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Abstract

We propose a new formula for the star product in deformation quantization of Poisson

structures related in a specific way to a variational problem for a function S, interpreted

as the action functional. Our approach is motivated by perturbative algebraic quantum

field theory (pAQFT). We provide a direct combinatorial formula for the star product,

and we show that it can be applied to a certain class of infinite-dimensional manifolds

(e.g. regular observables in pAQFT). This is the first step towards understanding how

pAQFT can be formulated such that the only formal parameter is �, while the coupling

constant can be treated as a number. In the introductory part of the paper, apart from

reviewing the framework, we make precise several statements present in the pAQFT

literature and recast these in the language of (formal) deformation quantization. Finally,

we use our formalism to streamline the proof of perturbative agreement provided by

Drago, Hack, and Pinamonti and to generalize some of the results obtained in that

work to the case of a nonlinear interaction.
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1 Introduction

Constructing interacting quantum field theory (QFT) models in 4 dimensions is one

of the most important challenges facing modern theoretical physics. Even though

there is no final consensus on how the actual axiomatic framework underlying QFT

should be formulated, most attempts at construction of models try to fit into one of

the established axiomatic systems: Wightman–Gårding [53], Haag–Kastler [33,36],

or Osterwalder–Schrader [46]. On the other hand, most computations in QFT are

done using less rigorous methods and often rely on a perturbation theory expansion

organized in terms of Feynman graphs.

A new approach that combines the advantages of a mathematically sound axiomatic

framework with perturbative methods has emerged in the last 2 decades; it is called

perturbative algebraic quantum field theory (pAQFT). The foundations were laid in

[8,17–21], and further results concerning fermionic fields and gauge theory were

obtained in [28,29,51]. For reviews, see [16,52].

One of the ingredients of pAQFT is formal deformation quantization—the con-

struction of a (quantum) star product for the algebra of observables [4,5]. The first

application of deformation quantization to QFT appears in the works of Dito [13,14].

There are two well-known general constructions of star products on finite-

dimensional manifolds: The Fedosov construction [25] starts from a symplectic

manifold with some torsion-free connection; the Kontsevich construction [41] starts

from a Poisson structure on an affine space. The former has been generalized to the

infinite-dimensional setting by Collini [12].
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In this approach (commonly referred to as the “on-shell approach”), the equations

of motion for the fields are imposed before quantization and the space of solutions is

a sort of infinite-dimensional symplectic manifold. It is, however, not clear whether

the star product constructed in [12] (following the Fedosov procedure) does satisfy

Einstein causality (commutation of spacelike separated observables). In chapter 4

of [12], it is argued that the “usual” causal perturbation theory methods (see e.g.

[8,18,20,23]) can be combined with the ideas of Fedosov, but then it is still not entirely

clear how the renormalization freedom should be taken into account and what is

the interplay between the on-shell structures (e.g. the notion of on-shell smoothness

used by Collini) and off-shell structures (time-ordered products in causal perturbation

theory are typically defined off-shell). We also note that in causal perturbation theory,

as well as in [12] when dealing with products satisfying Einstein causality, one works

with formal power series in both � and λ (the coupling constant).

Here, we choose to work in the off-shell approach, i.e. the equations of motion

are imposed after quantization. The space of field configurations is a sort of

infinite-dimensional Poisson manifold, which suggests that something in the spirit

of Kontsevich is called for. However, the Kontsevich formula does not carry over

verbatim to the infinite-dimensional case [15]. This motivates the search for an alter-

native formulation and a new formula for the star product that can be applied to

infinite-dimensional Poisson manifolds, at least in some class of interesting examples.

A possible way forward has been suggested in [29], where an interacting star product

for a sufficiently regular class of functionals has been constructed by an indirect

method. There, the theory was formulated in terms of formal power series in � and

the coupling constant λ. In this (perturbative) approach, the starting point is an affine

configuration space with an action functional that is split into a preferred quadratic

(free) part and the remainder. The free part is quantized with the help of a Hadamard

distribution (this notion mimics the properties of the 2-point function of the Minkowski

vacuum state). This is then translated into a star product for the full theory by using

quantum Møller operators and the algebraic adiabatic limit.

As far as the relation to Kontsevich’s approach is concerned, we note that the

product introduced in [29] cannot arise from Kontsevich’s construction, because the

first-order (in �) part of the star product is not proportional to the Poisson structure

(instead, it is given in terms of the Hadamard function that differs from the Poisson

structure by a symmetric bidistribution). A plausible generalization of Kontsevich’s

construction would be one that constructs the star product from this first-order term

and the affine structure. We will show here that such a construction cannot give the

desired star product.

What then? In field theory, the Poisson structure is not a given structure, but follows

from the action; hence, it is not surprising that the action is an appropriate ingredient

for a construction of the star product. The affine structure is an acceptable ingredient

as well. The preferred quadratic part, however, is an undesirable ingredient, because

we would like to achieve a nonperturbative construction.

The purpose of the present paper is to work towards a direct construction of the star

product for infinite-dimensional affine manifolds, where the Poisson structure follows

from the given action. The direct formula we propose in this work agrees with the one

of [29] on the perturbative level, but it goes beyond that. What we achieve here is a
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construction of the interacting star product that depends only on the full action, the

causal structure, and the affine structure of the configuration space. This is a desirable

result from the pAQFT perspective, since in many situations the split into free and

interacting theory is unnatural and the physical results should not depend on this split.

This is the case, for example, in quantum gravity, as indicated in [10]. Moreover,

our construction is nonperturbative in the sense that it does not require a preferred

quadratic action and only � is treated as a formal parameter.

We start our construction by first transforming the free star product to remove

the dependence on a Hadamard distribution. This means that we treat the quantization

relative to the time-ordered product, rather than an (unphysical in the quantum context)

pointwise product. Unfortunately, in the infinite-dimensional case, this transformation

only works if the interaction and observables are sufficiently regular (for field theories

in 3 or more spacetime dimensions, this implies that all their functional derivatives have

to be given by smooth compactly supported functions). Nevertheless, we believe that

the construction and its combinatorial structure may be relevant for a nonperturbative

construction of the star product for a more realistic action. As a by-product, we also

show how to nonperturbatively construct the quantum Møller operator for regular

observables from the classical Møller operator. (The existence of classical Møller

operators and of retarded and advanced Green functions for regular interactions is

implied by the results in the paper [26], which is expected to appear soon.) Our main

results are Theorems 6.29 and 6.41.

Our construction works in the finite-dimensional case without any restrictions, and

it would be interesting to investigate the relation between our star product and other

known constructions, for example, in geometric quantization. We will address this

point in our future research. Another potential realm of applications is field theories

in two spacetime dimensions, where the singularity of the Feynman propagator is

logarithmic and we expect that a larger class of observables and interactions can be

treated using our methods. Recently, a construction of Sine Gordon model in 2D was

achieved by [1] using pAQFT methods, so it would be interesting to apply our formula

for the star product to that case and to other theories, where exact results are expected

to hold.

The paper is organized as follows. In Sects. 2–3, we review the construction of clas-

sical field theory in the pAQFT framework and provide a more rigorous proof of the

result of [6,19] that the retarded Møller map intertwines between the Peierls brackets

of the free and interacting theories. In Sect. 4, we discuss deformation quantization.

We introduce several natural quantization maps, useful in pAQFT, and prove a the-

orem that completely characterizes the ambiguity in constructing the time-ordering

operator on regular functionals. This result mimics the Main Theorem of Renormal-

ization proven for local functionals in [8]. In Sect. 5, we introduce the formal S-matrix

and the quantum Møller operator, and in Proposition 5.11, we show how the latter

can be constructed nonperturbatively on regular functionals from the classical Møller

operator. Next we prove a direct formula, Eq. (6.5), for the interacting star product and

show that it makes sense nonperturbatively in the coupling constant. In this section, we

also discuss the relation to the formula of Kontsevich, provide some useful formulae

for the quantum Møller operator, and finally, we discuss the principle of perturbative

agreement.
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2 Kinematical structure

In the framework of perturbative algebraic quantum field theory (pAQFT), one starts

with the classical theory, which is subsequently quantized. We work in the Lagrangian

framework, but there are some modifications that we need to make to deal with the

infinite-dimensional character of field theory. In this section, we give an overview of

mathematical structures that will be needed later on to construct models of classical

and quantum field theories. Since we do not fix the dynamics yet, the content of this

section describes the kinematical structure of our model.

2.1 The space of field configurations

We start with a globally hyperbolic spacetime M = (M, g). Next we introduce E, the

space of field configurations. The choice of E specifies what kind of objects our model

describes (e.g. scalar fields, gauge fields, etc.).

Definition 2.1 The configuration space E on the fixed spacetime M = (M, g) is real-

ized as the space of smooth sections Ŵ(E → M) of some vector bundle E
π
−→ M over

M .

Definition 2.2 The space of compactly supported sections is denoted Ec = Ŵc(E →
M). The space of sections of the dual bundle is denoted E∗ = Ŵ(E∗→ M).

2.2 Functionals on the configuration space

We model classical and quantum observables as smooth (in the sense of [3,34,43,45])

functionals on E.

Consider some F : E → C and ϕ ∈ E. We require F to be smooth in the sense of

Bastiani [3,34,43,45], i.e.

Definition 2.3 Let X and Y be topological vector spaces, U ⊆ X an open set and

f : U → Y a map. The derivative of f at x ∈ U in the direction of h ∈ X is defined

as 〈
f (1)(x), h

〉
.
= lim

t→0

1

t
( f (x + th)− f (x)) (2.1)

whenever the limit exists. The function f is called differentiable at x if
〈
f (1)(x), h

〉

exists for all h ∈ X. It is called continuously differentiable if it is differentiable at all

points of U and f (1) : U × X → Y, (x, h) �→ f (1)(x)(h) is a continuous map. It is

called a C1-map if it is continuous and continuously differentiable. Higher derivatives

are defined by

〈
f (k)(x), v1 ⊗ · · · ⊗ vk

〉
.
=

∂k

∂t1 . . . ∂tk
f (x + t1v1 + · · · + tkvk)

∣∣∣∣
t1=···=tk=0

, (2.2)

and f is Ck if f (k) is jointly continuous as a map U × Xk → Y. We say that f is

smooth if it is Ck for all k ∈ N.
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For a detailed discussion of Bastiani smoothness in the context of classical field

theory, see e.g. [7]. By definition, if F (1)(ϕ) exists, then it is an element of the com-

plexified dual space E′
C .
= E′ ⊗ C. More generally, the nth derivative defines an

element F (n)(ϕ) of the continuous complex dual of the completed projective tensor

product E⊗̂π n ∼= Ŵ(E⊠n → Mn), where ⊠ is the exterior tensor product of vector

bundles, i.e. F (n)(ϕ) ∈ (E⊗̂π n)′
C

(hence, it is a distribution with compact support).

Definition 2.4 The spacetime support of a function, F : E → S (where S may be any

set), is defined by

supp F
.
= {x ∈ M | ∀open U ∋ x ∃ϕ,ψ ∈ E, supp ψ ⊂ U , F(ϕ + ψ) �= F(ϕ)} .

Alternatively, one can write this as:

supp F =
⋃

ϕ∈E

supp(F (1)(ϕ)) .

Definition 2.5 A functional F ∈ C∞(E, C) is called local if for each ϕ0 ∈ E there

exists an open neighbourhood O in E and k ∈ N such that for all ϕ ∈ O we have

F(ϕ) =

∫

M

α( jk
x (ϕ)) , (2.3)

where jk
x (ϕ) is the kth jet prolongation of ϕ and α is a map over M from the jet bundle

to the volume-form bundle. We denote the space of local functionals by Floc.

We equip the space Floc of local functionals on the configuration space with the

pointwise product using the prescription

(F · G)(ϕ)
.
= F(ϕ)G(ϕ) , (2.4)

where ϕ ∈ E. Floc is not closed under this product, but we can consider instead

the space F of multilocal functionals, which is defined as the algebraic closure of

Floc under product (2.4). We can also introduce the involution operator ∗ on F using

complex conjugation, i.e.

F∗(ϕ)
.
= F(ϕ) .

In this way, we obtain a commutative ∗-algebra.

Functional derivatives of smooth functionals on E are compactly supported distri-

butions. We can distinguish certain important classes of functionals by analysing the

wavefront (WF) set properties of their derivatives.

Local and multilocal functionals satisfy some important regularity properties.

Firstly, for local functionals the wavefront set of F (n)(ϕ) is orthogonal to the tan-

gent bundle of the thin diagonal,

{(x, . . . , x) ∈ Mn | x ∈ M}.
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In particular, F (1)(ϕ) has empty wavefront set and so is smooth for each fixed ϕ ∈ E.

The latter is true also for multilocal functionals, i.e. F ∈ F. Note that using the metric

volume form μg, we can therefore identify F (1)(ϕ) with an element of E∗C.

Definition 2.6 A functional F ∈ C∞(E, C) is called regular (F ∈ Freg) if F (n)(ϕ)

has empty WF set for all n ∈ N, ϕ ∈ E.

Remark 2.7 Some authors additionally require that a regular functional have compact

support. This definition only implies that each derivative has compact support (the

support of F (1)(ϕ) can change with ϕ, so supp F may not be compact).

For a regular functional, F (n)(ϕ) can be identified with an element of Ŵc((E∗)⊠n →
Mn)C.

3 Classical theory

3.1 Dynamics

Dynamics is introduced in the Lagrangian framework. We begin with recalling some

crucial definitions after [8]. Here, D(M) denotes the space of smooth, compactly

supported, real-valued functions (test functions).

Definition 3.1 A generalized Lagrangian on a fixed spacetime M = (M, g) is a map

L : D(M) → Floc such that

(i) L( f + g + h) = L( f + g) − L(g) + L(g + h) for f , g, h ∈ D(M) with

supp f ∩ supp h = ∅ (Additivity).

(ii) supp(L( f )) ⊆ supp( f ) (Support).

