and “Vehicle Fuel” mostly above. Consumption categories that 131 

feature higher energy intensities and higher elasticities, such as Vehicle Fuel, concentrate energy use 132 

among high income individuals. A category that exhibits high energy intensity but lower elasticities, 133 

like for example Heat and Electricity, distributes energy more uniformly in society.  134 
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 135 

Figure 3:  Energy intensity and elasticity spectra. The figure displays the probability density function of the energy intensities 136 
(a-c) and income elasticities (b-d) of consumption categories. Panels (a) and (b) refer to indirect, and panels (c) and (d) to 137 
direct, energy use categories. The vertical dashed lines in (a) and (b) depict the mean of the distributions. The vertical dashed 138 
black line in (b) and (d) represents an income elasticity of 1. For direct energy use, one clearly can distinguish between the 139 
distributions in European countries and developing economies, which are the dashed and dotted curves below the continuous 140 
lines in (c) and (d) (downscaled in size to make them visible and comparable). The energy intensities and elasticities in Europe 141 
are on average lower, reflecting differences in technology, and lower economic inequality, respectively. 142 

Is there a general relationship between energy intensity and elasticities of consumption categories? 143 

In order to investigate that question, we take the population weighted mean of energy intensities and 144 

elasticities across all sample countries. The population weighted mean guarantees that the energy 145 

intensities and elasticities which are “in use” most are represented effectively. If both attributes are 146 

low we label a consumption category “Basic and low intensity”. If both are high we label them “Luxury 147 

and high intensity”. The terms “Basic” and “Luxury” are to be understood as the usual economic 148 

characterizations of consumption categories, with luxury indicating consumption associated with 149 

higher incomes, and basic associated with lower ones.  150 

Figure 4 shows the result with a resolution of 14 consumption categories. The figure is segmented into 151 

four quadrants defined by an elasticity of 1 in the y-dimension and the median of the non-population 152 

weighted distribution in the x-dimension (red dashed lines). The size of the circles indicates the 153 

relative contribution of each category to the total energy footprint. We observe a moderate rank-154 

correlation between the two variables if Heat and Electricity is excluded (ρ = 0.52, p-value=0.04). This 155 

means that for indirect/embodied energy footprints as well as for private vehicle fuel consumption, 156 

there is a significant tendency of energy intensive categories to be elastic. Note that all education and 157 
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health expenditure considered is private expenditure and not state-provided, explaining elasticities 158 

close to 1 and above.  159 

  160 

Figure 4: Elasticity vs. Energy Intensity. The energy intensity of MJ/€ for Eurostat-based data was converted via the 2011 161 
average exchange to MJ/$. For indirect energy consumption (dark circles), the income elasticity of demand correlates with 162 
the given energy intensity (rank correlation: ρ = 0.52, p-value=0.04). The direct energy consumption (light circles) through 163 
Vehicle Fuel fits well into this relationship. The only category behaving fundamentally differently is Heating and Electricity, 164 
exhibiting a low elasticity but the highest energy intensity. 165 

We also observe that the result of Figure 4 is not determined by geographical particularities. One 166 

might think that the population weighted mean emphasizes energy intensities in India or China so 167 

much that the results in other countries are overwritten. This not the case. Scrutinizing the non-168 

population-weighted version of the measurements yields that 90% of Package Holiday, 92% Vehicle 169 

Fuel are found in the red quadrant “Luxury and High intensity” while 94% of Food is found in the green 170 

quadrant “Basic and low intensity”.  171 
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International energy footprint inequality  172 

Considering all countries and income classes together, we obtain international distributions and 173 

inequality metrics. The ensuing total international energy footprint inequality is large, with a Gini 174 

coefficient of 0.52. The different consumption categories exhibit high variation, with Gini coefficients 175 

ranging from 0.45 in Heat and Electricity to 0.82 in Package Holidays. Extreme inequality is also 176 

observed when comparing how much energy the bottom 10% of the distributions consume compared 177 

to the top 10%. There are ~550 Million people in each decile, so roughly the equivalent of today’s 178 

