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ABSTRACT: Nanoscale morphology has been established as one of the controlling factors in the 

device performance of bulk heterojunction polymer solar cells. We report in this work morphology 

changes in both lateral and vertical directions in PffBT4T-2OD:PC71BM solar cells, as well as their 

effects on device performance. Thermal annealing was found to increase the crystallinity of PffBT4T-

2OD and domain size of PC71BM clusters without any observable impact on vertical component 

redistribution, whilst methanol rinsing reduces the crystallinity of PffBT4T-2OD, encourages the 

migration of PC71BM towards the mixed polymer-rich phase as well as towards the film surface on 

both PEDOT:PSS and TiO2 substrates. The polymer-rich surface region in vacuum- and thermal 

annealing- treated conventional devices obstructs electron injection towards the cathode, and reduces 

the maximum achievable device efficiency, whilst this polymer-rich surface region is beneficial in the 
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inverted devices. However, although a PC71BM-rich region will locate at the cathode or anode 

interface upon methanol rinsing treatment in conventional and inverted devices respectively, holes can 

still be effectively injected from both sides the device to ensure effective charge transport, as 

supported by a number of optoelectronic property investigations. 

1. INTRODUCTION 

Polymer solar cells (PSCs), especially with bulk heterojunction (BHJ) structure, benefit from 

their low material costs and advantages of solution-processing, and have been regarded as a promising 

candidate for the next generation renewable energy sources.1-3 BHJ-based devices, which consist of 

multiple length-scale phase-separated electron donors and acceptors, facilitate charge separation at the 

donor/acceptor interface and charge transport through an interpenetrating network. Over the past 

decade, tremendous efforts from molecular tailoring, morphology control and interfacial engineering 

have greatly boosted the power conversion efficiency (PCE) of laboratory scaled PSCs to over 14%.4-5 

However, due to the relatively low charge mobilities in organic semiconductors, most PSCs have 

an optimized film thickness around 100 nm to balance the photo-absorption and charge transport, 

which may otherwise seriously restrict the practical transition of those high performing PSCs to 

industrial fabrication.6-8 To meet mass production requirements, PSCs with thick photoactive layers 

without compromised performance are desired. To this end, a series of high-mobility conjugated 

polymers based on the difluorobenzothiadiazole  or naphthobisthiadiazole building blocks have been 

developed, which exhibited a highest PCE of over 10% with the thickness of the BHJ layer over ~250 

nm, with poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′′′-di(2-octyldodecyl)-

2,2′;5′,2′′;5′′,2′′′-quarterthiophen-5,5′′′-diyl)] (PffBT4T-2OD) as one promising electron-donating 

polymer from this family.9-10 PffBT4T-2OD has been found to display temperature-dependent 

aggregation behavior, and can form desired morphology that contains highly crystalline yet 

reasonably small polymer domains. Although relatively good devices nearing 11% can be achieved in 
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PffBT4T-2OD:PC71BM solar cells, this photovoltaic device has been found to be unstable and 

degrades at a fairly fast rate due to decomposition within the solid photovoltaic film.11 This 

decomposition originates from its thermal-dynamic instability, and is exacerbated with the presence of 

a high boiling point solvent additive such as 1,8-diiodooctane (DIO), which is added to the solution to 

promote the formation of ideal morphology but partly remains due to its slow evaporation rate during 

the film casting process.12,13  

In this work, we have applied three solvent extraction methods, herein referred as vacuum 

extraction (VA), thermal-annealing extraction (TA) and methanol-rinsing extraction (MA), to remove 

the residual DIO which can contribute to enhance the device efficiency and stability. We found that 

these three post-treatments result in different nanoscale morphologies, notably with methanol rinsing 

reducing the crystallinity of the PffBT4T-2OD phase and promoting the migration of PC71BM 

towards the film surface that was originally polymer-rich in the as-cast film. The impacts of these 

vertical component distributions, however, depend on the device configurations (i.e. direct and 

inverted device structures).  