(iii) Let Iso(M) be the oriented and time-oriented isometry group of the spacetime

M. (For Minkowski spacetime Iso(M) is the proper orthochronous Poincaré

group P
↑
+.) We require that L( f )(u∗ϕ) = L(u∗ f )(ϕ) for every u ∈ Iso(M)

(Covariance).

Definition 3.2 An action is an equivalence class of Lagrangians under the equivalence

relation [8]

L1 ∼ L2 iff supp((L1 − L2)( f )) ⊂ supp d f . (3.1)

The physical meaning of (3.1) is to identify Lagrangians that “differ by a total

divergence”.

An action is something like a local functional with (possibly) noncompact support.

It is used just as L(1) would be if it existed.

Definition 3.3 The Euler–Lagrange derivative (first variational derivative) of L is a

map L ′ : E → E′c defined by

〈
L ′(ϕ), h

〉 .
=

〈
L( f )(1)(ϕ), h

〉
,

where h ∈ Ec and f ∈ D(M) is chosen in such a way that f = 1 on supp h.

123



E. Hawkins, K. Rejzner

Since L( f ) is a local functional, L ′ does not depend on the choice of f . Note

that two Lagrangians equivalent under relation (3.1) induce the same Euler–Lagrange

derivative, so dynamics is a structure coming from actions rather than Lagrangians.

Definition 3.4 The Euler–Lagrange derivative of an action, S, is S′
.
= L ′ for any

Lagrangian L ∈ S.

We are now ready to introduce the equations of motion (eom’s).

Definition 3.5 The equation of motion (eom) corresponding to the action S is

S′(ϕ) = 0 , (3.2)

understood as a condition on ϕ ∈ E.

Remark 3.6 The space of solutions of (3.2) may be pathological. Instead, in this alge-

braic setting, we should work with the quotient of F or Freg by the ideal generated by

S′. This plays the role of the algebra of functionals on the space of solutions.

However, in this paper we are concerned with “off-shell” constructions, i.e. the

quotient is not taken.

Definition 3.7 The second variational derivative S′′ of the action S is defined by

〈
S′′(ϕ), ψ1 ⊗ ψ2

〉 .
=

〈
L( f )(2)(ϕ), ψ1 ⊗ ψ2

〉
,

where L ∈ S and f = 1 on supp ψ1 ∪ supp ψ2.

By definition, S′′(ϕ) : Ec × Ec → C is a bilinear map, due to locality it can in

fact be extended to a map S′′(ϕ) : E × Ec → C, which then induces a continuous

linear operator PS(ϕ) : EC → E∗C. Note that if S is quadratic, then PS
.
= PS(ϕ) is

the same for all ϕ and S′(ϕ) = PSϕ. This is the case for the free scalar field, where

PS = −(�+ m2).

The crucial assumption in the pAQFT approach is that PS(ϕ) is a Green-hyperbolic

operator [2], i.e. that it admits unique retarded and advanced Green’s functions (fun-

damental solutions) 	R
S (ϕ), 	A

S (ϕ) : E∗c
C → EC defined by the requirements

PS(ϕ) ◦	
R/A
S (ϕ) = id ,

	
R/A
S (ϕ) ◦ PS(ϕ)

∣∣∣
Ec

= id ,

and the support properties

supp 	R
S (ϕ)(ψ) ⊂ J+(supp ψ) ,

supp 	A
S (ϕ)(ψ) ⊂ J−(supp ψ) ,

where ψ ∈ E∗C

c . Note that, by the Schwartz kernel theorem, these operators can

be written in terms of their integral kernels, which then satisfy appropriate support

properties and

	R
S (ϕ)(y, x) = 	A

S (ϕ)(x, y) . (3.3)
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The causal propagator is

	S(ϕ)
.
= 	R

S (ϕ)−	A
S (ϕ) . (3.4)

Due to (3.3), the causal propagator is antisymmetric, i.e. its integral kernel satisfies

	S(ϕ)(y, x) = −	S(ϕ)(x, y) .

We equip the algebra of functionals with a Poisson bracket called the Peierls bracket

[47].

Definition 3.8 The Peierls bracket of F, G ∈ F is defined by

{F, G}S(ϕ)
.
=

〈
	S(ϕ), F (1)(ϕ)⊗ G(1)(ϕ)

〉
, (3.5)

where 	S(ϕ) is used as a complex bidistribution in Ŵ′c((E∗)⊠2 → M2)C (this can be

understood as a completion of Ec⊗Ec, i.e. 	S is sort of a section of the an appropriate

completion of T 2E, i.e. a bivector field).

Remark 3.9 The algebra of multilocal functionals, F, is not closed under the Peierls

bracket. It works better on the algebra of microcausal functionals, Fμc, defined later

on. For a quadratic action, the Peierls bracket gives a Poisson bracket on the algebra

of regular functionals, Freg.

In this paper, we will mainly consider an “action” of the form

S = S0 + λV

where S0 is a quadratic (in ϕ) action and V ∈ Freg is compactly supported. This is not

an action in the sense of Definition 3.2, because (unless it is quadratic) V cannot be

expressed as an equivalence class of Lagrangians, cannot be cut off with a test function,

and is nonlocal. Nevertheless, it can be used in much the same way as an action. For

example, the Euler–Lagrange derivative should be understood as S′ = S′0 + λV (1).

Remark 3.10 The λV is used as a regularized interaction term. The fact that V has

compact support is a kind of infrared regularization, and the fact that it is a regular

(rather than local) functional is an ultraviolet (UV) regularization. This type of IR

regularization is the usual technique used in Epstein–Glaser renormalization [23].

Epstein–Glaser allows one to remove the UV cut-off and removing the IR cut-off is

related to the adiabatic limit [24]. Collini [12] works with the IR cut-off, but without

the UV cut-off, since he considers local functionals. Chapter 4 of [12] deals with

establishing the relation of his result to the one of Epstein–Glaser, but it is unclear

whether the IR cut-off can be removed in a similar manner.

With this, the definitions of the propagators must be modified slightly (this is equiv-

alent to the definition given in Lemma 1 in [6]):

supp 	
R/A
S (ϕ)( f ) ⊆ J±(supp f ∪ supp V ) .
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If λ is a formal parameter, it is easy to see that

	A
S =

∞∑

n=0

(−λ)n	A
S0

(
V (2)	A

S0

)n

= 	A
S0
− λ	A

S0
V (2)	A

S0
+ λ2	A

S0
V (2)	A

S0
V (2)	A

S0
− · · · . (3.6)

satisfies this definition, and there is an analogous formula for 	R
S .

Remark 3.11 To reduce clutter, we will often omit the ◦ symbol when composing linear

operators, as in Eq. (3.6).

3.2 Classical Møller maps off-shell

To avoid functional analytic difficulties, we define all the structures only for regular

functionals Freg or local functionals Floc. We mostly work perturbatively, i.e. we use

formal power series in λ, which plays the role of a coupling constant.

From now on, we fix a free (quadratic) action S0 and consider “actions” of the

form S = S0 + λV with V ∈ Freg. For two such actions, the retarded and advanced

Møller maps rS1,S2 ,aS1,S2 : ES2 → ES1 are defined on shell by the requirements

that for any ϕ ∈ ES2 , ϕ − rS1,S2(ϕ) has past-compact support and ϕ − aS1,S2(ϕ) has

future-compact support. We will be using the retarded maps, but everything we say

adapts easily to the advanced maps.

We will need the extension of this off-shell. Following [19], the off-shell retarded

Møller map is defined by the conditions

rS1,S2 ◦ rS2,S3 = rS1,S3 (3.7)

and
d

dλ
rS+λV ,S(ϕ)

∣∣∣∣
λ=0

= −	R
S (ϕ)V (1)(ϕ) . (3.8)

These retarded Møller maps are perturbatively well defined, and restriction to solu-

tions gives the on-shell Møller maps [19]. To simplify the notation, we abbreviate

rλV
.
= rS0+λV ,S0 .

Møller maps act on functionals by pullback.

(rλV F)(ϕ)
.
= F ◦ rλV (ϕ) , (3.9)

where F ∈ Freg, ϕ ∈ E.

Lemma 3.12 If λ is a formal parameter, then the retarded Møller map satisfies the

Yang–Feldman equation

rλV (ϕ) = ϕ − λ	R
S0

V (1)(rλV (ϕ)) . (3.10)

Conversely, a map satisfying the Yang–Feldman equation (3.10) must be the retarded

Møller map.
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Proof Using Eqs. (3.7) and (3.8)

d

dλ
rλV (ϕ) =

d

dμ
r(λ+μ)V (ϕ)

∣∣∣∣
μ=0

=
d

dμ
rS0+(λ+μ)V ,S0+λV ◦ rλV (ϕ)

∣∣∣∣
μ=0

= −	R
S0+λV V (1)(rλV (ϕ))

Apply PS0 + λV (2)(ϕ) (where PS0 is the differential operator induced by S′′0 ).

(
PS0 + λV (2)(rλV (ϕ))

) d

dλ
rλV (ϕ) = −V (1)(rλV (ϕ))

Apply 	R
S0

(which is independent of ϕ).

(
id + λ	R

S0
V (2)(rλV (ϕ))

) d

dλ
rλV (ϕ) = −	R

S0
V (1)(rλV (ϕ))

Rearranging gives

d

dλ
rλV (ϕ) = −	R

S0
V (1)(rλV (ϕ))− λ	R

S0
V (2)(rλV (ϕ))

d

dλ
rλV (ϕ)

=
d

dλ

(
−λ	R

S0
V (1)(rλV (ϕ))

)
.

Since r0 = id, integrating gives (3.10).

The Yang–Feldman equation is equivalent to saying that the inverse of the Møller

map is

r
−1
λV (ϕ) = ϕ + λ	R

S0
V (1)(ϕ) . (3.11)

This gives r−1
λV as a formal power series in λ. The constant term is just the identity

map. Therefore, this is invertible as a formal power series. Its inverse is unique, so the

Møller map is that unique inverse.

More explicitly, rλV (ϕ) ≈ ϕ to 0th order. Applying Eq. (3.10) iteratively improves

this approximation, so that rλV (ϕ) ≈ ϕ−	R
S0

V (1)(ϕ) to first order and the sequence

of approximations converges as a formal power series (λ-adically) to rλV .

Nonperturbatively, the Yang–Feldman equation may be taken as a definition of

the Møller map. There is certainly no problem with defining r−1
λV by Eq. (3.11), but

its inverse rλV may not actually exist. An idea how to use the Nash–Moser inverse

function theorem on locally convex topological vector spaces to tackle this problem

has been proposed in [11].

We will now provide an alternative proof of the result of [19] stating that rλV inter-

twines between the free and interacting Poisson brackets. The advantage of our proof

is that it is explicitly performed to all orders and can be generalized to the nonper-

turbative setting, while the argument in [19] is essentially a proof of the infinitesimal

version of the statement.
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Definition 3.13 Denote the derivative of the inverse Møller map by

ρ
.
=

(
r
−1
λV

)(1)

(ϕ) : E → E .

The transpose ρT : E∗ → E∗ is defined by reversing the arguments in the integral

kernel for ρ.

Lemma 3.14 The derivative of the inverse Møller map is

ρ = id + λ	R
S0

V (2)(ϕ) , (3.12)

and

ρ ◦	R
S (ϕ) ◦ ρT

∣∣
Ec
= 	R

S0
+ λ	R

S0
V (2)(ϕ)	A

S0
. (3.13)

Proof Equation (3.12) follows immediately from Eq. (3.11).

The image of 	R
S0
: E∗c → E is the set of ψ ∈ E such that supp ψ is past-

compact and supp PS0ψ is compact. Because PS(ϕ)− PS0 = λV (2)(ϕ) has compact

support, the image of Im 	R
S (ϕ) = Im 	R

S0
. Also note that PS0 ◦	R

S0
= idE∗c

implies

	R
S0
◦ PS0 = idIm 	R

S0

.

With this in mind — and hiding the ϕ arguments — we have

ρ ◦	R
S =

(
idIm 	R

S0

+ λ	R
S0

V (2)
)

	R
S

=
(
	R

S0
PS0 + λ	R

S0
V (2)

)
	R

S

= 	R
S0

(
PS0 + λV (2)

)
	R

S = 	R
S0

PS	R
S = 	R

S0
◦ idE∗c

= 	R
S0

.

Composing this with the transpose ρT = idE∗c
+ λV (2)(ϕ)	A

S0
gives

ρ ◦	R
S ◦ ρT = 	R

S0

(
idE∗c

+ λV (2)	A
S0

)

= 	R
S0
+ λ	R

S0
V (2)	A

S0
.

Proposition 3.15 [19, Proposition 2] Let F, G, V ∈ Floc or F, G, V ∈ Freg. The

retarded Møller operator rλV intertwines the Peierls brackets, i.e.

{rλV F, rλV G}S0 = rλV ({F, G}S0+λV ) .

Proof Note that the last term of Eq. (3.13) is symmetric, so subtracting the transpose

of this equation gives simply

ρ ◦	S(ϕ) ◦ ρT = 	S0 .
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It is simpler to prove the equivalent property with r−1
λV . First note that the derivative

of r−1
λV F = F ◦ r−1

λV is

(r−1
λV F)(1)(ϕ) = F (1)(r−1

λV ϕ) ◦ ρ .

This gives

{r−1
λV F, r−1

λV G}S(ϕ) =
〈
	S(ϕ), [F (1)(r−1

λV ϕ) ◦ ρ] ⊗ [G(1)(r−1
λV ϕ) ◦ ρ]

〉

=
〈
ρ ◦	S(ϕ) ◦ ρT, F (1)(r−1

λV ϕ)⊗ G(1)(r−1
λV ϕ)

〉

=
〈
	S0 , F (1)(r−1

λV ϕ)⊗ G(1)(r−1
λV ϕ)

〉

=
(

r−1
λV {F, G}S0

)
(ϕ) .

4 Deformation quantization

Suppose that F∗ is some space of functionals that is closed under the pointwise product

and some Poisson bracket. Formal deformation quantization [4] of the Poisson algebra

(F∗, {·, ·}) means constructing an associative algebra (F∗[[�]], ⋆), where the product

⋆ is given by a power series

F⋆G =

∞∑

n=0

�n Bn(F, G) , (4.1)

in which each Bn is a bidifferential operator (in the sense of calculus on E [3,43,45])

and in particular

B0(F, G) = F · G ,

B1(F, G)− B1(G, F) = i{F, G} .