European Union. The top 10% consume ~39% of total final energy (nearly equivalent to the 179 

consumption of the bottom 80%), while the lowest 10% consume almost 20x less, ~2%. There are 180 

three categories where the bottom 10% are entirely excluded from energy consumption so far: 181 

Recreational items, Package holiday, Vehicle Purchases. Recreational items comprise goods like boats, 182 

vans or musical instruments. In terms of Vehicle Fuel, currently 187 times more energy is used by the 183 

top 10% consumers relative to the bottom 10%. The energy inequality is thus not just of quantity but 184 

also of quality, where energy services like “individual mobility”, are out of range for the poorest 185 

populations. Table 1 provides an overview of inequality in international energy footprints 186 

distinguished by consumption category. 187 

Table 1: Overview international energy footprint inequality over 86 countries 188 

Consumption Category 

Gini 
Coeffi
cient 

Top10% to 
Bottom10% 
Ratio 

Top 10% 
share 

Bottom 10% 
share 

     
Indirect energy 0.58 30 45% 1.5% 

Food 0.45 13 32.5% 2.5% 
Alcohol and Tobacco 0.60 40 40% 1% 
Wearables 0.54 21 42% 2% 
Other housing 0.70 110 55% 0.5% 
Appliances and Services 0.66 53 53% 1% 
Health 0.56 84 42% 0.5% 
Vehicle Purchase 0.79 / 70% 0% 
Other transport 0.60 92 46% 0.5% 
Communication 0.73 580 58% 0.1% 
Recreational items 0.77 / 66% 0% 
Package Holiday 0.82 / 76% 0% 
Education & Finance & Other Luxury 0.66 102 51% 0.5% 
     
Direct energy 0.5 18 36% 2% 

Heat and Electricity 0.45 13 32% 2.5% 
Vehicle Fuel and Operation 0.70 187 56% 0.3% 
     
Total 0.52 20 39% 2% 

 189 

The distribution (Lorenz Curves) of different consumption categories are shown in Figure 5. Figure 5 190 

(a) depicts the Lorenz Curves for the entire sample while (b) emphasizes the difference between 191 

land- and air transport in developing and emerging economies (56 countries). In Land transport, the 192 

bottom 50% receive a bit more than 10% of the energy used and in Air transport they make use of 193 

less than 5%. On the other hand, the top 10% use ~45% of the energy for Land transport and around 194 

75% for Air transport. Air transport is a hugely unequal domain when considered across developing 195 

countries, and over all countries the results are similar. Air transport related activities, like Package 196 

Holiday have the “steepest” Lorenz Curves. Vehicle Fuel and Other transport are likewise very 197 



9 
 

unequal. Food and Residential energy use, in contrast, are a little less unequal than the total 198 

average. 199 

 200 

Figure 5: International Lorenz Curves. Panel (a) shows the international inequality of energy footprints across all income 201 
classes within the 86 countries taken together, for different consumption categories. The overall energy footprint inequality 202 
is the red continuous line. Embodied energy in food and direct residential energy consumption, in the form of electricity and 203 
heat, exhibit the least inequality but with Gini coefficients of 0.45 still can be described as highly unequal. The highest 204 
inequality occurs in transport-related energy consumption: Vehicle Fuel as well as Package Holidays, the latter relying often 205 
on flights. Panel (b) accentuates the difference in energy inequality for Land Transport and Air Transport in the developing 206 
world (56 countries), with Air transport being clearly more unequal. 207 

Implications of energy inequality  208 

Energy provision is considered a fundamental and integral development challenge36,37. A minimum 209 

level of energy consumption is required to enable decent well-being. Our results demonstrate that 210 

energy consumption is far from equitable and varies to extreme degrees across countries and income 211 

groups. This suggests that the inequality in the distribution of final energy is impeding the Sustainable 212 