2. EXPERIMENTAL SECTION 

TiO2 nanoparticles were synthesized following our previous report,14 with as-synthesized TiO2 

precipitated and purified three times with diethylether before further use. The precipitate was 

collected and dispersed in 2-methoxyethanol by ultrasonication to prepare a TiO2 dispersion with a 

solid content of ~5 mg/mL. To modify the TiO2 dispersion, 30 µL of titanium(diisoproxide) bis(2,4-

pentanedioante) (TIPD) was added into 2 mL of the TiO2 dispersion, and agitated for 2 h to allow 

efficient blending. The dispersions were stored in a refrigerator at least 48 h before use. TIPD will 

convert to titanium oxide bis(2,4-pentanedionate) (TOPD) after losing the isopropoxide group upon 

thermal annealing, to reduce the porosity and surface roughness of TiO2 films, and enable an efficient 

TiO2:TOPD electron transport layer (ETL). 
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Inverted PSCs are constructed with the structure of ITO/TiO2:TOPD (20 nm)/PffBT4T-

2OD:PC71BM (250 nm)/MoO3 (10 nm)/Ag (100 nm). Pre-patterned ITO-glass substrates with sheet 

resistance ≈15 Ω/sq were cleaned by ultrasonication sequentially in water, acetone, ethanol, and 

isopropyl alcohol each for 10 min and then dried at 140 °C on a hotplate. Cleaned ITO substrates were 

further treated with UV-O3 for 10 min. The TiO2:TOPD ETL was cast from the TiO2:TIPD dispersion 

at 3000 rpm, followed by thermal annealing at 155 °C for 30 min to create a Ĭ20 nm thick thin film. 

All processes were performed in an ambient environment. Then the coated TiO2:TOPD ETL 

substrates were transferred to an N2-filled glovebox to cast the active layer. PffBT4T-2OD:PC71BM 

blends (w/w, 1:1.2) were prepared in a CB/DCB mixture (v/v, 1:1) with 3% of DIO (polymer 

concentration: 9 mg mL-1). To completely dissolve the polymer, the active layer solution was stirred 

on a hot plate at 110 oC for at least 3 h. The ITO substrates were also preheated on a hot plate at ~110 

oC before spin-coating. Then the preheated ITO substrates were transferred to the spin coater chuck 

and casting of films was completed within 10 s. The wet films were spun at 800 rpm for 40 s, and then 

at 4000 rpm for 20 s to create a film of ~250 nm. For the vacuum-treated (VA) samples, the as-cast 

films were immediately sent to the vacuum chamber and kept overnight (~12 h) under a high vacuum 

(~10-7 torr) to completely remove the residual DIO. For thermally annealed (TA) samples, the as-cast 

films were heated on a hot plate at 100 oC for 5 min, which lies between the glass transition 

temperature (Tg, ca. 90 oC) and the melting temperature (Tm, ca. 260 oC) of PffBT4T-2OD to modify 

the crystallinity and phase separation in the blend.11,15,16 For methanol rinsed (MA) samples, the as-

cast films were rinsed with 200 µl methanol at 4000 rpm for 20 s. Finally, 10 nm MoO3 and 100 nm 

Ag were deposited onto the photoactive layer through shadow masks by thermal evaporation, defining 

the size of each active area as 4 mm2.  

For the direct configuration devices, 40 nm PEDOT:PSS (Clevios, AI 4083, Heraeus, Germany) 

films were cast on the pre-cleaned ITO substrates as the hole transport layer. The films were then 
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dried at 135 °C for 20 min before depositing the photoactive layer following the same procedure as 

described above. Finally 5 nm Ca and 100 nm Ag were thermally evaporated forming a cathode under 

high vacuum. All the devices were encapsulated with UV-curable epoxy glue and glass slides before 

removing from the glovebox for device testing. 

Current density-voltage (J-V) curves under AM 1.5G illumination (100 mW/cm2) were measured 

with programmable J-V sweep software developed by Ossila Ltd. (Sheffield, UK). Before J-V testing, 

the intensity of the Newport 3A solar simulator was first calibrated with a NREL-certified silicon 

reference cell. An aperture mask was placed over the devices to accurately define a test area of 2.12 

mm2 on each pixel and to eliminate the influence of stray and wave-guided light. Surface morphology 

of the active layer was characterized by atomic force microscopy (AFM, NT-MDT, Russia). 