4.1 Exponential star products

The Peierls bracket of a quadratic action such as S0 is a constant bidifferential operator,

in the sense that it does not depend on ϕ. Some of the ⋆-products that we need to

consider are simple in a similar way.

Definition 4.1 Given a sequence of cones �n ⊂ T ∗M for n = 1.2, . . . , we define a

space of functionals by

F∗
.
= {F ∈ C∞(E, C) | WF(F (n)(ϕ)) ⊂ �n∀ϕ ∈ E, n ∈ N}.

The most important choices here are:
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• Regular functionals (∗ = reg) are defined by �n = ∅.

• Microcausal functionals (∗ = μc) are defined by

�n
.
= T ∗Mn\{(x1, . . . , xn; k1, . . . , kn) | (k1, . . . , kn) ∈ (V

n

+ ∪ V
n

−)(x1,...,xn)} .
(4.2)

This has an obvious generalization to functionals of two variables.

Definition 4.2 Let F2
∗ be the set of functionals F ∈ C∞(E × E, C) such that for all

ϕ1, ϕ2 ∈ E, n1, n2 ∈ N0, and for n
.
= n1 + n2,

δn1+n2

δϕ
n1
1 δϕ

n2
2

F(ϕ1, ϕ2) ,

as a distribution in Ŵ′(E⊠n → Mn)C, has WF set contained in �n .

Let m : F∗ ⊗ F∗ → F∗ denote the pointwise product. In this notation, F · G =
m(F ⊗ G). Note that F∗ ⊗ F∗ ⊂ F2

∗, and m is pullback by the diagonal. It is clear

from Definition 4.2 that m extends to a map m : F2
∗ → F∗.

Suppose K ∈ Ŵ′c(E∗⊠2 → M2)C is such that the differential operator defined by

D
.
=

〈
K , δ2

δϕ1δϕ2

〉
, (4.3)

is a map D : F2
∗ → F2

∗. Note that on tensor products

[D(F ⊗ G)](ϕ1, ϕ2)
.
=

〈
K , F (1)(ϕ1)⊗ G(1)(ϕ2)

〉
. (4.4)

Remark 4.3 Note the nontrivial compatibility condition implicit here between the

choice of F∗ (i.e. the choice of �n) and the singularity structure of K .

Definition 4.4 The exponential product given by K on F∗[[�]] is defined by

F⋆G
.
= m ◦ e�D(F ⊗ G) . (4.5)

Proposition 4.5 Any exponential product, ⋆, is associative.

This is proven in [40, Proposition II.4]. This is a simple generalization of the finite

rank case originally proven in [32, Thm. 8]. See also [44,54].

The involution ∗ (given by complex conjugation) extends to F∗[[�]] if we just let

�∗ = �. However, this is an antiautomorphism of ⋆ if and only if K (y, x) = K (x, y).

In terms of Eq. (4.1), if we expand (4.5) in powers of �, then the first term is just

B0 = m, and the second term is B1 = m ◦ D, i.e.

B1(F, G)(ϕ) =
〈
K , F (1)(ϕ)⊗ G(1)(ϕ)

〉
.

123



The star product in interacting quantum field theory

From this, we can see that ⋆ gives a deformation quantization with respect to the Peierls

bracket induced by S0 if and only if

K (x, y)− K (y, x) = i	S0(x, y) . (4.6)

So, only the antisymmetric part of K is relevant to compatibility with the Peierls

bracket. The freedom in choosing the symmetric part has been exploited in the literature

[9] to construct QFT models for free fields on globally hyperbolic manifolds.

Definition 4.6 Given a bidistribution, Y ∈ Ŵ′c(E∗⊠2 → M2)C, let DY
.
=

〈
Y , δ2

δϕ2

〉
and

αY
.
= e

�

2 DY .

Proposition 4.7 Consider K1, K2 ∈ Ŵ′c
C
(E∗⊠2 → M2), whose difference, Y

.
= K2−

K1 is symmetric, and which determine products ⋆1 and ⋆2. If F∗ is in the domain of

all powers of DY , then

αY : (F∗[[�]], ⋆1) → (F∗[[�]], ⋆2)

is an isomorphism.

Proof Firstly, the hypothesis that F∗ is in the domain of all powers of DY means that

αY : F∗[[�]] → F∗[[�]] is well defined.

Because of the symmetry of Y , applying DY to a product gives

DY (FG) = DY (F)G + FDY (G)+ 2m ◦ (D2 − D1)(F ⊗ G) .

More concisely,

DY ◦ m = m ◦ (DY ⊗ id + id ⊗DY + 2D2 − 2D1) ,

where Di is given by Ki in Eq. (4.3). In other words, m intertwines those two operators.

This implies that it intertwines their powers and their exponentials; therefore,

αY ◦ m = m ◦ e�( 1
2 DY⊗id+ 1

2 id⊗DY+D2−D1)

since the various differential operators commute. Composing this identity on the right

with e�D1 gives

αY ◦ m ◦ e�D1 = αY ◦ m1

= m ◦ e�( 1
2 DY⊗id+ 1

2 id⊗DY+D2) = m2 ◦ (αY ⊗ αY ) .

This means that

αY : (F∗[[�]], ⋆1) → (F∗[[�]], ⋆2)

is a homomorphism. Finally, αY is a formal power series with leading term the identity

map; therefore, it is invertible and hence an isomorphism.
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Remark 4.8 In the finite-dimensional setting, a proof of this result was given in [44],

although it may have been known well before then. In the context of quantum field

theory, it was discussed in [8].

Since only the antisymmetric part of K really matters, the simplest choice is to take

K to be antisymmetric. In that case, Eq. (4.6) requires that K = i
2
	S0 .

Definition 4.9 The Moyal–Weyl product (denoted ⋆0) is the exponential product

defined on Freg[[�]] by i
2
	S0 .

Unfortunately, this ⋆0 does not extend to a larger space of functionals than Freg.

This is the fault of 	S0 , whose wavefront set is

WF(	S0) = {(x, k; x ′,−k′) ∈ Ṫ ∗M2 | (x, k) ∼ (x ′, k′)} , (4.7)

where ∼ means that both (x, k) and (x ′, k′) belong to some null geodesic strip, i.e.

a curve of the form (γ, κ) : I → T ∗M , for some interval I ⊂ R, where γ is a null

geodesic and κ is given by κ(λ) = g(γ̇ (λ), .).

The problem is that the pullback of a tensor power of 	S0 has a WF set that

at singular points contains the whole cotangent bundle [8,17]. This means that the

second-order term of ⋆0 is only well defined on regular functionals. We can obtain a

better behaved star product by a choice of K that has a smaller WF set.

With this in mind, recall that (as shown in [50]) there exists a real, symmetric,

distributional bisolution to the field equation, H , such that

	+
S0

.
= i

2
	S0 + H (4.8)

has WF set

WF(	+
S0

) = {(x, k; x,−k′) ∈ Ṫ ∗M2 | (x, k) ∼ (x ′, k′), k ∈ ∂ J+x } , (4.9)

where ∂ J+x ⊂ T ∗x M is the set of future-pointing null vectors. Such a H is called a

Hadamard distribution.

This is better, because sums of future-pointing vectors are always future-pointing,

and do not give the entire cotangent space. This leaves room for F (n) and G(n) to have

nontrivial WF sets but still gives a well-defined star product of F and G.

This is the motivation behind the definition of microcausal functionals in Defini-

tion 4.1.

Definition 4.10 Let Had denote the set of Hadamard distributions.

Given H ∈ Had, the Wick product (denoted ⋆H ) is the exponential product on

Fμc[[�]] given by 	+
S0

.

Hence, (Fμc[[�]], ⋆H ) is a deformation quantization of Fμc with respect to the

Peierls bracket [8] with ∗ as an involution. By Proposition 4.7,

αH : (Freg[[�]], ⋆0) → (Freg[[�]], ⋆H ) ⊂ (Fμc[[�]], ⋆H )
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is an isomorphism.

The choice of a Hadamard distribution is far from unique. It is only determined up

to the addition of any smooth real symmetric bisolution. Proposition 4.7 shows that

the products given by any two choices are equivalent, as

αH ′−H : (Fμc[[�]], ⋆H ) → (Fμc[[�]], ⋆H ′)

is an isomorphism. These isomorphisms are coherent in the sense that αH ′′−H ′ ◦
αH ′−H = αH ′′−H .

This means that we can think of just one abstract algebra, A. Technically, A is the

limit of the above collection of algebras over Had, viewed as a category with a unique

morphism from any object to any other. Explicitly:

Definition 4.11

A
.
= {A : Had → Fμc[[�]] | ∀H , H ′ ∈ Had, AH ′ = αH ′−H AH }

We denote the product of A and B ∈ A as A • B, where

(A • B)H
.
= AH ⋆H BH .

The involution is defined by

(A∗)H
.
= (AH )∗ .

Our point of view differs slightly from the one taken in [8]. In that work, A denotes

a particular realization of our abstract algebra, obtained by completion of the space

Freg[[�]].
We will not need to use this definition directly very much. The point is that this

algebra is isomorphic to all those constructed using Hadamard distributions, but it

does not require a choice of Hadamard distribution.

The different star products come from different ways of identifying A with Fμc[[�]]
as vector spaces. In the next section, we will explain how these different identifications

are related to the choice of quantization maps.

4.2 Quantizationmaps

In this section, we discuss quantization maps and formalize constructions known from

[8,18].

Here are some key features of A:

• A is a free module of C[[�]].
• There is a surjective homomorphism P : A → Fμc (evaluation at the classical

limit).

• ker P = � A.
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• This implies that the commutator of any A, B ∈ A satisfies P([A, B]•) =
[P(F),P(G)] = 0, so [A, B]• ∈ �A. This allows us to state the property that

P
(

1
i�
[A, B]•

)
= {P(F),P(F)}S0 . (4.10)

The space of microcausal functionals Fμc is not necessarily the only choice of classical

algebra, but it will suffice here.

Note that a C-linear map F∗ → A extends to a C[[�]]-linear map F∗[[�]] → A.

Indeed, these are equivalent in the sense that any C[[�]]-linear map is just the linear

extension of its restriction to F∗. For this reason, we will abuse notation by denoting

such maps by the same symbol.

Definition 4.12 A quantization map is a linear map Q : F∗→ A such that

• P ◦ Q = id : F∗→ F∗, and

• the image of the C[[�]]-linear extension of Q is closed under the noncommutative

product in A.

In Physics terms, a quantization map is a choice of operator ordering.

Remark 4.13 It would also be reasonable to require t∗-linearity:

Q(F∗) = Q(F)∗ . (4.11)

Some—but not all—of our quantization maps satisfy this condition.

Proposition 4.14 Let F∗ ⊆ Fμc be a Poisson subalgebra. A quantization map Q :
F∗→ A induces a star product on F∗[[�]] by the condition

Q(F⋆G) = Q(F) • Q(G) . (4.12)

Proof First, we need to show that Q : F∗[[�]] → A is injective. Suppose that there

is a nonzero element of the kernel with leading order term �m F . This means that

Q(�m F) ∈ �m+1
A, but Q(�m F) = �mQ(F), so Q(F) ∈ �A and P ◦ Q(F) = 0.

However, P ◦ Q(F) = F �= 0, so this is a contradiction.

So, Q is a bijection to its image, and its image is an associative algebra. In this

way, Eq. (4.12) defines an associative product, ⋆, on F∗[[�]]. For F, G ∈ F∗, F⋆G ∈
F∗[[�]] has an expansion of form (4.1) simply because this is a formal power series.

By the compatibility of Q with P,

B0(F, G) = P ◦ Q(F⋆G) = P (Q(F) • Q(G)) = F · G ,

and by Eq. (4.10),

B1(F, G)− B1(G, F) = P ◦ Q
(

1
�
[F⋆G − G⋆F]

)

= P
(

1
�
[Q(F),Q(G)]•

)

= i{F, G}S0 .
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Remark 4.15 In a less formal version, Q would be a map from an algebra of bounded

classical observables to the algebra of sections of a continuous field of C∗-algebras.

This can still induce a star product, but Eq. (4.12) needs to become an asymptotic

expansion.

Let us now return to the exponential product discussed in Sect. 4.1.

Definition 4.16 Given a Hadamard distribution H ∈ Had,

QH : Fμc → A

is defined (in terms of Definition 4.11) by

(QH F)H ′
.
= αH ′−H (F) .

This is a quantization map that induces the exponential product ⋆H . It is also ∗-linear.

Definition 4.17

QWeyl : Freg → A

is defined by

(QWeyl F)H
.
= αH F .

This is a quantization map which induces the Moyal–Weyl product, ⋆0 on Freg[[�]].
It is also ∗-linear.

These quantization maps are related by

QWeyl = QH ◦ αH

and

QH = QH ′ ◦ αH ′−H .

Let Areg be the image of the extension of QWeyl to formal power series. Because

the extensions of these quantization maps to formal power series are injective, QWeyl

induces a commutative “pointwise” product on Areg, and QH induces one on A. If 	+
S0

is the 2-point function of some choice of “vacuum” state, then the commutative product

induced by QH is the normal-ordered (Wick) product, and QH can be interpreted as

the corresponding normal-ordering map. Of course, this depends upon a choice of H .

4.3 Nets of algebras

Although it is not our main focus here, in AQFT, we really want to construct a net of

algebras, rather than just a single algebra.
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Definition 4.18 Let K(M) be the set of open, precompact, causally convex subsets of

M . Define this to be a category whose morphisms are the inclusions of subsets.

Also, for O ∈ K(M), we abuse notation by letting

F∗(O)
.
= {F ∈ F∗ | supp F ⊆ O} .

This is a functor from K(M) to the category of subspaces of F∗.

In this way, the concrete construction of deformation quantization gives a net of

algebras, i.e. a functor from K(M) to a category of algebras:

O �→ (Fμc(O)[[�]], ⋆H ) .