Development Goals, rather than enabling them. Many people suffer from energy deprivation, and 213 

quite a few are consuming far too much.  214 

By combining intra country and inter country results, we obtain a higher granularity and wider range 215 

of energy footprints than comparable international studies that only operate at the national average 216 

level28. At high incomes, final energy footprints per capita are frequently greater than 200 GJ/yr or 217 

occasionally even greater than 300GJ/yr (see Figure 1). This is one order of magnitude greater than 218 

what has been identified as necessary for a decent quality of life22. We also find that 77% of people 219 

consume less than 30GJ/yr/capita and 38% consume less than 10GJ/yr/capita – this lower end is 220 

almost certainly insufficient for a decent quality of life38. Based on national averages we would 221 

measure, for example, that only 8% of the population consume less than 10GJ/yr/capita. This is a 222 

dramatic difference, enabled by considering intra-national inequality. Despite the improvement in 223 

resolution, our results are constrained by the income granularity present in the data. In Europe, the 224 

richest people we can observe are the top 20% of the population. What energy do the top 1%, 0.1% 225 

or 0.01% use? In the data for developing countries we occasionally attain a more fine-grained picture 226 

of the narrow top segments in a country because few people fall beyond the income threshold of >24$ 227 

a day. We find that the top 0.01% (~300 people) in Armenia for example have a final energy footprint 228 
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of ~1000GJ/capita/yr. If everyone would use that much, we would require ~7600EJ (Exajoule) of final 229 

energy on this planet, ~27 times more than we currently use39. 230 

Transport has been identified as a problematic sector before, encountering difficulties transitioning 231 

to low-carbon alternatives40. We show that transport-related consumption categories are among the 232 

most unequal ones. Moreover, we measure larger inequality in Air transport compared to public Land 233 

transport in Figure 5 (b). Large parts of the population are almost or entirely excluded from aviation. 234 

A similar trend can be observed surrounding the private vehicle. The top 10% consume ~55% of 235 

mobility related energy, equivalent to 13.5% of total final energy demand, the vast majority of it fossil 236 

fuel based. It is then questionable whether systems that serve only global minorities and are highly 237 

dependent on fossil fuels are favourable in facilitating mobility. The mobility of a few locks the entire 238 

energy and transport systems in to fossil-fuel dependency. It has previously been suggested that many 239 

of the engineering challenges to “net-zero emissions energy systems” could be overcome or 240 

moderated by rethinking demand40. There are concrete policy proposals that address transport 241 

demand such as a frequent flyer levy41 or reducing car dependency through urban planning as well as 242 

committing to alternative vehicle technologies, including electric and hydrogen42.  243 

We find that that no consumption category is free from energy inequality and benefits equal 244 

populations to an equal degree. We even observe energy inequality in health and education for 245 

example. Clearly, we only observe the footprints of private expenditure and not of public provision, 246 

but both are privatized to large degrees in many countries. Moreover, public and legally binding health 247 

provision, as for instance in Germany, is debited from people’s private income and thus is captured by 248 

the underlying data. Energy footprint inequality is a general phenomenon and not confined to specific 249 

domains. On the contrary, it is enforced by economic inequality across domains.  250 

Future energy inequality 251 

Our analysis delivers key insights into the relationship of socio-economic- and technological systems. 252 

We observe that high income elasticities of demand most often coincide with high consumption-based 253 

energy intensities. Their international spectra superpose. This superposition inevitably leads to 254 

unequal distribution of energy footprints. With economic growth as a core goal of political and 255 

economic processes, it is likely that this pattern will proceed and even aggravate in the future. 256 

Particularly so, if economic growth is distributed mostly to high-income people as is suggested by 257 

recent evidence43. High-income individuals will then further expand their demand of high energy 258 

intensity goods and their footprint will increase. The energy footprint of low-income individuals will 259 

remain low. Ultimately, energy footprints will sheer further away from each other. From Figure 2, we 260 

can anticipate that increasing income inequality will be translated into even larger inequality. 261 

In order to test this reasoning, we projected expenditure and population levels into the future for the 262 

two years 2030 and 2050. We did so by making use of long-term GDP projections by the OECD and 263 

long-term population projections by the United Nations. According to this simple projection (which 264 

does not take into account energy efficiency improvements, for instance), energy footprints would 265 

more than double by 2030, and quadruple by 2050, with nearly half of the increase occurring in India 266 

and China. Overall energy inequality remains quite stable, going from a Gini coefficient of 0.52 in 2011 267 

to one of 0.49 in 2050. Considering consumption categories, 34% of the energy increase can be 268 

attributed to “Vehicle Fuel” alone, another 30% to “Heat and Electricity”, and another 12% together 269 

to “Other transport” and “Education & Finance & Other Luxury”. Other subsistence like “Food” and 270 
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“Wearables”, together contribute only 7% to the increase. By 2050, we see increased inequality in the 271 

categories with high income elasticity of demand >1. For instance, “Other transport” inequality is 272 

initially almost stable, going from a Gini coefficient of 0.60 to 0.57, but then increases to 0.66. 273 