Transmission electron microscopy (TEM, JEOL, Japan) was also performed for a plan-view of the 

bulk morphology of the active layer. PffBT4T-2OD:PC71BM films were floated off the substrates by 

dissolving the water-soluble PEDOT:PSS in DI-water and then lifted by the copper grids for TEM 

characterization. Water contact angle measurements were performed using a water contact angle 

measurement system (Attension Theta Lite, Sweden), and the surface energy was calculated using the 

equation of state. The absorption of the films were measured with a UV-Vis Spectrophotometer 

(HITACHI, Japan) equipped with the integrating sphere. Film thickness measurements were 

conducted using a spectroscopic ellipsometer (J. A. Woollam, USA). Synchrotron grazing incidence 

small-angle X-ray scattering (GISAXS) measurements were conducted using the beamline BL16B1 at 

the Shanghai Synchrotron Radiation Facility (SSRF) in China. Grazing incidence wide-angle X-ray 

scattering (GIWAXS) measurements were conducted using the beamline I07 at Diamond Light 

Source in the U.K. The energy of the X-ray beam was 10 keV and the incident angle varied from 0.12 

to 0.25o. Samples were prepared on Si substrates and received the same processing procedure as used 
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in devices. XPS measurements were conducted by using a Thermo Fisher Scientific PHI Quantera II 

system with a monochromatic Al Kα source. 

3. RESULTS AND DISCUSSION  

The PC71BM-selective solvent DIO was added to tune the aggregation size of the electron 

acceptor PC71BM in order to improve the efficiency of PSCs.10 However, due to its high boiling point, 

DIO has also been found to remain in the active layer of the device, where its presence acts as charge 

traps that deteriorate device performance and lifetime.12 We therefore have applied three DIO 

extraction methods: VA, TA and MA to remove DIO from the as-cast films. As TA- and MA- treated 

films will inevitably receive further vacuum treatment during the cathode or anode deposition process, 

VA- treated films essentially serve as the reference here to examine the effects of TA and MA. Since 

charge generation and recombination behaviors are closely related to the nanoscale morphology in 

both lateral and vertical directions,17,18 a number of surface and bulk characterizations have been 

performed to obtain these data. First of all, it is obvious that the crystalline fibrils can be observed in 

the bulk of all samples under transmission electron microscopy (TEM) due to the strong temperature-

dependent aggregation behavior of PffBT4T-2OD during the film casting process,9,19 with slightly 

enhanced crystallinity in the TA-treated blend film (Figure 1a-c). These variations in the bulk of the 

film were confirmed by the surface morphology observed with atomic force microscopy. As shown in 

Fig. 1d-f, more fibril features can be observed in the TA-treated film surface, with an associated 

enhancement of surface roughness due to the increased crystallinity of PffBT4T-2OD. The MA-

treated blend, however, displayed reduced fibril-like features and a smoother surface via AFM 

characterization, indicating reduced crystallinity of PffBT4T-2OD and surface coverage by the 

migration of fullerene. 
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Figure 1. TEM (top) plan-view and AFM (bottom) surface images of PffBT4T-2OD:PC71BM films 

upon (a and d) VA, (b and e) TA, (c and f) MA post-treatment. Below the AFM images the 

corresponding Root-Mean-Square (RMS) surface roughnesses are shown. AFM images are 2 x 2 µm2.  

GIWAXS and GISAXS characterizations using synchrotron X-ray sources have also been 

performed to confirm the variations of the PffBT4T-2OD crystallinity upon these three different post-

treatments, and provide information on the domain sizes of the polymer and fullerene phases, which 

TEM and AFM cannot measure precisely due to limits in spatial resolution and phase contrast. The 

1D profiles of the 2D GIWAXS patterns show the (100) lamella and (010) p-p stacking diffraction 

peaks of PffBT4T-2OD at 0.3 and 1.76 Å-1 respectively, suggesting that thermal annealing and 

methanol rinsing treatments increased and reduced the diffraction intensity of lamella crystalline and 

p-p stacking of PffBT4T-2OD. A similar conclusion can be drawn on the aggregation of PC71BM 

RMS= 5.6 nm 
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based on its diffraction peak at ~ 1.34 Å-1. GIWAXS measurements therefore support the previous 

findings by TEM and AFM measurements. GISAXS patterns of three post-treated PffBT4T-

2OD:PC71BM film on the same type of substrates are shown in Figure 2e, and the 1D in-plane 

GISAXS profiles are extracted and shown in Figure 2f and then fitted with a combination of the 

Debye-Anderson-Brumberger equation (DAB model) and Fractal model using software SasView.  