More abstractly, we have a functor (also denoted A) from K(M) to the category of

subalgebras of A.

For a given quantization map, Q : F∗→ A, we can define QO as the restriction of Q

to F∗(O). The quantization maps that we have been considering satisfy the additional

property that

QO : F∗(O) → A(O). (4.13)

It follows immediately that these are the components of a natural transformation from

the functor F∗ to A composed with the forgetful functor to vector spaces.

4.4 Time-ordered products

In this section, we discuss the time-ordered product. One uses this structure in pAQFT

to construct the S-matrix and the interacting fields (see e.g. [8]). We will come back to

these in Sect. 5. Here, we want to review some basic properties of this product, empha-

sizing the importance of the time-ordering map QT that establishes the equivalence

between the time-ordered product and the pointwise product.

Definition 4.19 The relation ≺ on K(M) means “not later than” i.e. O1 ≺ O2 means

that there exists a Cauchy surface to the future of O1 and to the past of O2.

We want a time-ordered version of the noncommutative product • to satisfy for

O1,O2 ∈ K(M), A ∈ A(O1) and B ∈ A(O2),

A ©T B =

{
A • B if O2 ≺ O1,

B • A if O1 ≺ O2.
(4.14)

Moreover, we require that there exists a quantization map QT : F∗→ A, satisfying

the support condition (4.13) and such that

QT F ©T QTG = QT(F · G) ,

for F, G ∈ F∗.

There is certain freedom in how we choose ©T for a given •. We will further restrict

this freedom when discussing concrete realizations of • in the following section
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4.4.1 Relation to Weyl quantization

In this section, we discuss how to construct QT (and hence ©T) starting from another

quantization map.

It is convenient to start with QWeyl and first construct QT on Freg by setting

QT
.
= QWeyl ◦ T , (4.15)

for some T : Freg[[�]] → Freg[[�]].
Definition 4.12 of “quantization map” implies that T = id mod �. The support

condition (4.13) implies that supp TF is contained in the causal completion of supp F .

We impose further conditions on T:

• T : Freg[[�]] → Freg[[�]] is a differential operator in the sense of calculus on E,

• TF = F for F linear,

This last property is equivalent to requiring that there exists a natural endomorphism

of the functor Freg[[�]] whose component at O is the restriction of T to Freg(O)[[�]].
A natural question to ask is what is the freedom in choosing T? A similar problem

arises in Epstein–Glaser renormalisation [23], where one constructs n-fold time-

ordered products recursively (as multilinear maps on local functionals). There, the

nonuniqueness of these maps is characterized by the Main Theorem of Renormaliza-

tion (for various versions of this result, see [8,20,37,48,49]). The following theorem

provides a solution to this problem for T restricted to regular functionals (and without

requiring the field independence).

Theorem 4.20 Any two operators T and T̃ satisfying these conditions are related by

T̃ = T ◦ eX

where

X F(ϕ) =

∞∑

n=2

〈
an(ϕ), F (n)(ϕ)

〉
,

with each an(ϕ) a formal power series in � with coefficients in symmetric distributions

on Mn such that:

• an(ϕ) is a multiple of �;

• an(ϕ) is supported on the thin diagonal of Mn;

• an(ϕ) depends at most linearly on ϕ;

• a
(1)
n (ϕ) is supported on the thin diagonal of Mn+1.

Proof First, define X = log(T−1 ◦ T̃). Because T and T̃ are differential, X must be

differential. This means that it can be written in the form

X F(ϕ) =

∞∑

n=0

〈
an(ϕ), F (n)(ϕ)

〉
,
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where an is valued in formal power series of symmetric distributions. If F is any linear

functional, then TF = T̃F = F , so X F = 0, therefore a0 = a1 = 0.

The ratio T−1 ◦ T̃ = eX is almost a homomorphism of the pointwise product

in the sense that if F and G have causally separated support (supp G ≺ supp F or

supp F ≺ supp G), then

eX (F · G) = (eX F) · (eX G) .

Consequently, X is almost a derivation in the sense that if F and G have causally

separated support, then

X(F · G) = X F · G + F · XG . (4.16)

Any finite set of distinct points of M can be listed in an order consistent with the

causal partial order, and there is a time slicing of M (into Cauchy surfaces) consistent

with this order. Let x1, . . . , xn ∈ M be such a list of points. There exist neighbourhoods

of these points that are causally separated by Cauchy surfaces of this time slicing.

Consider any p1, . . . , pn ∈ E∗c supported on these respective neighbourhoods, and

any ϕ0 ∈ E. Define linear functionals

Fi (ϕ) = 〈ϕ − ϕ0, pi 〉 .

For any numbers m1, . . . , mn ∈ N, apply X to the product F
m1
1 . . . F

mn
n and use

Eq. (4.16). Evaluating at ϕ0, this shows that

0 =
〈
am1+···+mn (ϕ0), p

⊗m1
1 ⊗ · · · ⊗ p⊗mn

n

〉
.

Because the section pi can take any values around xi , this shows that am1+···+mn (ϕ0)

is not supported at

(x1, . . . , x1︸ ︷︷ ︸
m1

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn

) .

Up to symmetry, this is any point outside the thin diagonal.

Finally, consider a point x ∈ M . If F is supported on a causally complete neigh-

bourhood U ∋ x , then

ϕ �→
〈
an(ϕ), F (n)(ϕ)

〉

must be supported on U . Take F homogeneous of degree n, so that F (n)(ϕ) = f ∈
Ŵc(Mn, (E∗)⊠n)C and supp f ⊂ U n . Now consider ψ ∈ E such that supp ψ∩U = ∅.

Since TF has to be supported in U , we conclude that

〈an(ϕ)− an(ϕ + ψ), f 〉 = 0 .

123



The star product in interacting quantum field theory

We can now use this fact to conclude that the derivative a
(1)
n (ϕ), seen as a distribution

on Mn+1, has to be supported on the diagonal. Since X maps regular functionals to

regular functionals, this implies that an(ϕ) can depend at most linearly on ϕ.

In pAQFT, one also requires the stronger condition of field independence, which is

usually phrased as

δ

δϕ
(TF) = T

δF

δϕ
.

This just means that T should have constant coefficients. If T and T̃ in Theorem 4.20

satisfy this, then each an(ϕ) is independent of ϕ.

Just as a quantization map induces a star product from •, it also induces a commu-

tative product from ©T. For QWeyl, we denote this commutative product on Freg[[�]] as

·T . This is defined analogously to Eq. (4.12) by

QWeyl(F ·T G) = QWeyl(F) ©T QWeyl(G) . (4.17)

This is equivalent to

F ·T G
.
= T(T−1 F · T−1G) .

Because QWeyl satisfies (4.13), (4.14) implies that ·T satisfies the condition

F ·T G =

{
F⋆0G if supp G ≺ supp F ,

G⋆0 F if supp F ≺ supp G .
(4.18)

There is a natural choice of T satisfying field independence, given in terms of the

Dirac propagator, 	D
S0

.
= 1

2
(	R

S0
+	A

S0
). Set

T
.
= αi	D

S0

= e
i�
2 DD , (4.19)

where DD =
〈
	D

S0
, δ2

δϕ2

〉
.

Proposition 4.21 The time-ordered product ·T defined in terms of T by Eq. (4.19)

equals the exponential product given by Definition 4.4 with K = i	D
S0

.

Proof The Leibniz rule for differentiation implies that

DK ◦ m = m ◦ (DK ⊗ id + id ⊗DK + 2DK ) ,
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which is in fact a coproduct structure. Hence,

T(T−1 F · T−1G) = e
i�
2 DD ◦ m

(
− i�

2 DD F ⊗−
i�
2 DD G

)

= m ◦ e
i�
2 DD⊗id+id⊗ i�

2 DD+i�DD

(
− i�

2 DD F ⊗−
i�
2 DD G

)

= m ◦ ei�DD(F ⊗ G) .

Because both ⋆0 and ·T are exponential products, they are related by an expo-

nential factor. With obvious notation following Eq. (4.3), D	 = DR − DA and

DD =
1
2 (DR + DA), so 1

2
D	 − DD = −DA, and therefore, the relation is

m⋆0 = mT ◦ e−i�DA . (4.20)

From this relation, it is easy to see why ·T satisfies Eq. (4.18). Consider the case

that supp G ≺ supp F . By definition, 	A
S0

(x, y) = 0 when x � y, so DA(F⊗G) = 0

and

F⋆0G = mT ◦ e−i�DA(F ⊗ G) = mT(F ⊗ G) = F ·T G .

Coming back to formula (4.15), using T, we have now constructed a quantization

map QT on Freg[[�]] with the desired properties. We denote by ⋆T the star product

on Freg[[�]] induced by QT from the noncommutative product • on A; this product is

given by the multiplication map

m ◦ e−i�DA ,

i.e.

F ⋆T G = m ◦ e−i�DA (F ⊗ G) .

The disadvantage of using QT as the quantization map is that it does not extend

naturally to Fμc (unlike QH ). It is also not ∗-linear like QH and QWeyl; instead it

induces an involution on F ∈ Freg[[�]], given by the formula

F �→ T−1[(TF)∗] = α−2i	D
S0

(F∗)

and compatible with ⋆T .

4.4.2 Relation to normal ordering

We can also start with QH and let

QT
.
= QH ◦ TH .
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Table 1 Some of the exponential

products, and the distributions

used to construct them

Product Symbol Distribution

Pointwise · 0

Weyl ⋆0
i
2 	S0

= i
2

(
	R

S0
−	A

S0

)

Time-ordered ·T i	D
S0
= i

2

(
	R

S0
+	A

S0

)

Wick ⋆H 	+
S0
= i

2

(
	R

S0
−	A

S0

)
+ H

Time-ordered ·TH
	F

S0
= i

2

(
	R

S0
+	A

S0

)
+ H

⋆T −i	A
S0

The relation between QWeyl and QH implies that

TH = α	F
S0

,

where 	F
S0

is the Feynman propagator, defined as 	F
S0
= i	D

S0
+ H .

Using TH , we can introduce another exponential product on Freg[[�]], denoted by

·TH and given by setting K = 	F
S0

in Definition 4.4. Clearly, this product is again

commutative and equivalent to the pointwise product.

Since 	+
S0
−	F

S0
= −i	A

S0
, the multiplication maps for ⋆H and ·TH are related by,

m⋆H
= mTH

◦ e−i�DA ,

which is exactly the same as the relation between ⋆0 and ·T ; consequently, by identical

reasoning, they are also related by Eq. (4.18), and we can say that ·TH is the time-

ordered product associated to ⋆H .

Unfortunately, although ⋆H is defined on Fμc[[�]], this construction only defines

·TH and TH on Freg[[�]]. Renormalization in pAQFT is a matter of extending these

consistently to local functionals. Again, there is some freedom in constructing such

an extension [8,37], physically interpreted as renormalization freedom. To fix this

freedom, one imposes certain conditions more restrictive than those we imposed on

time-ordered products of regular functionals; this is discussed extensively in [16].

We summarize the different exponential products used throughout this section in

Table 1. Compared to the existing literature, the only new ingredient is the noncom-

mutative product ⋆T , related to more commonly used star products by:

F⋆0G = T(T−1 F ⋆T T−1G) ,

F⋆H G = TH (T−1
H F ⋆T T

−1
H G) .

123



E. Hawkins, K. Rejzner

5 Interaction andMøller operators

5.1 TheMøller operator in the abstract algebra

Consider a theory with action S = S0 + λV , where V ∈ Freg is compactly supported

and λ is the coupling constant, treated from now on as a formal parameter (similarly

to �).

We wish to construct a formal deformation quantization of (F∗, {·, ·}S). Proposi-

tion 3.15 shows that rλV intertwines the Peierls brackets for S and S0. If ⋆ is a formal

deformation quantization for S0, then this gives an obvious formal deformation quan-

tization for S. Simply define ⋆r by

rλV (F⋆r G) = rλV F⋆rλV G . (5.1)

This construction was proposed by Dito [13,14] in the case of an interacting theory

on Minkowski spacetime that is equivalent to a free theory. This is simple, but it is not

the best choice. We will explain the reasons for this in Sect. 5.4, after describing what

we claim is a better construction.

Firstly, we need to introduce some further definitions. A central object in pAQFT

for constructing interacting theories is the formal S-matrix.

Definition 5.1 The formal S-matrix is the map S : λAreg[[λ]] → Areg[[λ/�]] given

by the time-ordered exponential

S(A) = e
i A/�

©T = QT

(
ei(Q−1

T
A)/�

)
. (5.2)

Remark 5.2 Here V plays the role of an interaction term where some infrared (IR)

and ultraviolet (UV) regularizations have been implemented. The former guarantees

compact support and the latter regularity. An example of a regular functional is ϕ �→∫
f (x1, . . . , x3)ϕ(x1) . . . ϕ(x3), where f is a compactly supported density on M3 and

ϕ ∈ C∞(M, R). The physical interaction is recovered in the limit

f → δ(x1 − x2)δ(x1 − x3) d4x1 d4x2 d4x3 .

Instead of taking this limit directly, in pAQFT one proceeds in two steps. First the map

S is extended to a larger subset of A, to deal with the potential UV divergences (see,

for example, [8,52] for a review). Next, one takes the algebraic adiabatic limit to deal

with the IR problem. For more details, see [30,35,52] for an alternative formulation.

The physical interpretation is that S becomes the scattering matrix of the theory, in

the adiabatic limit (i.e. when the infrared regularization is removed), if it exists. One

uses S to construct interacting fields using the quantum Møller operator given by the

formula of Bogoliubov (see e.g. [8,52] for a review):
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RA(B) = −i�
d

dt

(
S(A)−1 • S(A + t B)

)∣∣∣∣
t=0

= (S(A))−1 • (S(A) ©T B)

=
(

e
i A/�

©T

)−1
•

(
e

i A/�

©T
©T B

)
.

A priori, this is defined for A, B ∈ λAreg[[λ]]. However, the last expression makes

sense for B ∈ Areg and defines a map RA : Areg → Areg[[λ/�]]. Better still, we will

show below that RA : Areg → Areg[[λ]]— i.e. no negative powers of � survive.