“Package Holiday” remains at a high inequality and increases slightly to a Gini coefficient of 0.83 in 274 

2050. Figure 6 displays major trends in household energy footprints by aggregated consumption 275 

categories. Transport related energy footprints are increasing their share of total while subsistence, 276 

including Food and Housing, and Heating and Electricity decrease their share. The increase in transport 277 

energy is a disastrous development for a favourable climate, if transport continues to rely on fossil 278 

fuels. One crucial limitation of our projection is that we assume economic growth is uniformly 279 

distributed across income groups within countries, when we know that it tends to accrue to the 280 

wealthiest43. Despite this limitation, we find that energy inequality is not likely to reduce significantly, 281 

and even increases by 2050 in several crucial consumption categories.  282 

 283 

Figure 6: Business as usual trends for household energy footprints. The business as usual scenario (BAU) is a simple 284 
computational experiment extrapolating expenditure patterns and energy consumption on the basis of projected economic 285 
growth and population trends. More money is spent on high elasticity goods, particularly if income was already high to start 286 
with in 2011. Therefore, the amount of additional energy required in transport dominates. This is why, according to our model, 287 
transport will become the most energy consuming household activity by 2050. 288 

However, persisting inequality can be prevented through appropriate intervention. We can classify 289 

four types of consumption categories as illustrated through the four quadrants in Figure 4. Based on 290 

their distinct nature, the four types require type-specific policy and action. In our view, this could 291 

include: 292 

Quadrant 1 High intensity, high elasticity: Dominated by transport and hard to decarbonise. 293 

Move towards significant taxation, curtailment and replacement with collective and low 294 

carbon alternatives including electrified trains, buses, bicycles and small  bespoke vehicles at 295 

the individual level (depending on disability, age and professional requirements).  296 

Quadrant 2 Low intensity, high elasticity: Consider redistributive efforts and move away from 297 

profit-based provision models, particularly if essential as in the case of education and health. 298 

Maintain agenda of complete decarbonisation. 299 

Quadrant 3 Low intensity, low elasticity: Keep public investment agenda of further 300 

decarbonisation, but do not tax, since regressive. 301 

Quadrant 4 High intensity, low elasticity: Dominated by electricity and heating and therefore in 302 

need of large-scale public programmes that retrofit buildings. 303 
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It is certainly worth probing how changing the distribution of final energy consumption can cope with 304 

the dilemma of providing a decent life for everyone while protecting climate and ecosystems. 305 

Therefore, we suggest that the next step in this research should be the exploration of energy demand 306 

distribution scenarios, testing the here suggested measures. Identifying a feasible alternative demand 307 

architecture could hugely benefit energy and climate policy. 308 

Methods 309 

Model overview 310 

We compute household energy footprints but not the footprints of government expenditure and 311 

business-related capital formation. Household energy footprints cover 70% of all energy footprints. A 312 

full description of the data and its constituents is provided in the Supplementary Table 2. The two 313 

expenditure databases are constructed with respect to the Classification of Individual Consumption 314 

according to Purpose (COICOP Version 1999)44. Therefore, the two databases can be aligned with the 315 

GTAP sectors. The GCD distinguishes between four different household income groups defined by the 316 

World Bank. The Eurostat Household Budget surveys distinguish between quintiles. In terms of energy 317 

data, we use final energy consumption provided by the International Energy Agency (IEA) for 2011 and 318 

aligned with GTAP sectors. Final energy is closer to the energy that people actually make use of 319 

compared to primary energy. It approximates the amount of energy that “operates on site” to provide 320 

a certain service. It also better represents the energy capacity required to replace fossil fuels by low-321 

carbon alternatives. Low-carbon alternatives, for instance solar or wind, often do not exhibit big 322 

differences between primary production and final use. Our database consists of the 86 countries 323 

within the intersection of the IEA, GTAP and expenditure data, representing 78% of global population, 324 