The best fitting parameters are summarized in Table 1. In the 1D GISAXS profiles, enhanced 

scattering intensities in the low-Q region are mainly attributed to the PC71BM-dispersed polymer-rich 

phase, and can be characterized by the correlation length ξ in the DAB model.20 In Table 1, the 

correlation length ξ of VA-treated material is around 26 nm, which is close to the reported value of 

around 30 nm obtained by resonant soft X-ray scattering.9 This relatively long correlation length can 

be ascribed to the fast quenching process after film casting using a hot solution that leaves more open 

structure within the photovoltaic film. After TA treatment, this correlation length ξ reduced to 20 nm, 

partly as a result of the reduced open space upon thermal annealing. Another origin can be attributed 

to the diffusion of PC71BM particles out of the polymer-rich phases, which will reduce the correlation 

length of the polymer-rich phase but increase the correlation length of PC71BM cluster domain from 

35.1 to 39.5 nm. This correlation length of the PC71BM cluster domain is represented by 2Rg (where 

Rg is the Guinier radius) and is a product of parameters h and D, which are the correlation length and 

fractal dimension of the fractal-like network of PC71BM.21,22 Remarkably, we found opposite changes 

after MA treatment, that the correlation length of the polymer-rich phase increased to 41.6 nm and the 

size of the PC71BM cluster domain reduced to 33.8 nm, which suggests that the PC71BM particles 

started to dissociate from their close-packed clusters and diffused into the polymer-rich phase during 

methanol rinsing. Our GIWAXS measurements already confirmed that the crystallinity of PffBT4T-

2OD decreased upon MA treatment, that is to say, the number of less-ordered and amorphous regions 

increased. After film casting, the residual DIO with extremely low volatility will primarily distribute 
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among PC71BM particles due to a better miscibility between the two materials. The low-boiling-point 

methanol has high volatility and good miscibility with DIO, which can rapidly drive DIO molecules 

and PC71BM particles vertically towards film surface (results will be discussed further in the 

following section) during MA treatment, an effect that will lead to the redistribution of PC71BM into 

the polymer-rich phase to reduce the polymer crystallinity. 

 
Figure 2. 2D GIWAXS patterns of PffBT4T-2OD:PC71BM film upon (a) VA, (b) TA and (c) MA 

treatments, and (d) the corresponding 1D profiles in the qz (out-of-plane) direction. (e) 2D GISAXS 

patterns and (f) the corresponding 1D profiles along the qy (in-plane) direction.  

Table 1. Fitting parameters of 1D GISAXS profiles of PffBT4T-2OD:PC71BM films with 

different DIO extraction procedures 

Procedure ξ	[nm] η [nm] D 2Rg [nm] 

VA 26.0 7.3 2.94 35.1 

TA 20.0 8.2 2.94 39.5 

MA 41.6 7.1 2.90 33.8 

ξ represents the average correlation length of the fullerene-dispersed polymer phase, which can be 

fitted in the low-Q region with the DAB model. η and D are the correlation length of PCBM 

aggregation and fractal dimensionality of PCBM cluster extracted from the Fractal model, 

respectively. Rg represented the Guinier radius (Rg) of the clustered fullerene phase, calculated with 

the equation: Rg= #∃%(%∋()∗ +�. 
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To complete the three-dimensional nanoscale morphology changes of PffBT4T-2OD:PC71BM 

upon these three types of post-treatments, we have further investigated the component distributions in 

the vertical direction using XPS measurements of this blend cast on poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and titaniumdioxide/ titaniumoxide 

bis(2,4-pentanedionate) electron transport layer (TiO2:TOPD) film surfaces, which can be further 

processed to fabricate conventional and inverted PSCs. Detailed experiments procedures were 

introduced in experimental section. We examined the surface component information by estimating 

the carbon/sulfur (C/S) atomic ratio, as the S atom is the characteristic element of PffBT4T-2OD. The 