For the interaction V ∈ Freg, we choose A = λ QT(V ) in this formula. The

interacting product •int on Areg is then defined by

B •int C
.
= R

−1
A (RA(B) • RA(C)) .

5.2 TheMøller operator in terms of functionals

For the purpose of practical computations, it is easier to work with functionals rather

than the abstract algebra Areg, so we should identify Areg with Freg[[�]] by using a

quantization map, but there are several to choose from. This leads to abundance of

products used in the literature in this context. However, the fundamental structures

can be described on the level of the abstract algebra, and there one needs only two

products: •, ©T, while •int can be constructed out of the two, as described above.

The most obvious way to work is based on the quantization map QWeyl. With this

identification, the formal S-matrix becomes S0
.
= Q

−1
Weyl ◦ S ◦ QWeyl, so one is often

interested in

S0(λ TV ) = T(eiλV /�) ≡ e
iλTV /�

T
.

The Møller operator becomes R0,λV
.
= Q

−1
Weyl ◦ RλQT(V ) ◦ QWeyl, which is

R0,λV (F) =
(

e
iλTV /�

T

)⋆0−1

⋆0

(
e

iλTV /�

T ·T F
)

. (5.3)

If we instead use QH , then the formula for RH ,λV is the same, but with ⋆H ,TH , and

·TH .

All these formulae for the interacting star product and interacting fields are difficult

to work with, because they each use two different products, neither of which is the

natural pointwise product on the space of functionals.

5.3 TheMøller operator in the time-ordered identification

Instead, the most convenient quantization map for computations is actually QT . With

this identification, the formal S-matrix becomes simply

Q
−1
T
◦ S ◦ QT(F) = ei F/� .
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The Møller operator becomes RT,λV
.
= Q

−1
T
◦ RλQT(V ) ◦ QT , which is

RT,λV (F) =
(

eiλV /�

)⋆T−1
⋆T

(
eiλV /� · F

)
.

The inverse of this is particularly simple:

R−1
T,λV

(G) = e−iλV /�

(
eiλV /� ⋆T G

)
.

Note that any formula for RT,λV can be converted to a formula for RH ,λV (and vice

versa) by RH ,λV ◦ TH = TH ◦ RT,λV .

Recall that the nth derivative of a functional is valued in the complex dual of the

projective tensor product E⊗̂π n ∼= Ŵ(E⊠n → Mn).

Definition 5.3 Any χ ∈ E
⊗̂π n
C

defines a linear map

χ ⊲ : C∞(E, C) → C∞(E, C)

by

(χ ⊲ F)(ϕ) =
〈
F (n)(ϕ), χ

〉
.

Note that for ψ ∈ E, this defines a derivation. In general, this extends to linear

combinations and defines differential operators. The idea is that the abelian Lie group

E acts on functionals by translation. This E is its own Lie algebra and in that capacity

acts on functionals by derivations. The projective symmetric tensor product algebra

ŜπE is a completion of the universal enveloping algebra and acts on functionals by

differential operators. The ⊲ notation is borrowed from the Hopf algebra literature.

A convenient way of describing elements of this algebra — and thus differential

operators on functionals is as functions on E′. We can define K ∈ ŜπE by giving a

formula for K (w) where w ∈ E′. Formally, K ⊲ F is defined by replacing w⊗n with

F (n). Of course, we extend all of this to formal power series, and we use functionals

valued in ŜπE.

Proposition 5.4

R−1
T,λV

(G)(ϕ) = (J (ϕ) ⊲ G) (ϕ) (5.4)

where

J (ϕ;w)
.
= exp

(
λ

V (ϕ − i�	A
S0

w)− V (ϕ)

−i�

)
(5.5)

for φ ∈ E and w ∈ E∗c .

Remark 5.5 Equation (5.4) is subtle, so it is worth expanding upon. First, J is a func-

tional from E to formal power series with coefficients in ŜπE. In Eq. (5.4), J is

evaluated at ϕ to give a formal power series with coefficients in ŜπE. This then defines

a differential operator which acts on G to give a functional. Finally, this functional is

evaluated at ϕ.
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Proof. First, for some arbitrary functional F , consider F ⋆T as an operator acting on

G:

(F ⋆T G)(ϕ) =

∞∑

n=0

(−i�)n

n!

〈
F (n)(ϕ), (	A

S0
)⊗nG(n)(ϕ)

〉

= (K (ϕ) ⊲ G) (ϕ)

where

K (ϕ;w)
.
=

∞∑

n=0

(−i�)n

n!

〈
F (n)(ϕ), (	A

S0
w)n

〉
= F(ϕ − i�	A

S0
w) .

For F = eiλV /�, this becomes

K (ϕ;w) = exp

(
λ

V (ϕ − i�	A
S0

w)

−i�

)
= eiλV (ϕ)/� J (ϕ;w) ,

and so

R−1
T,λV

(G)(ϕ) = e−iλV (ϕ)/� (K (ϕ) ⊲ G) (ϕ) = (J (ϕ) ⊲ G) (ϕ) .

The original proof of the next result is due to [17] and was presented for the case

of local functionals. Here we are working only with regular functionals, which allows

a simpler proof. (Recall that A is an algebra over C[[�]].)

Corollary 5.6 For A ∈ λAreg,RA : A[[λ]] → A[[λ]], and for V ∈ Freg, R0,λV , RT,λV :
Freg[[�, λ]] → Freg[[�, λ]]. That is, the Møller operator contains no negative powers

of �.

Proof In the expression

V (ϕ − i�	A
S0

w)− V (ϕ)

−i�
,

the numerator is of order �, so this cancels the � in the denominator, and thus, J does not

contain any negative powers of �. This means that R−1
T,λV

: Freg[[�, λ]] → Freg[[�, λ]].

The fact that J ≈ 1 to 0th order in λ means that R−1
T,λV

is a formal power series with

the identity map in leading order. As a formal power series, it can thus be inverted,

and RT,λV exists. Finally, the other forms of the Møller operator are equivalent to this

one.

Let us now discuss the classical limit. Recall that P : A → Fμc,Areg → Freg is

the evaluation at the classical limit; it corresponds to setting � = 0.
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Proposition 5.7 The classical limit of the quantum Møller operator is the classical

Møller operator:

P ◦ RλQT(V ) = rλV ◦ P .

Equivalently, for F ∈ Freg,

RH ,λV (F)
∣∣
�=0

= rλV (F) .

Proof Again, it is easiest to prove the equivalent statement for RT,λV .

To 0th order in �,

V (ϕ − i�	A
S0

w)− V (ϕ)

−i�
≈

〈
V (1)(ϕ),	A

S0
w

〉
,

so

J (ϕ;w) ≈ J0(ϕ;w)
.
= exp

(
λ

〈
V (1)(ϕ),	A

S0
w

〉)
. (5.6)

Also note that TH is the identity operator to 0th order in �, so RH ,λV ≈ RT,λV .

Denote

r̃−1

λV (G)
.
= R−1

0,λV (G)

∣∣∣
�=0

= R−1
T,λV

(G)

∣∣∣
�=0

= P ◦ RλQT(V ) ◦ QT(G) .

This gives

r̃−1

λV (G)(ϕ) = (J0(ϕ) ⊲ G)(ϕ)

=

∞∑

k=0

λn

n!

〈(
V (1)(ϕ)

)n

, (	A
S0

)⊗nG(n)(ϕ)

〉

=

∞∑

k=0

1

n!

〈(
λ	R

S0
V (1)(ϕ)

)n

, G(n)(ϕ)

〉

This is just a Taylor series expansion, so

r̃−1

λV (G)(ϕ) = G
(
ϕ + λ	R

S0
V (1)(ϕ)

)
.

In other words, r̃−1

λV is the pullback by the operator that acts on E[[λ]] as

r̃
−1

λV (ϕ) = ϕ + λ	R
S0

V (1)(ϕ) (5.7)

Rearranging this gives an equation satisfied by the inverse map,

r̃λV (ϕ) = ϕ − λ	R
S0

V (1)(r̃λV (ϕ)) ,

which is the Yang–Feldman equation, and so by Lemma 3.12, r̃λV = rλV .
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Definition 5.8 Let ⋆H ,int denote the interacting product on Freg[[�, λ]] in the identifi-

cation given by QH , i.e.

F⋆H ,intG
.
= Q

−1
H (QH F •int QH G) = R−1

H ,λV (RH ,λV F⋆H RH ,λV G) .

Denote the ⋆H ,int-commutator by

[F, G]⋆H ,int = F⋆H ,intG − G⋆H ,int F .

It is now easy to see that the theory defined by ⋆H ,int is indeed a quantization of the

classical theory defined by the Poisson bracket { · , · }S0+λV given in Definition 3.8.

Proposition 5.9 Let F, G, V ∈ Freg, then

1

i�
[F, G]⋆H ,int

∣∣∣
�=0

= {F, G}S0+λV ,

thus (Freg[[�, λ]], ⋆H ,int) is a formal deformation quantization of (Freg[[λ]], {·, ·}S0+λV ).

Proof This is a straightforward consequence of Propositions 3.15 and 5.7. The quan-

tum Møller operator intertwines ⋆H with ⋆H ,int (by definition), so it intertwines their

commutators. To first order in �,

rλV

(
[F, G]⋆H ,int

)
≈ RH ,λV [F, G]⋆H ,int = [RH ,λV F, RH ,λV G]⋆H

≈ i�{rλV F, rλV G}S0 = i� rλV {F, G}S0+λV .

Remark 5.10 The equivalent, more abstract, statement is [like Eq. (4.10)] that for any

A, B ∈ Areg,

P
(

1
i�
[A, B]•int

)
= {PA,PB}S0+λV .

Next we show that the quantum Møller operator can be constructed nonperturba-

tively, provided the classical Møller operator is known exactly. To this end, we will

extract the “classical part” of the quantum Møller operator and see what remains. It

will then become clear that, at a fixed order in �, the remaining “purely quantum part”

contains only finitely many terms in its coupling constant expansion.

Proposition 5.11 Again, let rλV be the classical Møller operator. Define ⊲r , J1, and

ϒλV by

K ⊲r F
.
= r−1

λV (K ⊲ rλV F) ,

J1(ϕ;w)
.
= exp

⎛
⎝λ

V (ϕ − i�	A
S0

w)− V (ϕ)+ i�
〈
V (1)(ϕ),	A

S0
w

〉

−i�

⎞
⎠ ,
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and

(ϒλV F)(ϕ)
.
= (J1(ϕ) ⊲r F)(ϕ) .

The inverse quantum Møller operator can be computed as

R−1
T,λV

= ϒλV ◦ r−1
λV . (5.8)

Proof The quantum correction J1 is chosen so that J = J0 J1, where J0 is defined in

Eq. (5.6). Proposition 5.4 gives

(R−1
T,λV

F)(ϕ) = (J (ϕ) ⊲ F)(ϕ)

= [J0(ϕ) ⊲ (J1(ϕ) ⊲ F)](ϕ) .

This last expression contains ϕ 3 times. Note that the second ϕ is just a constant as

far as J0(ϕ)⊲ is concerned; it is not differentiated, and indeed this is also equal to

[J1(ϕ) ⊲ (J0(ϕ) ⊲ F)](ϕ).

Proposition 5.7 showed that (r−1
λV G)(ϕ) = (J0(ϕ)⊲G)(ϕ). Setting G(ϕ) = (J1(ϕ)⊲

F)(ϕ) gives

(R−1
T,λV

F)(ϕ) = [r−1
λV (J1(ϕ) ⊲ F)](ϕ)

= (J1(ϕ) ⊲r r−1
λV F)(ϕ) = (ϒλV ◦ r−1

λV F)(ϕ) .

Remark 5.12 Rearranging (5.8) results in r−1
λV RT,λV = ϒ−1

λV , so ϒ−1
λV can be seen as

the “purely quantum” part of the Møller operator. Such a map has been introduced

in [22] for quadratic interactions (where it is called β and in our notation we have

β
.
= r−1

λV ◦ R0,λV ), so our current discussion is a natural generalization of that result.

The only missing step in that comparison is to transform the quantum Møller map

from the QT-identification to the QWeyl or QH -identification (i.e. to go from RT,λV to

R0,λV or RH ,λV ). We will come back to this in Sect. 7.

Remark 5.13 Note that the fraction in the definition of J1 is of order at least �, so that

every occurrence of λ is accompanied by a factor of �. If J1 is expanded in powers

of �, then each coefficient contains only finitely many powers of λ, so λ no longer

needs to be treated as a formal parameter. This gives a nonperturbative definition

of the quantum Møller operator, provided that the classical Møller operator exists

nonperturbatively. This existence will be shown in the forthcoming paper [26].

5.4 The naive product

This shows the relationship between the interacting product and the naive product

constructed from ⋆T using the classical Møller operator. From Eq. (5.1), the naive

product ⋆T,r is given by
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r−1
λV F ⋆T,r r−1

λV G = r−1
λV (F ⋆T G) . (5.9)

The interacting product ⋆T,int in the identification given by QT is defined by

R−1
T,λV

(F)⋆T,int R
−1
T,λV

(G) = R−1
T,λV

(F ⋆T G) . (5.10)

Equation (5.8) shows that

ϒλV F⋆T,intϒλV G = ϒλV (F ⋆T,r G) .

Note that ϒλV is the identity map modulo �. This means that ϒλV , the “purely quan-

tum” part of the inverse quantum Møller operator is the “gauge” equivalence [41]

relating the naive product ⋆T,r to the preferred choice ⋆T,int.

Now we are ready to consider the relative merits of the interacting product ⋆T,int

and the naive product, ⋆T,r , defined by Eq. (5.1). The advantage of ⋆T,int is related to

locality and the adiabatic limit. Ultimately, the interacting star product will be used

to construct local nets of algebras. Consider some bounded causally convex region

O ⊂ M and the Møller operator restricted to functionals supported in O. Using a local

(rather than regular) interaction, it was shown in [9,30] (in a slightly different setting)

that perturbing the interaction by a compactly supported functional, supported outside

O only changes the restriction of the Møller operator by an inner automorphism. This

means that for F and G supported in O, F ⋆T,r G (and F⋆H ,intG) only depend on

the interaction in O. In other words, the net of algebras depends only locally on the

interaction. We can therefore first introduce an infrared cut-off for the interaction and

then remove it using the algebraic adiabatic limit construction [9,27]. (Similarly, the

retarded and advanced Møller operators are related by inner automorphisms, so they

define exactly the same interacting products.)

