

This is a repository copy of *Regulating the morphology of fluorinated non-fullerene* acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/156043/

Version: Supplemental Material

Article:

Chen, M., Zhang, Z., Li, W. et al. (11 more authors) (2019) Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells. Science China Chemistry, 62 (9). pp. 1221-1229. ISSN 1674-7291

https://doi.org/10.1007/s11426-019-9484-8

This is a post-peer-review, pre-copyedit version of an article published in Science China Chemistry. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11426-019-9484-8.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells

Mengxue Chen^{a,b+}, Zhuohan Zhang^{c+}, Wei Li^{a,b}, Jinlong Cai^{a,b}, Jiangsheng Yu^c, Emma L. K. Spooner^d, Rachel C. Kilbride^d, Donghui Li^{a,b}, Baocai Du^{a,b}, Robert S. Gurney^{a,b}, Dan Liu^{a,b}, Weihua Tang^c, David G. Lidzey^d, Tao Wang^{a,b,*}

^a School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail: twang@whut.edu.cn

^b State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China

^c School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^d Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK

⁺ These authors contribute equally to the work.

Table S1 Summary of photovoltaic parameters of PBDB-T:INPIC-4F OSCs processed using binary solvent mixtures (CB:CF=1.5:1, v/v) and different treatments.

Treatment	FF	J_{sc}	V_{oc}	$PCE_{max}(PCE_{avg})$ [%]
	[%]	$[mA cm^{-2}]$	[V]	
0.5%DIO+100 °C TA	72.7	22.0	0.82	13.1 (12.9±0.3)
0.5%DIO only	70.9	19.9	0.85	12.0 (11.7±0.4)
100 °C TA only	68.4	20.3	0.84	11.7 (11.3±0.4)
	67.2	18.8	0.85	$10.8(10.3\pm0.6)$

Figure S1 (a) *J-V* characteristics of the PBDB-T: INPIC-4F (1:1, w/w) devices under illumination of AM 1.5G (100mW cm⁻²). (b) *EQE* of devices fabricated under different processing conditions.

Table S2 Summary of photovoltaic parameters of PBDB-T:INPIC-4F OSCs with different casting solvents measured at an illumination of AM 1.5G at 100 mW cm⁻². The statistical data were obtained from over 25 individual devices.

Solvent	FF	J_{sc}	Calculated J _{sc}	V_{oc}	$PCE_{max}(PCE_{avg})$
	[%]	$[mA cm^{-2}]$	$[mA cm^{-2}]$	[V]	[%]
СВ	66.5	14.6	14.0	0.84	8.1 (7.4±0.9)
CB:CF(2:1, v/v)	71.5	16.9	16.2	0.84	$10.2 (9.7 \pm 0.7)$
CB:CF(1.5:1, v/v)	72.7	22.0	21.4	0.82	13.1 (12.9±0.3)
CB:CF(1:1, v/v)	71.6	20.4	19.8	0.83	12.1 (11.8±0.4)
CF	72.2	19.1	18.5	0.83	$11.4(11.0\pm0.5)$

Figure S2 2D GIWAXS patterns of pristine INPIC-4F films prepared from (a) CB, (b) CB:CF (1.5:1, v/v). (c) Out-of-plane 1D profiles of GIWAXS patterns along the q_z axis.

Figure S3 Optical microscope images of PBDB-T: INPIC-4F films prepared from (a) CB, (b) CB: CF (1.5:1, v/v) and (c) CF.

Figure S4 Root square plots of (a) hole densities versus voltage of the ITO/PEDOT:PSS/Active layer/MoO₃/Ag hole-only devices and (b) electron densities versus voltage of the ITO/TiO₂/Active layer/Ca/Ag electron-only devices. The linear fit was applied in the range of 0 to 6 V.

Figure S5 (a) V_{oc} versus light intensity and (b) J_{sc} versus light intensity of PBDB-T:INPIC-4F OSCs cast from various solvents.