C/S atomic ratio can be de-convoluted from the XPS spectrum scan (Figure 3a and b) based on the 

peak area of C 1s at 285 eV and S 2p at 164 eV. The weight ratios of PC71BM and polymer at surface 

can be then calculated from corresponding C/S atomic ratio, corrected using elemental sensitivity 

factors. Specific values are summarized in Table S1. We have observed that the surface distributions 

of donor and acceptor are rather similar when deposited onto different type of substrates, i.e. TiO2 and 

PEDOT:PSS explored in this work (Figure 3c).23 Both VA- and TA-treated films showed a polymer-

rich top-layer with a polymer content around 80%, however, the MA-treated films contains more 

PC71BM (between 60-70%) at the film surface, which indicated that methanol rinsing effectively 

drives the migration of PC71BM particles towards the film surface, consistent with previous reports.24 

Combined with the observations from bulk morphology studies in the earlier section, we can conclude 

that thermal annealing increases the crystallinity of PffBT4T-2OD and domain size of PC71BM 

clusters without any observable impact on vertical component redistribution. Methanol rinsing 

therefore encourages the migration of PC71BM towards the mixed polymer-rich phase as well as 

towards the film surface on both substrates. 



 11 

 
Figure 3. XPS spectra of PffBT4T-2OD:PC71BM blend films after different post-treatments cast on 

(a) PEDOT:PSS and (b) TiO2:TOPD surfaces. (c) Plots of PCBM content at the PffBT4T-2OD: 

PC71BM  film surface. (d) Schematic of the nanoscale morphology in VA-, TA- and MA-treated 

PffBT4T-2OD:PC71BM  blend films.  

 

Table 2. Surface free energy of PffBT4T-2OD:PC71BM blend films after different post-

treatments cast on PEDOT:PSS and TiO2 substrates. 

Substrate Treatments Surface free energy (mJ m-2) 

PEDOT:PSS 

VA 20.3 

TA 20.0 

MA 22.0 

TiO2:TOPD  

VA 20.0 

TA 20.1 

MA 23.5 
 

Further, surface free energy of the PffBT4T-2OD:PC71BM blend upon different treatments was 
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information on the surface components of the blend film (Table 2). Neat PffBT4T-2OD film has a 

relatively low surface free energy of ca. 18.5 mJ m-2, in contrast to a much higher surface free energy 

of ca. 35.5 mJ m-2 of PC71BM. VA and TA treated blend films cast on either PEDOT:PSS or TiO2 

substrate exhibited similar surface free energy ca. 20.0 mJ m-2, suggesting that the material locating at 

the film surface is primarily PffBT4T-2OD. However, the surface free energy of the blend cast on 

PEDOT:PSS and TiO2  increased to 22.0 and 23.5 mJ m-2 respectively after MA treatment, indicating 

that more PCBM has migrated to the film surface to increase the free energy. Our surface free energy 

analysis therefore agrees with and confirms the validity of our XPS measurements. 

Intuitively, the contrasting vertical component distributions will link either unfavorably or 

favorably with interfacial contacts, and thus impact differently on device performance in conventional 

and inverted configuration.24-26 More specifically, a PC71BM-rich layer near the PSC cathode and a 

polymer-rich layer near the PSC anode would facilitate charge transport and reduce charge 

recombination, and subsequently enhance device PCE.24,27,28 To confirm this, we have fabricated six 

kinds of devices receiving three post-treatments in both conventional and inverted configurations. The 

J-V characteristics of these devices are shown in Figure 4 and detailed photovoltaic parameters are 

summarized in Table 3. In a conventional configuration, the VA-treated device exhibits a relatively 

low PCE with a Voc of 0.715 V and a FF of 64.6%. The performance can be improved by TA- and 

MA-treatments with enhancements in both Voc and FF, although the Jscs of these devices are slightly 

decreased. As there are no significant changes over the light absorption of these films (see Figure S1), 

a lower Jsc is likely due to reduced charge generation and collection. Among these features, the 

biggest change would be the increase of FF from around 65% in VA- and TA-treated devices to 

72.7% for the MA-treated device. The redistribution of the PC71BM component in the film surface to 

form a PC71BM-rich surface layer, i.e. in contact with cathode of the conventional device, will 

contribute to this, as it favors electron transport towards the cathode and reduces charge 



 13 

recombination at this interface. This brings a notable increase in device PCE to 10.3%, more efficient 

than TA treatment although it increases the molecular order in the BHJ layer. In the VA- and TA-

treated devices, however, the surface layer near the cathode interface is polymer-rich, therefore charge 

recombination is more prominent so the device FF is low. 