The naive products defined from the classical Møller operator by Eq. (5.1) do not

share this property. To first order in λ,

rλV (F)(ϕ) = F(ϕ)− λ

〈
V (1)(ϕ),	A

S0
F (1)(ϕ)

〉
+ · · · .

To first order in �,

(F ⋆T G)(ϕ) = F(ϕ)G(ϕ)− i�
〈
F (1)(ϕ),	A

S0
G(1)(ϕ)

〉
+ · · · .

This gives a formula for ⋆T,r up to first order in λ and in �:

(F ⋆T,r G)(ϕ) = F(ϕ)G(ϕ)− i�
〈
F (1)(ϕ),	A

S0
G(1)(ϕ)

〉

+iλ�
〈
V (2)(ϕ),	A

S0
F (1)(ϕ)⊗	A

S0
G(1)(ϕ)

〉

+iλ�
〈
V (2)(ϕ),	R

S0
F (1)(ϕ)⊗	A

S0
G(1)(ϕ)

〉
+ · · · .
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The third term is problematic, even if V is a local functional. Because of the advanced

propagators, this product will change if V is changed anywhere to the past of the

support of F and G. The same is true of the naive product constructed from ⋆H .

6 Graphical computations

To simplify and organize the computations, we will represent our structures in terms

of graphs.

Definition 6.1 G(n) is the set of isomorphism classes of directed graphs with n vertices

labelled 1, . . . , n (and possibly unlabelled vertices with valency ≥ 1).

Also denote

G
.
=

⋃

n∈N

G(n) .

We make G a category by defining a morphism u : α → β to be a function that

• Maps vertices of α to vertices of β and edges of α to edges or vertices of β,

• Respects sources and targets of edges,

• Maps labelled vertices to labelled vertices,

• And preserves the order of labelled vertices.

For γ ∈ G: e(γ ) is the number of edges; v(γ ) is the number of unlabelled vertices;

Aut(γ ) is the group of automorphisms.

Remark 6.2 This definition of morphism differs from the standard definition of a map

of graphs [42, Sec. II.7]. It is chosen to give the concept of extension that will be useful

below. The meaning of isomorphism is the same.

Definition 6.3 A graph γ ∈ G(n) determines an n-ary multidifferential operator, �γ ,

on functionals as follows:

• An edge represents 	A
S0

(x, y) with the direction from y to x — i.e. such that this

is only nonvanishing when the edge points from the future to the past;

• If the labelled vertex j has valency r , this represents the order r derivative of the

j th argument;

• Likewise, an unlabelled vertex of valency r represents V (r).

Definition 6.4 In diagrams, 	A
S0

will be denoted by a dashed line with an arrow, so all

graphs in G will be drawn with dashed lines for the edges.

6.1 Noninteracting product

Definition 6.5 G1(2) ⊂ G(2) is the subset of graphs with no unlabelled vertices in

which all edges go from 2 to 1.
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In terms of these, the noninteracting product can be expressed as

F ⋆T G =
∑

γ∈G1(2)

(−i�)e(γ )

|Aut γ |
�γ (F, G). (6.1)

Example 6.6 The �3 term is given by the graph

1 2

which is the unique graph in G1(2) with 3 edges. Its automorphism group is S3, which

has order 6 and gives the correct coefficient, 1
6
(−i�)3.

6.2 Perturbative calculations

6.2.1 Inverse Møller operator

Definition 6.7 G2(1) ⊂ G(1) is the set of graphs such that every edge goes from 1 to

an unlabelled vertex.

Example 6.8

1 ∈ G2(1)

has automorphism group S3 × (Z2 ⋉ Z2
2).

Lemma 6.9

R−1
T,λV

(F) =
∑

γ∈G2(1)

(−i�)e(γ )−v(γ )λv(γ )

|Aut(γ )|
�γ (F) (6.2)

Proof Taking a Taylor expansion of V about ϕ in Eq. (5.5) shows that

J (ϕ;w) = exp

(
λ

∞∑

n=1

(−i�)n−1

n!

〈
V (n)(ϕ), (	A

S0
w)⊗n

〉)

=

∞∏

n=1

exp

(
λ(−i�)n−1

n!

〈
V (n)(ϕ), (	A

S0
w)⊗n

〉)

=

∞∏

n=1

∞∑

k=0

1

k!

(
λ(−i�)n−1

n!

〈
V (n)(ϕ), (	A

S0
w)⊗n

〉)k

The term
〈
V (n)(ϕ), (	A

S0
w)⊗n

〉
gives the same differential operator as the graph with

n edges directed from the vertex 1 to a single unlabelled vertex. We have here a sum
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over all possible products of such terms. This corresponds to all possible graphs in

G2(1).

The automorphisms of a graph γ ∈ G2(1) do not permute the unlabelled vertices

with different valencies; thus, the automorphism group is a Cartesian product of the

group of automorphisms for each of those subgraphs.

If γ has k unlabelled vertices of valency n, then an automorphism can permute each

of those vertices, and for each such vertex, it can permute the n edges leading to it.

That subgroup of automorphisms is thus a semidirect product of Sk and (Sn)k . This

has order k!(n!)k .

6.2.2 Composition of operators

The following is analogous to the concept of an extension of groups.

Definition 6.10 For α ∈ G(n) and γ ∈ G(m), an extension of γ by α at j ∈ γ is a pair

of an injective and a surjective morphism

α
u
→֒ β

v
։ γ

with β ∈ G(n + m − 1), such that u(α) = v−1( j), and the restriction of v to the

compliment of u(α) is injective.

Two extensions are equivalent if there exists a commutative diagram between them

with the identity on α and γ , and an automorphism on β.

Example 6.11 There is an extension

1 2 →֒ 21 ։ 1

which maps the first graph to the bottom edge of the second graph and then collapses

that subgraph to the vertex 1 of the third graph.

Definition 6.12 The partial composition of multilinear maps is denoted by ◦ j and

means the composition of one map into the j th argument of another.

Lemma 6.13 Let α ∈ G(n) and γ ∈ G(m) and j = 1, . . . , m. The partial composition

at j is

�γ ◦ j �α =
∑

α →֒β։γ

�β

where the sum is over equivalence classes of extensions of γ by α at j .

Equivalently,

1

|Aut γ ||Aut α|
�γ ◦ j �α =

∑

∃ α →֒β։γ

dβ

|Aut β|
�β
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where the sum is over the set of β ∈ G(n + m − 1) such that there exists such an

extension of γ by α at j and dβ is the number of subgraphs of β isomorphic to α such

that the quotient is isomorphic to γ with the subgraph mapped to j .

Proof. The composition γ ◦ j α can be thought of as inserting α in place of j ∈ γ .

If r is the valency of j ∈ γ , then this is taking an order r derivative of �α. The edges

represent 	A
S0

, which is constant, so the product rule tells us that this derivative is

given by a sum over all possible ways of attaching the r edges to vertices of α (instead

of to j ∈ γ ). Any such attachment gives a graph β with a subgraph identified with α

and the quotient identified with γ . This gives precisely the set of equivalence classes

of extensions as defined above.

For the second expression, we need to write this as a sum over the graphs β that

can appear as extensions, but one graph can appear in inequivalent extensions, so we

need to understand the number of extensions with a given β.

An extension α →֒ β ։ γ certainly determines a subgraph of β that is isomorphic

to α. If two extensions determine the same subgraph, then it is easy to construct an

automorphism of β that gives an equivalence between the extensions. (All of the edges

of β are either in the subgraph or map to edges of γ .) So, having the same subgraph

is a weaker condition than equivalence of extensions.

By definition, dβ is the number of possible images of α in extensions. Any two

extensions with the same image are related by an automorphism of α and an automor-

phism of γ ; therefore, the number of extensions is

dβ |Aut α||Aut γ | .

An equivalence of extensions is always given by an automorphism of β, so an equiva-

lence class consists of |Aut β| extensions; therefore, the number of equivalence classes

of extensions is

dβ |Aut α||Aut γ |

|Aut β|
.

Example 6.14

1 2 ◦2 1 = 21 + 2 1 2

because the last graph occurs in two inequivalent extensions.

Example 6.15

21 ◦1 1 = 21 + 21 + 21 + 21
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Each of these graphs has trivial automorphism group, except for the last, for which it

has order 2. However, there are also 2 ways of mapping 1 into it to give

the quotient 21 . This is why the coefficient of that term is also 1.

6.2.3 Interacting product

Definition 6.16 G2(2) ⊂ G(2) is the subset of graphs such that every edge either goes

from a labelled vertex to an unlabelled vertex or from 2 to 1.

Lemma 6.17

R−1
T,λV

(F ⋆T G) =
∑

γ∈G2(2)

(−i�)e(γ )−v(γ )λv(γ )

|Aut(γ )|
�γ (F, G) (6.3)

Proof This follows by inserting Eq. (6.1) into Eq. (6.2) and using the product rule.

Definition 6.18 G3(n) ⊂ G(n) is the set of graphs such that:

• Every unlabelled vertex has at least one ingoing edge and one outgoing edge;

• There are no directed cycles;

• For 1 ≤ j < k ≤ n, there does not exist any directed path from j to k.

In particular, this implies that 1 is a sink (has only ingoing edges) and n is a source

(has only outgoing edges).

We are now ready to write down the graphical expansion of the interacting star

product. Note that the graphs we are using are constructed from the free propagator

	A
S0

and from the derivatives of the interaction term V . Later on, we will re-express

things in terms of the propagator 	A
S of the interacting theory and the derivatives of

the full action S.

Theorem 6.19

F⋆T,intG =
∑

γ∈G3(2)

(−i�)e(γ )−v(γ )(−λ)v(γ )

|Aut(γ )|
�γ (F, G) (6.4)

Remark 6.20 The right-hand side is the same as in Eq. (6.3), except that G3 has replaced

G2 and λ has become −λ.

Definition 6.21 G4(2) ⊂ G(2) is the set of graphs obtained by extending graphs in

G3(2) by graphs in G2(1) at 1 and 2.

Proof For this proof, let F⋆?G denote the right-hand side of Eq. (6.4), so that

we need to prove ⋆? = ⋆T,int. That is, we need to prove that R−1
T,λV

(F ⋆T G) =

R−1
T,λV

(F)⋆? R−1
T,λV

(G), and Eq. (6.3) has already computed the left side.
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By Lemma 6.13 and the definition of G4, R−1
T,λV

(F)⋆? R−1
T,λV

(G) can be computed

as some sum over G4(2). We will show that cancellation reduces this to the sum over

G2(2) in Eq. (6.3).

We first need to check that G2(2) ⊆ G4(2), so suppose that γ ∈ G2(2). By definition,

all edges of γ either go from 1 or 2 to an unlabelled vertex or from 2 to 1. Let α ⊂ γ

be the subgraph of edges from 1 (to unlabelled vertices) and denote the quotient graph

as γ /α. Let β ⊂ γ be the subgraph of edges going from 2 to (unlabelled) vertices not

in α. All other edges of γ must go from 2 to vertices of α, therefore

(γ /α)/β ∈ G1(2) ⊂ G3(2)

and so γ ∈ G4(2).

Equations (6.4) and (6.2) give

R−1
T,λV

(F)⋆? R−1
T,λV

(G) =
∑

α,β∈G2(1)

∑

δ∈G3(2)

(−i�)e−v(−1)v(δ)λv

|Aut α||Aut β||Aut δ|
�δ(�αF, �βG)

where e = e(α)+ e(β)+ e(δ) and v = v(α)+ v(β)+ v(δ). Applying Lemma 6.13,

this becomes

R−1
T,λV

(F)⋆? R−1
T,λV

(G)=
∑

γ∈G4(2)

(−i�)e(γ )−v(γ )λv(γ )

|Aut γ |
�γ (F, G)

∑

α,β

(−1)v(γ )−v(α)−v(β),

where the last sum is over α, β ⊂ γ , such that 1 ∈ α, 2 ∈ β, α, β ∈ G2(1), and

(γ /α)/β ∈ G3(2).

Note that α ⊂ γ is the subgraph of all edges outgoing from 1 ∈ γ , so it is uniquely

determined by γ . On the other hand, although β must contain all edges from 2 to sinks

that are not in α, it may contain any edge that goes from 2 to any other unlabelled

vertex not in α (see Example 6.22). The sum over β is over the binary choices of

including or not including each of these edges, thus

∑

β

(−1)v(β) = 0

if there are any such edges. This reduces the expression for R−1
T,λV

(F)⋆? R−1
T,λV

(G) to

a sum over γ without any such edges.

We are therefore interested in graphs γ ∈ G4(2) that do not contain any such

ambiguous edge. This means that any edge from 2 ∈ γ must go to a vertex of α ⊂ γ

or to a sink. By the definition of G4, 1 ∈ γ /α is a sink, so any vertex of α ⊂ γ other

than 1 is a sink. In short, any edge from 2 ∈ γ must go to 1 or a sink. This implies that

all unlabelled vertices are sinks, and so any edge goes from 1 or 2 to an unlabelled

vertex or from 2 to 1. In other words, γ ∈ G2(2). In that case, all vertices of γ are in
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α or β, so v(γ ) = v(α)+ v(β). Therefore,

R−1
T,λV

(F)⋆? R−1
T,λV

(G) =
∑

γ∈G2(2)

(−i�)e(γ )−v(γ )λv(γ )

|Aut γ |
�γ (F, G) .

With Lemma 6.17, this shows that ⋆? satisfies Eq. (5.10), which is the defining property

of ⋆T,int.

Example 6.22 Consider the graph

γ = 21
b

ca

a

a
∈ G4(2) .

