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SUMMARY

Immune checkpoint blockade using antibodies
against negative co-receptors such as cytolytic
T cell antigen-4 (CTLA-4) and programmed cell
death-1 (PD-1) has seen much success treating can-
cer. However, most patients are still not cured,
underscoring the need for improved treatments and
the possible development of small molecule inhibi-
tors (SMIs) for improved immunotherapy. We previ-
ously showed that glycogen synthase kinase (GSK)-
3a/b is a central regulator of PD-1 expression, where
GSK-3 inhibition down-regulates PD-1 and enhances
CD8+ cytolytic T cell (CTL) function, reducing viral in-
fections and tumor growth. Here, we demonstrate
that GSK-3 also negatively regulates Lymphocyte
Activation Gene-3 (LAG-3) expression on CD4+ and
CD8+ T cells. GSK-3 SMIs are more effective than
LAG-3 blockade alone in suppressing B16melanoma
growth, while their combination resulted in enhanced
tumor clearance. This was linked to increased
expression of the transcription factor, Tbet, which
bound the LAG-3 promoter, inhibiting its transcrip-
tion, and to increased granzyme B and interferon-
g1 expression. Overall, we describe a small molecule
approach to inhibit LAG-3, resulting in enhanced
anti-tumor immunity.
INTRODUCTION

Immunecheckpointblockade (ICB) isapromisingapproach for the

treatment of cancer. The approach involves the blockade of nega-

tive co-receptors on T cells such as cytolytic T cell antigen-4

(CTLA-4) and programmed cell death-1 (PD-1). PD-1 expression

on tumor-infiltrating CD8+ T cells correlateswith impaired function

(Ahmadzadeh et al., 2009), while PD-L1 expression on tumor cells

facilitates their escape from the immune response (Iwai et al.,

2002). ICB reverses T cell exhaustion and restores T cell function-
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ality (Freeman et al., 2006; Wherry, 2011). The cancer treatment

drug nivolumab (Opdivo) against PD-1 was approved as a first-

line treatment for advanced melanoma and has been used alone,

and in combination with ipilimumab (Yervoy), an anti-CTLA-4 anti-

body (Ab) resulting in high response rates (Hodi et al., 2010;

Sharma et al., 2011; Wolchok et al., 2013). However, despite this

success, many patients are still not cured and may suffer im-

mune-related adverse events (irAEs). This poor prognosis con-

tinues to highlight a need to develop novel clinical interventions.

In this context, we have identified the enzyme glycogen synthase

kinase-3 (GSK-3) as a major nexus in the control of PD-1 expres-

sion on T cells (Taylor et al., 2016). We also showed that small

molecule inhibitors (SMIs) of GSK-3 can suppress tumor growth

in amanner comparable to PD-1 Ab blockade (Taylor et al., 2018).

Among the expanding numbers of inhibitory co-receptors

on T cells are Lymphocyte Activation Gene-3 (LAG-3), T cell im-

munoreceptor with immunoglobulin (Ig) and ITIM domains

(TIGIT), CD244 (2B4), T cell Ig and mucin-domain containing-3

(TIM-3), CD160, killer-cell lectin like receptor G1 (KLRG-1), and

B and T lymphocyte attenuator (BTLA-4) (Baumeister et al.,

2016). LAG-3 is an activation antigen that negatively regulates

T cells (Workman et al., 2004; Workman and Vignali, 2003). It is

a cell-surface molecule initially discovered on natural killer (NK)

cells (Triebel et al., 1990) and then on activated T cells (Huard

et al., 1994), B cells, and plasmacytoid dendritic cells (Workman

et al., 2009). Furthermore, LAG-3 is a member of the Ig super-

family, containing four Ig loops, with structural homology to

CD4. Unlike CD4, the membrane-distal IgG domain contains

an extra loop region that appears important for binding to major

histocompatibility complex class II (MHC class II) molecules

(Triebel et al., 1990). Aside from MHC class II antigens, fibrin-

ogen-like protein-1 is a major immune inhibitory ligand of

LAG-3 (Wang et al., 2019). Studies in LAG-3 knockout mice

have demonstrated an inhibitory role for LAG-3 in controlling

both CD4 and CD8 T cell proliferation in vitro and in vivo

(Workman et al., 2004). This negative effect on T cell function

is exerted through a poorly understood but unique amino acid

sequence (KIEELE) in the intracellular domain (Workman et al.,

2002). Importantly, LAG-3 and PD-1 are co-expressed at high

levels in tumor-infiltrating lymphocytes (TILs) from murine

ovarian tumor and EG7-bearing mice, and blockade of both
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molecules enhances CD8+ effector T cell frequency and func-

tion, thus enhancing anti-tumor immunity (Andrews et al.,

2017; Huang et al., 2015; Woo et al., 2012).

We originally demonstrated that the inhibition of serine/threo-

nine kinase GSK-3 downregulates PD-1 expression, which en-

hances T cell responses against viral infections (Taylor et al.,

2016, 2018). There are two ubiquitously expressed and highly

conserved isoforms of GSK-3, GSK-3a and GSK-3b, which

have shared and distinct substrates, aswell as functional effects.

Both forms have been implicated in processes ranging from

glycogen metabolism to gene transcription, apoptosis, and

microtubule stability. The notable aspect of GSK-3 is that it is

constitutively active in resting T cells (Embi et al., 1980; Wood-

gett, 1990) and is inhibited by receptor-induced activation sig-

nals (Woodgett, 2001).