56% of global GDP and 64% of all final energy in 2011.  325 

Based on the MRIO we then calculate energy footprints per consumption category, per nation, per 326 

income group and per capita. We also compute income elasticities of demand and consumption-327 

based energy intensities per consumption category. For representing inequality, we show the 328 

distributional Lorenz curves and the corresponding Gini coefficient. Both are comparable across a 329 

wide range of studies45–47 and are relatively robust against outliers48. 330 

Data and data treatment  331 

The energy extended multi-regional input output model (MRIO) is based on the Global Trade Analysis 332 

Project (GTAP) 2011 and the IEA –Energy Balances of 2011. GTAP has been chosen because of its wide 333 

scope (140 regions) and its availability for the year 2011, which match both with the scope of the IEA 334 

data and the expenditure data. For differentiating between consumer groups according to income, we 335 

make use of the Global Consumption Database (GCD) by the World Bank and the Eurostat data tables 336 

on household expenditure patterns. The Eurostat expenditure data is given per quintile. The GCD is 337 

given per four invariant income segments: “Lowest—below $2.97 per capita a day, Low—between 338 

$2.97 and $8.44 per capita a day, Middle—between $8.44 and $23.03 per capita a day, Higher—above 339 

$23.03 per capita a day”. The Eurostat expenditure data per consumption category comes in parts per 340 

mille (ppm). This is equivalent to the percentage, of total expenditure, a household spends a year on 341 

a given category. Therefore, the mean total expenditure of households has to be distributed across 342 

the different categories according to these percentages. Subsequently, both expenditure databases 343 

have to be scaled to national level. In the Eurostat case, the expenditure is given per household, so 344 

we used the number of households as in the 2011 census to attain national expenditure volumes. The 345 
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Global Consumption Database data is given per capita as well as total population is provided. The 346 

supplementary Figure 1 demonstrates that the scaled-up national expenditure volumes fit to the 347 

national expenditure volumes of households in the GTAP (correlations with Adj. R2 = 0.99 for Eurostat 348 

and Adj. R2 = 0.91 for GCD). Even though we start from household units in the case of Eurostat and 349 

the GTAP, we generate per capita volumes in both cases, dividing the national level volumes by 350 

population.  351 

The final energy balance for each country has to be amended twofold. First international aviation and 352 

shipping bunkers have to be included too. This has been done by splitting up the world total of 353 

international aviation and shipping bunkers according to the “economic volumes” of the 354 

corresponding sectors within the GTAP. Second, one has to treat direct energy footprints of 355 

households separately. This concerns private vehicle fuel use and residential energy use in the form 356 

of heat and electricity. Residential energy use can simply be taken to be a separate vector whereas 357 

distinguishing private road fuel use from commercial fuel use requires making estimates. We did so 358 

by considering that the GTAP sector Transport n.e.c. comprises commercial vehicle use as well as 359 

supporting transport activities (e.g. for an Amazon delivery) and the Trade sector includes private fuel 360 

purchases. Then we simply took the ratio of both sectors with respect to their common total. For 361 

instance, if both sectors together are worth 10 million $ and Trade constitutes 6 million $ of that total, 362 

then 60% of the road energy goes to private direct use and 40% to commercial and indirect private 363 

use. Formally stated, let 𝑁𝑖  equal the monetary volume of Transport n.e.c.(in $) in country i, 𝑀𝑖 the 364 

Trade sector volume (in $) in country i, 𝐹𝑖the total road energy in TJ for country i, 𝐾𝑖 is the commercial 365 

road energy use in TJ and 𝑃𝑖 the private road energy in TJ in country i, then we define 366 

𝐾𝑖 =
𝑁𝑖

𝑁𝑖 + 𝑀𝑖
∗ 𝐹𝑖 

 

(1) 

 

 

𝑃𝑖 = 𝐹𝑖 − 𝐾𝑖 

 

(2) 

 

 