In an inverted configuration, the surface enrichments of PffBT4T-2OD near the top interfaces in 

VA- and TA-treated devices would favor hole transport toward the anode, and the surface enrichments 

of PC71BM near anode would obstruct hole transport and induce more charge recombination in 

principle. However, a FF of around 75% was obtained in all these devices, and PCEs of 10.7% were 

obtained in both VA- and MA-treated devices. The PCE of the TA-treated device received a slightly 

lower PCE of 10.2%, mainly due to a reduced Jsc. Vertical component distribution therefore does not 

correlate with device performance in inverted PffBT4T-2OD:PC71BM. To shed light on these 

observations, we have conducted further electrical characteristic tests on those devices.  
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Figure 4. (a and b) Champion J-V curves, and (c and d) EQE spectra of (a, c) conventional and (b, d) 

inverted PSCs with different post-treatments. 

Table 3. Device metrics of PffBT4T-2OD:PC71BM PSCs. The average PCEs were obtained 

based on 32 individual devices 

To explore the charge recombination mechanism, we investigated the Voc vs. light intensity 

characteristics in both conventional and inverted devices as shown in Figure 5a and d, respectively. 

The Voc can scale almost linearly with the light intensity in a semi-logarithmic plot. The slope of the 

fitted line relates to nkT/q, where n is defined as the ideality factor of the device, k is the Boltzmann 

constant and q is elementary charge.29,30 A slope greater than one suggested the increase in 

bimolecular charge recombination. The slopes of VA- and TA-treated conventional devices exhibited 

relatively high slopes of 1.72 kT/q and 1.50 kT/q, which indicate serious bimolecular charge 

recombination in these devices. This increased charge recombination can be ascribed to the blocking 

effect on electron transfer of the polymer-rich top layer near the cathode. The MA-treated device 

recorded the lowest slope of 1.28 kT/q, indicating the least extent of bimolecular recombination. For 

all the inverted devices the slopes are close to 1.20 kT/q, which indicated efficient charge transport. As 

summarized in Table 3, all inverted devices exhibited a high FF close to 75%, a characteristic that is 

consistent with the charge recombination investigation here.  

Device  

Structure 
Treatments 

PCEmax 

(PCEave) (%) 

FF 

(%) 

Jsc  

(mA/cm2)!

Voc 

(V)!

Rs 

(Ω cm2)!

Rsh 

(Ω cm2) 

 VA 9.0 (8.6±0.3)! 64.6! 19.45! 0.715! 7.4 ! 379.5 !

Direct TA 9.3 (9.1±0.2)! 66.6! 18.58! 0.753! 8.1 ! 478.4 !

 MA 10.3 (9.6±0.3)! 72.7! 18.90! 0.746! 6.7 ! 452.5 !

 VA 10.7 (10.4±0.2)! 75.7! 19.26! 0.733! 3.5! 460.3!

Inverted TA 10.2 (9.7±0.1)! 75.0! 18.27! 0.741! 3.9! 429.6!

 MA 10.7 (10.4±0.2)! 74.6! 19.54! 0.736! 3.6! 516.9 
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Figure 5. Light-intensity dependent open-circuit voltages of (a) conventional and (d) inverted devices. 

Dark J-V curves for (b) conventional and (e) inverted devices. And photocurrent density (Jph) versus 

effective voltage curves (Veff) of (c) conventional and (f) inverted devices. 