The subgraph α consists of the edges labelled (a) here (and the adjacent vertices). The

edge (b) must be in the subgraph β, but the edge (c) may or may not be in β. The other

edges cannot be in β. The sum over the 2 possible choices of β with or without (c)

gives 0, so that γ does not contribute to the formula for R−1
T,λV

(F)⋆T,int R
−1
T,λV

(G).

6.3 Nonperturbative expression for an interacting product

In this section, we will show that the interacting star product can be written in terms of

the full propagator 	A
S and derivatives of S and, provided that 	A

S is known exactly,

the result is a formal power series in �, but the coupling constant λ can be treated as

a number.

Definition 6.23 G5(n) is the set of isomorphism classes of directed graphs with labelled

vertices 1, . . . , n such that:

• Each unlabelled vertex has valency at least 3 and is neither a source nor a sink;

• There exist no directed cycles;

• For 1 ≤ j < k ≤ n, there does not exist a directed path from j to k.

Also define

G5
.
=

⋃

n∈N

G5(n) .

Remark 6.24 A crucial consequence of the first condition in the definition of G5(n) is

that derivatives of V appearing in the graphical expansion are at least 3rd derivatives,

so one can replace these with derivatives of S (S0 is quadratic).

Definition 6.25 A graph γ ∈ G5(n) defines an n-ary multidifferential operator,
։
γ , as

follows:

• An edge represents 	A
S .
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• The labelled vertex j represents a derivative of the j th argument.

• An unlabelled vertex represents a variational derivative of S.

Definition 6.26 In our diagrams, 	A
S will be denoted by a solid line with an arrow.

For this reason, graphs in G5 will be drawn with solid lines for the edges. (This helps

to distinguish G5 from G.)

Remark 6.27 S′′ is the linearized equation of motion operator; thus, S′′	A is the iden-

tity operator. This means that if there were a bivalent vertex in γ , then
։
γ would be

the same as if that vertex were removed, i.e.

= .

For this reason, G5(n) can (and should) be thought of as a quotient of G3(n). This leads

to the appropriate definition of morphisms.

Definition 6.28 For α, β ∈ G5, a morphism u : α → β is a function that

• Maps vertices of α to vertices of β and edges of α to directed paths in β,

• Respects sources and targets of edges,

• Maps labelled vertices to labelled vertices,

• And preserves the order of labelled vertices.

The concept of an extension in G5 follows from this definition.

The following theorem is the main result of this section. It delivers an explicit

formula for the interacting star product that is nonperturbative in the coupling constant.

Theorem 6.29 For S = S0 + λV ,

F⋆T,intG =
∑

γ∈G5(2)

(−1)v(γ )(−i�)e(γ )−v(γ )

|Aut γ |

։
γ (F, G) . (6.5)

Proof For γ ∈ G5(n), the operator
։
γ can be expressed as a sum of operators given by

graphs in G3(n), with the following dictionary:

• Because any unlabelled vertex in γ has valency at least 3 (say, r ), S(r) = λV (r),

so this vertex corresponds to a vertex in G3 and a factor of λ.

• By Eq. (3.6), an edge in γ corresponds to a sum over all possible chains of edges

and bivalent vertices in G3, with a factor of −λ for every vertex, i.e.

= − λ + λ2 − . . . .

Adding bivalent vertices along edges of graphs in G5(n) will give all graphs in

G3(n).

Applying this dictionary to (6.5) gives (6.4).
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Remark 6.30 Note that after re-expressing everything in terms of full propagators, at

a fixed order in � there are only finitely many terms in the λ-expansion. Hence, the

result is exact in the coupling constant, provided that 	A
S0

can be constructed.

Theorem 6.19 shows that Eq. (6.5) gives the interacting product for a free action plus

a regular perturbation (up to time ordering). This implies in particular that the product

is associative. It is worth understanding why it is associative in greater generality.

Theorem 6.31 Suppose that S is an action and K (ϕ)(x, y) is any Green’s function for

the linearized equation of motion. If ⋆ is defined by the right-hand side of Eq. (6.5),

with K in place of 	A
S , then ⋆ is an associative product on the domain of definition of

the associativity condition.

Proof As usual, the dependence on ϕ will not be written explicitly.

The defining property of a Green’s function is S′′K = idEc
. Differentiating this

gives

0 = S(3)K + S′′K (1) ,

and multiplying on the left by K gives

0 = K S(3)K + K S′′K (1) .

In this equation, K S′′ is acting on the image of K , where it acts as the identity, so

K (1) = −K S(3)K .

We would first like to compute (F1⋆F2)⋆F3.

To compute this, first observe that for α, γ ∈ G5(2),

։
γ ◦1

։
α =

∑

α →֒β։γ

(−1)v(α)−v(β)+v(γ )
։

β

where the sum is over equivalence classes of extensions at 1. These are precisely the

ways of breaking up 1 ∈ γ and attaching the edges to α (possibly by adding new

vertices) to form a graph β.

The axioms of G5 imply that there exists a partial order, ", on the vertices of

β ∈ G5(3) that is generated by the edges and 1 ≻ 2 ≻ 3.

This preimage of 1 ∈ γ is completely determined by the structure of β alone. It

is the complete subgraph whose vertices satisfy $ 2. For this reason, dβ = 1 in the

sense of Lemma 6.13. The number of equivalence classes of extensions is thus

|Aut α||Aut γ |

|Aut β|
.

This uniqueness shows that any β can only appear in one term of the expansion of

(F1⋆F2)⋆F3. Conversely, any β ∈ G5(3) does occur in this expansion.
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Together, this shows that

(F1⋆F2)⋆F3 =
∑

β∈G5(3)

(−1)v(β)(−i�)e(β)−v(β)

|Aut β|

։

β (F1, F2, F3) . (6.6)

An essentially identical calculation (using the subgraph determined by " 2) shows

that F1⋆(F2⋆F3) is given by the same formula, thus

(F1⋆F2)⋆F3 = F1⋆(F2⋆F3) ,

provided that both sides are defined.

Example 6.32 Consider the graph

2

1

3 ∈ G5(3) .

This occurs in a unique extension at 1,

1 2 →֒

2

1

3 ։ 1 2

corresponding to a term in (F1⋆F2)⋆F3, and in a unique extension at 2

1 2 →֒

2

1

3 ։ 1 2

corresponding to a term in F1⋆(F2⋆F3).

Remark 6.33 We have not proven that Eq. (6.5) gives the correct interacting product

for a local action. However, Theorem 6.31 makes this a plausible conjecture.

6.3.1 Low-order terms

Explicitly, the product ⋆T,int is given up to order �3 as

m⋆T,int
= m + �B

⋆T,int

1 + �2 B
⋆T,int

2 + �3 B
⋆T,int

3 + . . .
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where

B
⋆T,int

1 = −i 1 2 , (6.7)

B
⋆T,int

2 =
−1

2
1 2 +

1

2
1 2 +

1

2
1 2 −

1

2
1 2 ,

(6.8)

and

B
⋆T,int

3 =
i

6
1 2 −

i

2
1 2 −

i

2
1 2 +

i

2
1 2

+i 1 2 −
i

4
1 2 +

i

4
1 2 −

i

6
1 2

+
i

2
1 2 +

i

2
1 2 −

i

2
1 2 − i 1 2

+
i

4
1 2 −

i

4
1 2 −

i

6
1 2

+
i

2
1 2 +

i

2
1 2 −

i

2
1 2 − i 1 2

+
i

4
1 2 −

i

4
1 2 +

i

6
1 2

−
i

2
1 2 −

i

2
1 2 +

i

2
1 2

+i 1 2 −
i

4
1 2

+
i

4
21 . (6.9)
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6.3.2 Is there a Kontsevich-type formula?

In his famous paper on deformation quantization [41], Kontsevich presented a formula

for constructing a ⋆-product from an arbitrary Poisson structure on a finite-dimensional

vector space. Every term is a polynomial in the Poisson structure and its derivatives.

In that construction, B1 is antisymmetric and proportional to the Poisson structure, so

this can be thought of as constructing a ⋆-product from its first-order term.

The first-order term of ⋆T,int is 	A
S , which is not antisymmetric. This suggests a

question. In analogy with Kontsevich’s formula, can ⋆T,int be constructed from 	A
S

and its functional derivatives?

To address this, we first need some notation. Kontsevich’s formula uses a sum over

graphs in which vertices represent the Poisson structure. In his graphs, every unlabelled

vertex has 2 outgoing edges. Because 	A
S has no symmetry, in our generalization, it

will be necessary to distinguish these as left and right edges.

Definition 6.34 A K-graph is a directed graph in which:

• There are labelled vertices 1 and 2, and possibly unlabelled vertices;

• Every edge is labelled as “left” or “right”;

• Every unlabelled vertex has 2 outgoing edges, one left and one right.

As with other graphs that we have considered, a K-graph determines a bidifferen-

tial operator. The vertices 1 and 2 represent the arguments. The unlabelled vertices

represent 	A
S . The edges represent derivatives.

In diagrams, these will be drawn with solid arrows on the right edges.

For example,

B
⋆T,int

1 = −i 1 2 .

(Equality means equality of operators.)

To see how K-graphs can be expressed in terms of graphs in which edges represent

	A
S , consider the following examples involving parts of graphs:

1 2 = 1 2

1 2 = − 1 2

1 2 = − 1 2 + 1 2 + 1 2

Using the rules above applied to parts of graphs, one can easily treat an arbitrary

K-graph.
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The second-order term of ⋆T,int can indeed be constructed in this way:

B
⋆T,int

2 =
−1

2
1 2 −

1

2
1 2 −

1

2
1 2

−
1

2
1 2 .

In general, the operator given by a K-graph can also be given by a sum of graphs in

which edges represent 	A
S and vertices represent derivatives of S, but not vice versa.

A K-graph in which each unlabelled vertex has at most one ingoing edge will give a

single term; otherwise, it will give several terms.

We can come fairly close to expressing B
⋆T,int

3 in terms of K-graphs. The only

problem is with terms in which the labelled vertices both have valency 1. We can

nearly reproduce this part of −i B
⋆T,int

3 as

1

6
1 2 +

1

4
1 2

+
1

6
1 2 +

1

6
1 21

=
1

6
1 2 −

1

2
1 2 −

1

2
1 2

+
2

3
1 2 +

11

12
1 2

−
1

4
1 2 +

1

4
21

This leaves a discrepancy of

1

6
1 2 −

1

12
1 2 . (6.10)
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Note that these two terms each have 4 unlabelled vertices. A K-graph at order �3 has

precisely 3 unlabelled vertices, and when it is translated, at least one term has 3 or

fewer unlabelled vertices. In order to express (6.10) as a combination of K-graphs,

we must in particular find combinations of K-graphs in which terms with 3 or fewer

unlabelled vertices cancel. A tedious search shows that those combinations cannot

reproduce (6.10), and thus, the third-order term of ⋆T,int cannot be constructed from

	A
S and its derivatives. This means that ⋆T,int is not given by anything analogous to

Kontsevich’s formula.

6.3.3 Interacting Wick product

These calculations have used the identification of Areg with Freg[[�]] defined by the

quantization map QT . In order to compare results and to try to extend this to all of A,

we should use the identification defined by QH . This gives a product that is related to

the abstract interacting product •int in the same way that the Wick product is related

to the abstract noninteracting product •.
An expression for the interacting product ⋆H ,int in that identification is obtained

from ⋆T,int by

F⋆H ,intG = TH (T−1
H F⋆T,intT

−1
H G) (6.11)

for F, G ∈ Freg[[�, λ]].
The next step is to extend the domain of definition of ⋆H ,int to local nonlinear

arguments. The potential problem with this is that the expansion of the product ⋆T,int

in terms of Feynman diagrams contains loops involving the advanced propagator, and

lightcone divergences could be present.

Remark 6.35 Note that the advanced propagator, as a bidistributional kernel 	A
S (x, y),

has singular support given by the condition (x−y)2 = 0 (lightcone equation). To build

pointwise products of distributions, one can use Hörmander’s criterion [39], based on

the concept of the wavefront set. Roughly speaking, one can multiply distributions

if the sum of their wavefront sets (seen as subsets of the cotangent bundle) does not

include the zero section. This condition is violated for all point on the whole past

lightcone if we try to take the square of 	A
S (x, y). For details about the wavefront sets

of fundamental solutions, see, for example, [50].

Definition 6.36 G6(n) is the set of isomorphism classes of graphs with directed and

undirected edges and labelled vertices 1, . . . , n such that:

• Each unlabelled vertex has valency at least 3, including at least one ingoing and

one outgoing edge;

• There exist no directed cycles;

• For 1 ≤ j < k ≤ n, there does not exist a directed path from j to k.

Definition 6.37 A graph γ ∈ G6(n) defines an n-ary multidifferential operator,
։
γ , as

follows:

• A directed edge represents 	A
S ;

• An undirected edge represents 	F
S0

;
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• The vertex j represents a derivative of the j th argument;

• an unlabelled vertex represents a derivative of S.

Remark 6.38 Note that the Feynman propagator 	F
S0
= i

2

(
	R

S0
+	A

S0

)
+H is defined

by the free action S0 and the Hadamard distribution H . It is not a natural object from

the point of view of the full action S. This suggests that there should be an alternative

to QH that is more adapted to S, but at the moment, we do not have a concrete proposal.

Lemma 6.39

TH =
∑

γ∈G6(1)

�e(γ )

|Aut γ |

։
γ

Proof TH
.
= α	F

S0

= e
�

2 DF and DF
.
= D	F

S0

is the operator given by the graph

1 .

A graph in G6(1) has no directed edges and no unlabelled vertices; it is just a

bouquet of undirected loops. Consider the unique graph with e(γ ) = m loops. Because

the functional derivative of 	F
S0

is 0, this graph gives the operator
։
γ = Dm

F . Its

automorphism group is Aut γ = Sm ⋊ Zm
2 . So,

�e(γ )

|Aut γ |

։
γ =

�m

2mm!
Dm

F .

Definition 6.40 G7(n) ⊂ G6(n) is the subset of graphs with no loops at labelled vertices

(i.e. no edge begins and ends at the same labelled vertex).

G8(n) ⊂ G6(n) is the subset of graphs with no loops.