𝐾𝑖 (commercial) is between 20% and 50% of the total road energy for around 70% of the countries. 𝑃𝑖  367 

(private) is then between 50% and 80% for 70% of the countries. This is a first order heuristic that does 368 

not correct for the sectoral heterogeneity within Transport n.e.c. and the Trade sector. Considering 369 

the large sample size and non-existent international data for this purpose, however, it is an efficient 370 

way of distinguishing between direct and indirect energy in road transport. A comparison with GHG 371 

gas emissions by source data from Eurostat yields that the attained ratios for European countries are 372 

maximally of 20% of difference. For developing countries, the difference is sometimes higher. 373 

Nevertheless, our mean ratios of private to commercial road fuel are 65% private and 35% 374 

commercial. On the basis of the Eurostat emissions data they are 58% and 42% respectively. This is 375 

not unreasonably far off. 376 

Additional data for the income Gini coefficient has been acquired from the World Bank49. Currency 377 

transformations from Euro to Dollar have been conducted via the yearly average exchange rate of 378 

2011, 1.39$=1€.  379 

Input Output modelling of energy footprints 380 

The GTAP is a quadratic input-output table and hence we can apply the standard environmentally 381 

extended input-output computation. 382 

We need the production-based energy intensity of each industry which is 383 
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𝑒 = 𝑓 ∗ �̂�
−1 

 

  (3) 

 

where f is the energy extension and 𝑥 the diagonalized output of each industry. The ̂  denotes matrix 384 

diagonalization. The Leontief multiplier is given by 385 

𝐿 = (𝐼 − 𝐴)−1 

 

  (4) 

 

where I is the identity matrix and A the technology matrix of the economy. The total energy footprint 386 

of a country’s (i) households (h) can then be computed by  387 

𝑞𝑖 = 𝑒 ∗ 𝐿 ∗ 𝑌ℎ,𝑖 

 

  (5) 

 

We want to access footprints per consumption category in the format of the household surveys, the 388 

Classification of Individual Consumption according to Purpose (COICOP). Thus, we compute  389 

𝑄𝑖 = 𝑒�̂� ∗ 𝐶𝑖   (6) 

 

where 𝑄𝑖  is a matrix that if summed up along the columns provides the energy footprint per category 390 

in COICOP and if summed along the rows the one within GTAP. 𝐶𝑖 is a balanced concordance matrix 391 

that translates between the two datasets. Now if we take the sum of each column j in 𝑄𝑖  and divide it 392 

by the total original spends for the respective category we attain the energy intensity of a 393 

consumption category j, as for example used in Figure 3 and Figure 4. Then we use the energy 394 

intensities and multiply them with the income- and consumption-granular expenditures in the 395 

household budget surveys to arrive at the energy footprint per consumption category and per income 396 

group. 397 

Transformations between databases and RAS balancing  398 

The expenditure data comes with a different product and service classification than the GTAP does as 399 

well as the IEA energy balances do. This is why one has to transform the expenditure data and the IEA 400 

energy balances into GTAP format. Transforming the IEA energy balances into GTAP format is based 401 

on the fact that both formats maintain correspondence to the International Standard Industrial 402 

Classification of Economic Activities Revision 3.1 (ISIC Rev. 3.1). Thus, equivalent sectors have been 403 

determined and mapped accordingly. If one of the 26 IEA sectors has several correspondences in the 404 

GTAP format, the split between them has been determined by the economic size of the GTAP sectors. 405 

A second version of splitting has been tested where the splits have been computed based on the 406 

“spends on energy” by each sector but we found that the total difference in consumption-based-407 

accounts is marginal, particularly for large and significant sectors (~5% on average). The two versions 408 

correlate to 99%. 409 

Mapping from Eurostat and GCD expenditure data to the GTAP is also based on the ISIC Rev. 3.1 as 410 

reference. However, the national household expenditure volumes in total and per consumption 411 

category are not 100% equal to the ones within GTAP. Moreover, when mapping one COICOP 412 

consumption category to two or more GTAP sectors, it is unclear how much of the COICOP version 413 

belongs where. For overcoming this “blackbox” an iterative proportional balancing technique has 414 