Dark J-V curves were plotted in Figure 5b and e to examine the device rectification properties, 

which are strongly related with charge blocking properties. The MA-treated device exhibited the 

highest rectification ratio in the conventional configuration, with the smallest current leakage density, 

which indicates a better contact between the photoactive layer and cathode. However, the situation is 

reversed for the VA-treated devices. The inverted VA-treated devices exhibited the smallest leakage 

current density under reverse voltage and the highest forward current under forward voltage. The MA- 

treated devices have moderate rectification properties, which indicate that charge transport would be 

less influenced by the unfavorable vertical component distributions. The TA-treated devices showed 

worse rectification properties, with the highest leakage current density. Exciton dissociation efficiency 

and recombination properties can be determined from J-V curves under illumination and dark 

conditions to investigate the relationship between Jph and Veff., with Jph was defined as the difference 

between current density under illumination (JL) and current density in the dark (JD), and Veff was 

defined as V0-V where V0 is the voltage when Jph= 0 and V is applied bias voltage.31 It is seen that the 
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photocurrent increased linearly with voltage at low Veff, and then saturated at high Veff where most of 

the e-h pairs were completely dissociated and driven to electrode. The charge collection probability 

(Pc) can be defined as Jph/Jph,sat, and can be applied to examine the charge block and collection 

behavior. Charge collection probability (Pc) of VA-, TA- and MA-treated devices in a conventional 

configuration are 97.8%ǃ97.9% and 99.0%, respectively. However, the collection behavior in all 

inverted devices is very efficient, with all devices having a Pc exceeding 99% although that of the 

TA-treated devices is slightly lower. Figure S2 shows the Nyquist plots of impedance spectra 

measurements for conventional and inverted devices, respectively. The data were fitted with a double 

RC in parallel connection equivalent circuit modeling. Interestingly, the interface resistance (Rs) 

varied sharply from 118, 123 to 61 Ω for VA-, TA- and MA-treated conventional devices 

respectively. However, Rs changed to a much lesser extent, with values of 43, 65 and 54 Ω for VA-, 

TA- and MA-treated inverted devices. These optoelectronic characterization results again support our 

previous conclusion from J-V measurements that these post-treatments have less influence on device 

performance in an inverted configuration. 

Finally, we evaluate the different charge block behavior in these devices using hole-only devices 

with a configuration of glass/ITO/PEDOT:PSS/Active layer/MoO3/Ag. For VA- and TA- treated 

devices, the current-voltage curves under dark conditions showed distinctly asymmetric J-V curves 

(see Figure 6a), so that the variations of vertical component distribution should bring notable changes 

to device performance, with a polymer-rich region near cathode will seriously hampers electron 

injection to the cathode (see Figure 6b), as our device results have supported. However, the current 

density-voltage curve is symmetric for the MA-treated device, which indicates that holes can be 

effectively injected from either side of both conventional and inverted devices, that is to say, around 

65% of polymer donor near the surface region (see our XPS results) does little to inhibit vertical 

charge transport (see scheme in Figure 3d). This observation is not unusual, with previous works 
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having reported similar results; devices with 75 % of P3HT at the air surface were also found to have 

a negligible impact on device performance.32 

 

Figure 6. (a) The linear J-V curves of the hole-only devices prepared in different DIO extraction 

procedures. (b) Corresponding energy level diagram for the injection of holes for the hole-only 

device.  

4. CONCLUSION 

We have investigated the nanoscale morphology changes of PffBT4T-2OD:PC71BM solar cells 

in both lateral and vertical directions upon vacuum, thermal annealing and methanol rinsing post-

treatments. We found that thermal annealing increased the crystallinity of PffBT4T-2OD and the 

domain size of PC71BM clusters, whilst methanol rinsing reduces the crystallinity of PffBT4T-2OD 

and facilitates the diffusion of PC71BM into the mixed PffBT4T-2OD:PC71BM phase as well as 

towards the film surface, on both PEDOT:PSS and TiO2 composite surfaces. The polymer-rich surface 

region in vacuum- and thermal annealing- treated conventional devices obstructs electron injection 

towards the cathode, and reduces the maximum achievable device efficiency, while conversely this 

polymer-rich surface region is beneficial in the inverted devices. However, although a PC71BM-rich 

region will locate at the cathode or anode interface upon methanol rinsing treatment in conventional 

and inverted devices respectively, holes can be effectively injected from both sides of the device to 
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ensure effective charge transport, as supported by a number of optoelectronic property investigations. 

The influences of vertical component distribution therefore cannot be summarized in a simple 

conclusion, and complex results may be obtained depending on the device configuration. 
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