Theorem 6.41

F⋆H ,intG =
∑

γ∈G7(2)

(−i)v(γ )+d(γ )�e(γ )−v(γ )

|Aut γ |

։
γ (F, G) (6.12)

where d(γ ) is the number of directed edges. In particular, this is a finite sum at each

order in �.

Proof First, observe that

TH (F⋆T,intG) =
∑

γ∈G6(2)

(−i)v(γ )+d(γ )�e(γ )−v(γ )

|Aut γ |

։
γ (F, G) .
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Replacing F and G with T
−1
H F and T

−1
H G serves to cancel out all terms with loops at

1 or 2.

To extend to local V , the usual procedure is to extend DF to a map D̃F that coincides

with DF on regular functionals and vanishes on local ones (see e.g. [52, Section 6.2.1]).

This implies that TH acts as identity on local functionals.

Proposition 6.42 If V ∈ Floc, then the sum in (6.41) can be taken over G8(2).

Proof If V ∈ Floc, then D̃F(S) = 0, so any loop at an unlabelled vertex gives 0.

By direct inspection of the graphs, it is not clear whether the expression above

can be renormalized or not. The problem is related to the presence of free Feynman

propagators together with interacting advanced propagators. This is potentially an

issue, since 	F
S0
− i	A

S does not have the right WF set properties (in contrast to

	F
S0
− i	A

S0
).

As mentioned before, this is caused by the fact that in constructing the interacting

product we left the time-ordered product unchanged, since the time ordering of ⋆H ,int

results again in the same commutative product ·TH .

Although we began with a perturbative construction using a free action S0, it is

only the time-ordered product that remembers S0 and we would like this dependence

to be completely removed in the interacting theory.

We hope that the results of this paper will allow us in the future to find a better

version of the interacting Wick product, while keeping ⋆T,int unchanged.

6.4 Formulae for theMøller operators

In this section, we prove some combinatorial formulae for the quantum Møller opera-

tor, which can be used to streamline computations and might be the starting point for

investigating renormalization in the future.

In our terms, a corolla is a graph γ ∈ G(1) such that there is a single edge from 1

to each unlabelled vertex.

Corollary 6.43

r−1
λV (F) =

∑

γ corolla

λv(γ )

|Aut(γ )|
�γ (F)

Proof This follows from Eq. (6.2) by setting � = 0. The graphs γ ∈ G2(1) with

e(γ ) = v(γ ) are precisely the corollas.

In our terms, a tree is a connected graph γ ∈ G(1) such that 1 is a source, and each

unlabelled vertex has precisely one ingoing edge.

Lemma 6.44

rλV (F) =
∑

γ tree

(−λ)v(γ )

|Aut(γ )|
�γ (F) (6.13)
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Proof Any extension of a corolla by a tree is also a tree, so the composition of r−1
λV

with (6.13) can be computed as a sum over trees.

Consider a tree, β. What will the coefficient of this term be? For every subset of

leaves (valency 1 vertices) of β, there is an extension α →֒ β ։ γ , where α is β

without those leaves, and γ is the corolla made from those leaves. Note how the sign

of the term depends upon the number of leaves that are removed.

Lemma 6.13 shows that if β has m leaves, then the coefficient of this term is a

multiple of

m∑

k=0

(
m

k

)
(−1)k = 0

unless m = 0. Therefore, the only term in the composition of rλV with (6.13) is given

by the unique tree with no leaves; the composition is the identity.

Definition 6.45 G9(1) is the set of trees such that no unlabelled vertex has precisely

one outgoing edge.

Any tree can be obtained from such a graph by adding vertices along edges. As

in Theorem 6.29, summing over these gives interacting advanced propagators. This

gives the formula

rλV (F) =
∑

γ∈G9(1)

(−1)v(γ )

|Aut(γ )|

։
γ (F)

where edges represent 	A
S and vertices represent derivatives of λV .

In a similar way, inverting Eq. (6.2) gives a graphical formula for RT,λV .

Definition 6.46 G10(1) ⊂ G(1) is the set of graphs such that:

• Every unlabelled vertex has at least one incoming edge;

• 1 is a source (has no incoming edges);

• There are no directed cycles.

With this,

RT,λV (F) =
∑

γ∈G10(1)

(−i�)e(γ )−v(γ )(−λ)v(γ )

|Aut(γ )|
�γ (F) .

Next, this leads to a formula for RH ,λV . If V is local (and we set TH (V ) = V ) then

this amounts to replacing all products by time-ordered products. In terms of graphs,

this is given by attaching undirected 	F
S0

-edges to graphs from G10(1).

Definition 6.47 G11(1) is the set of isomorphism classes of graphs with directed and

undirected edges and a labelled vertex 1, such that

• Every unlabelled vertex has at least one incoming edge;
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• 1 is a source;

• There are no directed cycles;

• There are no loops.

With this, for V local,

RH ,λV (F) =
∑

γ∈G11(1)

(−i)d(γ )−v(γ )(−λ)v(γ )�e(γ )−v(γ )

|Aut(γ )|
�γ (F)

where undirected edges represent 	F
S0

, and d(γ ) is the number of directed edges.

Definition 6.48 G12(1) ⊂ G11(1) is the subset of graphs such that that no unlabelled

vertex has one incoming edge, one outgoing edge, and no unlabelled edge.

Any graph in G11(1) can be obtained by adding vertices along directed edges of

a graph in G12(1). In this way, the formula can be re-expressed using the interacting

advanced propagator,

RH ,λV (F) =
∑

γ∈G12(1)

(−i)v(γ )+d(γ )�e(γ )−v(γ )

|Aut(γ )|

։
γ (F)

where directed edges represent 	A
S , undirected edges represent 	F

S0
, and unlabelled

vertices represent derivatives of λV .

Finally, consider the graphs in G12(1) without trees branching off of them. These

are characterized by the lack of univalent vertices, i.e. leaves.

Definition 6.49 G13(1) is the set of isomorphism classes of graphs with directed and

undirected edges and a labelled vertex 1, such that

• Every unlabelled vertex has at least one incoming edge and one other edge;

• No unlabelled vertex has only one incoming and one outgoing edge;

• 1 is a source (has no incoming edges);

• There are no directed cycles;

• There are no loops.

We define an operator

�λV (F) :=
∑

γ∈G13(1)

(−i)v(γ )+d(γ )�e(γ )−v(γ )

|Aut(γ )|

։
γ (F) .

Note that any graph giving a term of order �m has at most 4m vertices and 5m edges.

There are finitely many such graphs, so λ does not need to be a formal parameter in

this formula.

Finally, observe that any graph in G12(1) can be obtained as an extension of a tree

in G9(1) by a graph in G13(1). Consequently, the composition rλV ◦�λV is a sum over

G12(1) with the same coefficients. Therefore

RH ,λV = rλV ◦�λV
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which is a nonperturbative formula for RH ,λV .

Unfortunately, in order to apply the standard methods of Epstein–Glaser renormal-

ization [20], this formula needs to be expanded in λ again, to show cancellation of the

lightcone divergences. However, we hope that the nonperturbative formula can never-

theless lead to a well-defined object, if we use a different renormalization method (e.g.

through some regularization scheme). This will be investigated in our future work.

7 Perturbative Agreement

Consider the case that V is quadratic, so that V (2)(ϕ) is independent of ϕ, and higher

derivatives vanish. In such a situation, one can treat the interacting theory exactly and

a natural question to ask is how this compares with perturbative treatment. This issue

has been discussed in the literature [22,38] under the name perturbative agreement.

One way to look at it is to compare the interacting star product obtained by means of

quantum Møller operators with the star product constructed directly from the advanced

Green function for the quadratic action S0+λV . In this case, Theorem 6.29 becomes:

Corollary 7.1 If V ∈ Freg is quadratic, then ⋆T,int is the exponential product defined

by −i	A
S0+λV .

Proof An unlabelled vertex of γ ∈ G5(2) has valency r ≥ 3 and represents the

derivative S(r), which vanishes because S is quadratic, therefore
։
γ = 0 unless γ has

no unlabelled vertices. This means that Eq. (6.5) simplifies to something like Eq. (6.1):

F⋆T,intG =
∑

γ∈G1(2)

(−i�)e(γ )

|Aut γ |

։
γ (F, G) .

In [22,38], the principle of perturbative agreement (PPA) is expressed as a compat-

ibility condition for time-ordered products corresponding to S0 and S0+λV . In order

to prove it in our current setting, we need to pass from the QT-identification to the

QWeyl-identification.

For the remainder of this section, we do not need V to be regular.

Lemma 7.2 If V ∈ Fμc is quadratic then

RT,λV = αλδ ◦ rλV , (7.1)

and

R0,λV = T ◦ αλδ ◦ rλV ◦ T−1 (7.2)

where α is defined in Proposition 4.7, rλV is the classical Møller operator, and

δ = i	R
S0

V (2)	A
S0
= i 1 2 .
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Proof Because V is quadratic,

V (ϕ − i�	A
S0

w) = V (ϕ)− i�
〈
V (1)(ϕ),	A

S0
w

〉
−

�2

2

〈
V (2), (	A

S0
w)⊗2

〉

= V (ϕ)− i�
〈
V (1)(ϕ),	A

S0
w

〉
+

i

2
�2

〈
δ,w⊗2

〉
.

In this way, Eq. (5.5) simplifies to

J (ϕ;w) = exp

(〈
λV (1)(ϕ),	A

S0
w

〉
−

�λ

2

〈
δ,w⊗2

〉)

= J0(ϕ;w) exp

(
−

�λ

2

〈
δ,w⊗2

〉)
,

i.e. J1(ϕ;w) = exp
(
−�λ

2

〈
δ,w⊗2

〉)
.

A consequence of these simplifications is that when any of these acts (via ⊲) on a

regular functional, then the result is still regular. Because of this, the proof of Propo-

sition 5.4 still works.

Now, (J0(ϕ) ⊲ G)(ϕ) = (r−1
λV G)(ϕ), and e−�λδ/2 ⊲ G = α−λδG. This shows that

R−1
T,λV

(G) = r−1
λV ◦ α−λδ(G). Inverting this gives Eq. (7.1).

Equation (7.2) just follows from the relationship between QT and QWeyl.

Remark 7.3 Equation (7.1) is very similar to Eq. (5.8). The difference is that RT,λV is

factored in a different order into classical and “purely quantum” part, since Eq. (5.8)

implies RT,λV = rλV ◦ϒ−1
λV .

Remark 7.4 Note that our result holds for a quadratic V that is local and compactly

supported and that removing the IR regularization is a nontrivial step.

After transforming the quantum Møller map to the QWeyl-identification, (7.1) allows

us to compute the map β
.
= r−1

λV R0,λV of [22]. Note the close resemblance between

β and ϒ−1
λV , already pointed out in Remark 5.12. We are now ready to provide a

streamlined version of the proof of Theorem 5.3 of [22].

Theorem 7.5 For V quadratic, the quantum Møller operator can be expressed in terms

of the classical Møller operator as [22]

R0,λV = rλV ◦ αi(	D
S−	D

S0
) . (7.3)

Proof Because S is quadratic, r−1
λV is a linear map. Its derivative is constant. Using the

notation ρ for this derivative again,

ρ =
(
r
−1
λV

)(1)

(ϕ) = r
−1
λV = id + λ	R

S0
V (2) .
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Equation (3.13) simplifies to

ρ ◦	R
S ◦ ρT = 	R

S0
+ λ	R

S0
V (2)	A

S0

= 	R
S0
− iλδ .

Taking the transpose gives the same identity for the advanced propagators, and adding

them shows that

ρ ◦	D
S ◦ ρT = 	D

S0
− iλδ .

The point of this is that

αi	D
S
◦ r−1

λV = r−1
λV ◦ αiρ◦	D

S ◦ρ
T = r−1

λV ◦ αi	D
S0
+λδ .

Remembering that T = αi	D
S0

, this gives

rλV ◦ αi	D
S
= T ◦ αλδ ◦ rλV .

Equation (7.2) immediately becomes

R0,λV = rλV ◦ αi	D
S
◦ T−1

and using the definition of T again gives Eq. (7.3)

Relation (7.3) is in fact the condition of perturbative agreement, since αi(	D
S−	D

S0
)

is the map that intertwines between the time-ordered product corresponding to S0 and

the one corresponding to S. Another way of expressing this relation is

R0,λV ◦ T = rλV ◦ TS ,

where T is the time-ordering map corresponding to S0 and TS is the analogous map

corresponding to S.

8 Conclusions

In this paper, we have derived an explicit formula for the deformation quantization

of a general class of infinite-dimensional Poisson manifolds. We have also investi-

gated the relation between our formula and the Kontsevich formula. Although the

latter has not been generalized to the infinite-dimensional setting (as for now), one

can check whether our formula could in principle be derived from one that involves

only the propagator (in our case, the advanced propagator) and its derivatives. By

direct inspection of the graphs that appear in the third order of our expansion of the

interacting star product, we have shown that our expressions cannot be derived by only

using the Kontsevich-type graphs. The extra information that we need (apart from the
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knowledge of the propagator and its derivatives) is the action S. This is, however,

always provided in the models we are working with, since they arise from classical

field theory formulated in a Lagrangian setting (the Poisson structure is constructed

using the action S). It would be interesting to understand whether it is even possi-

ble to construct a star product in the infinite-dimensional setting without using some

additional structure; otherwise, our formula may be the best analogue of Kontsevich’s

formula in this setting. We want to investigate this problem in our future work.

Our results hold for a restricted class of functions on the manifold in question,

and in order to generalize these results, one needs to perform renormalization. We

want to investigate this in future research. There are two possible ways forward. One

is to use regularization and perform computations in concrete examples, to see how

the divergences can be removed. This is expected to work for the quantum Møller

operator itself (since it was constructed by perturbative methods, for example, by [20])

and could also shed some light on the singularities of the interacting product. For the

latter, another strategy is to try to correct ⋆H ,int by modifying the normal-ordering

quantization map QH .

We also want to see how the present results are compatible with the algebraic

adiabatic limit [8,31] and the general framework proposed in [35].
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