been applied, mathematically equivalent to RAS balancing50. As a first step the COICOP version is 415 

scaled so that its volume exhibits the exact size of national GTAP household expenditures. This also 416 

overcomes currency differences as for example between Euro PPS and Dollar PPP. Afterwards, let 𝐶1 417 
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be the initial distributed concordance matrix between the COICOP system and the GTAP system. In 𝐶1 418 

the column sum represents the expenditures per category in COICOP and the row sum the 419 

expenditures per sector in GTAP format. 𝐶1 will be subject to significant error with respect to at least 420 

one of the sides. The goal is to minimize this error by iteration with respect to both sides. The next 421 

version of 𝐶, that is 𝐶2, is determined by calculating the row sum of 𝐶1, and then setting it into relation 422 

to the actual GTAP expenditures. The resulting ratio is denoted 𝑟1. Then 𝐶1 will be multiplied by this 423 

ratio across its rows. From the resulting matrix one proceeds in a similar way with the column sum 424 

and compares it against the scaled COICOP expenditures. This ratio is denoted 𝑠1. Similarly 𝐶1will be 425 

adjusted by multiplying across columns. One iteration is formalized by 426 

𝐶𝑖+1 = �̂�𝑖𝐶𝑖 �̂�𝑖   (7) 

 

where ̂  denotes matrix diagonalization. This procedure is repeated 500 times. 𝑟 and 𝑠 saturate often 427 

after a few dozens of iterations, meaning the system is in equilibrium already and the error minimized 428 

with respect to both sides. 429 

Income elasticities of demand  430 

To obtain the income elasticity of demand per consumption category we employ a log-log regression 431 

of expenditure per product (Y) on total expenditure of households (X), along the different income 432 

classes and over all countries as follows: 433 

𝑙𝑜𝑔 (𝑌𝑖𝑗) =  𝑎 + 𝑏 ∗ 𝑙𝑜𝑔 (𝑋𝑖) 

 

  (8) 

 

where i is the country index and j is the consumption category index. The coefficient b is directly 434 

interpretable as an elasticity (see supplementary material section 8). Total expenditure of households 435 

(X) functions as an approximation to income per household, which itself is not available. Only the 436 

thresholds separating the income segments are known. We validate the statistical significance of the 437 

elasticities by the students T-test which is given by b over its standard error8. If an elasticity is not 438 

significant it is not considered for the analysis in the section “The interaction of income elasticity of 439 

demand and energy intensity”.  440 

Inequality metrics  441 

For assessing the distribution of energy footprints we rely on the Lorenz curve as a visual mean and 442 

on the Gini coefficient to quantify it.  443 

The Lorenz curve can be described by   444 

𝑦𝑛 = 𝐿(𝑥𝑛) 

 

  (9) 

 

where 445 

𝑥𝑛 =  ∑ 𝑃𝑛/𝑃𝑔𝑙𝑜𝑏𝑎𝑙

𝑛

1
   (10) 

 

 446 

 𝑥𝑛 is the population share of country n, ranked by per capita energy in 𝑦𝑛, and 447 
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𝑦𝑛 =  ∑ 𝐸𝑛/𝐸𝑔𝑙𝑜𝑏𝑎𝑙

𝑛

1
   (11) 

 

where 𝑦𝑛 is the energy consumption of country n. The energy Gini coefficient then is8,51 448 

𝐺 = 1 − 2 ∫ 𝐿(𝑥)𝑑𝑥   (12) 

 

We want to compute Gini coefficients of individual countries. Then our sample size is reduced to 4 or 449 

5 data points on the Lorenz curve because we only have information on quintiles or four income 450 

segments. However, we can apply a well-defined small sample bias correction52 451 

𝐺𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐺 ∗ 
𝑛

𝑛 − 1
   (13) 

 

where n is the sample size.  452 

Business as usual scenario 453 

The income growth rates are based on the long-term GDP forecast by the OECD which maintains 454 

granular projections for each OECD member plus several other important economies including the 455 

BRIC nations53. For countries where no long-term forecasts are available, we applied the projected 456 

world average. We applied income growth rates to our proxy for income: total expenditure. Based on 457 

the projected total expenditure, we distributed consumption shares by our empirically determined 458 

income elasticities. We projected population based on the United Nations long-term population 459 

prospects where data is available for all countries in our sample54. There are two important features 460 

for a distributional scenario that we did consider but did not implement yet: first, varied growth rates 461 

across income groups and, second, evolving technology. We kept energy intensities the same, a choice 462 

that greatly simplifies the modelling exercise but contributes to converging energy footprints across 463 

income segments because developing countries tend to have high energy intensities in direct energy 464 

use and consequently higher projected energy demand. Both of these simplifications should be 465 

revised in more sophisticated scenario work.  466 

We also did test a variation of this scenario applying the average historical final energy intensity 467 

decline but it does not affect the distributional results at all. Since global GDP grew on average by 468 

3.1%/year from 1971 – 2015 (based on World Bank data)55 and final energy on average by 1.8%/year 469 

during the same period (based on IEA data), the average energy intensity (in final energy) declined by 470 

~-1.3%/year. We applied this rate uniformly to the here measured energy intensities. In this version, 471 

by 2030 household energy footprints rise to ~240EJ, i.e. they increase by ~70%, and by 2050 to ~350EJ, 472 

i.e. they more than double but do not quadruple. This may be a more realistic forecast of household 473 

energy demand under business as usual. Inequality and share by consumption category, however, 474 

remain completely unaffected by this modification since it does not account for region-specific or 475 

sector-specific technology improvement. Our scenario should be understood as a simple 476 

computational experiment extrapolating the observed expenditure and energy footprints of 477 

households with the purpose of understanding energy inequality trends, not as an accurate prediction 478 

of energy demand.   479 

Limitations  480 

We assume that the amount of expenditure represents physical quantity consumed and thus directly 481 

translates to energy quantity consumed. For example, we are blind to whether somebody bought ten 482 
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Ford cars or one Ferrari. Analysis has shown that footprints can be overestimated for high-income 483 

earners who spend on quality products that are priced high but do not use up more resources56. 484 

However, the authors note that differences between monetary based and physical unit based models 485 

is limited, particularly for energy intensive and direct energy use categories such as fuel use and 486 

aviation. Crucially, there is little physical consumption data available and the monetary data used here 487 

is all in Purchasing Power Parities designed to capture and compare physical consumption baskets. 488 

Nevertheless, in the future efforts should be undertaken to build up actual physical data. There are 489 

further uncertainties arising from a variety of sources. For example, the underlying input-output 490 

model is harmonized with respect to currencies and the individual national supply and use tables 491 

which reduces detail and accuracy. The consumption expenditure surveys come with several caveats 492 

including, survey design, non-response bias, sampling bias and so forth. The Global Consumption 493 

Database is a compilation of diverse household budget surveys that have been harmonized and 494 

extrapolated. On top of that, the transformations aligning the different databases cannot fully 495 

overcome differences in sector and product classifications. Discussing all uncertainties in detail 496 

however is not within the scope of this work. Here we highlighted some of the crucial ones when 497 

interpreting our results and evaluating our approach. A comprehensive list of uncertainties in 498 

household energy-footprint modelling can be found in Min and Rao (2017)57.  499 

Data availability 500 

The expenditure data used is available at http://datatopics.worldbank.org/consumption/ and 501 

https://ec.europa.eu/eurostat/data/database. The IEA data can be downloaded under institutional 502 

license from the UK data service at https://stats2.digitalresources.jisc.ac.uk/ and 503 

https://doi.org/10.5257/iea/web/2018-10. The underlying GTAP 9 database can be purchased from 504 

https://www.gtap.agecon.purdue.edu/databases/v9/default.asp. The concordance matrices used in 505 

the footprint calculations are depicted in the supplementary tables 3 and 4. The final energy footprint 506 

data per consumption category, nation and income group as well as energy intensities, elasticities and 507 

scenario parameters are available from the corresponding author upon reasonable request. 508 

Code availability 509 

MATLAB code for obtaining final energy footprints from the MRIO and calculating elasticities and the 510 

Gini-coefficient is available at https://github.com/eeyouol. 511 

  512 
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