Our findings also showed that GSK-3 inhibition operated

primarily via a reduction in PD-1 transcription on CD8+ T cells

(Taylor et al., 2016, 2018). We further showed that SMIs against

GSK-3 are as effective as anti-PD-1 Abs in restricting B16 and

EL-4 tumor growth in mice (Taylor et al., 2018). In this article,

we demonstrate that GSK-3SMIs and siRNAs can also

downregulate LAG-3 expression on T cells and that combination

therapy of SMIs with LAG-3 can significantly enhance the clear-

ance of tumors in mice.

RESULTS AND DISCUSSION

Small Molecule Inhibition of GSK-3 Downregulates PD-1
and LAG-3 in T Cells
We have previously shown that the inactivation of GSK-3a/b in-

creases Tbet expression for the downregulation of PD-1 expres-

sion (Taylor et al., 2016, 2018; Taylor and Rudd, 2017). By

contrast, we found no effects on the expression of other T cell re-

ceptors, including CD3, CD4, CD8, CD28, CTLA-4, CD44,

CD62L, TIM-3, CD3, BTLA, NKG2D, CD122, IL-2Ra, CD25,

CD69, FasL, and CD8 (Taylor et al., 2016). However, given that

Tbet can regulate the expression of multiple genes (Lazarevic

and Glimcher, 2011), we widened our survey of potential

GSK-3 targets. Of particular interest was the expression of other

inhibitory receptors (IRs). To this end, CD8+ OT-1 T cells were

stimulated with OVA257–264 (SIINFEKL) peptide in the presence

or absence of the GSK-3 SMI SB415286 over 7 days, during

which samples were assessed for LAG-3 expression using

flow cytometry and PCR analysis. As expected from previous

work (Taylor et al., 2016, 2018; Taylor and Rudd, 2017), the

OVA-induced upregulation of PD-1 was markedly reduced

by the presence of the GSK-3 SMI. Surprisingly, the expression

of LAG-3 was also downregulated by the presence of SMI,

while the expression of other IRs such as CTLA-4, BTLA-4,

and TIM-3 was unaffected (Figure 1A).

T cells isolated from wild-type C57BL/6 mice activated with

anti-CD3 showed an increase in LAG-3 expression that was

reduced by the presence of SB415286 (Figure 1B, left panel).

As expected, the level of LAG-3 expression on anti-CD3-acti-

vated Pdcd�/� (PD-1-deficient) T cells was higher than seen on

control T cells, consistent with the inhibitory effect of PD-1 on

T cell activation. Nevertheless, SB415286 markedly reduced

LAG-3 levels on anti-CD3-activated Pdcd�/� T cells (Figure 1B,
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right panel). These data showed that GSK-3 inactivation down-

regulates LAG3 independent of PD-1 expression.

We next assessed whether the suppression of LAG-3 expres-

sion was mediated at the level of transcription of LAG-3

throughout the 7-day time course, as seen by use of real-time

PCR (Figure 1C). The level and time course of the inhibition of

LAG-3 transcription was similar to that of PD-1, while CTLA-4

transcription was unaffected.

Moreover, different ATP-competitive inhibitors SB415286,

SB216763, and CHIR99021 had similar effects on both LAG-3

and PD-1 expression (Figure 1D). SB216763 has been reported

to have a preference for the GSK-3a isoform, whereas

CHIR99021 preferentially inhibits GSK-3b (Kaidanovich-Beilin

and Eldar-Finkelman, 2006). SB415286 competitively inhibits

both isoforms, with a preference for the b isoform (Coghlan

et al., 2000). In all cases, LAG-3 and PD-1 transcription levels

were reduced.

LAG-3 is also known for its role in regulating CD4+ T cell

function (Workman et al., 2002); therefore, the effect of SMI in

CD4+ T cells was investigated using OT-II transgenic mice.

CD4+ OT-II T cells were activated with OVA323–339 (ISQAVHAA-

HAEINEAGR) peptide in the presence or absence of SMI

for 7 days. Flow cytometry showed that GSK-3 inactivation

reduced expression of LAG-3 on CD4+ T cells (Figures S1A

and S1B). Similarly, inhibition of GSK-3 decreased LAG-3

expression on NK cells (defined as CD3�NKp46+ cells)

(Figure S1C). Overall, our findings identified LAG-3 as a novel

target regulated by the inhibition of GSK-3 in CD4 and CD8+

T cells.

Anti-LAG-3 Treatment Combined with GSK-3 SMIs
In Vitro Enhances CD8+ T Cell Cytolytic Responses
Given that anti-LAG-3 and GSK-3 SMI treatment would not

be expected to block LAG-3, we next assessed whether they

cooperate to enhance antigen-specific CD8+ T cell cytolytic re-

sponses (Figure 2). CD8+ OT-I T cells were stimulated with

OVA257–264 for 5 days in the presence of anti-LAG-3 Ab at

different doses. After 5 days of activation, the killing of EL4

lymphoma target cells by cytolytic T cells (CTLs) using a lactate

dehydrogenase (LDH) release detection assay. EL4 cells were

pulsed with OVA peptide before the incubation to induce an

antigen-specific response. Non-pulsed EL4 cells were used as

a control for background killing. A trend was observed in which

anti-LAG-3 increased killing; however, this did not achieve sta-

tistical significance (Figure 2A). By contrast, the addition of

GSK-3 SMIs did increase in vitro OT-I killing, and the combina-

tion of GSK-3 SMIs and anti-LAG-3 increased the killing further

at statistically significant levels (Figure 2B). This was seen over

a range of target ratios and was generally better than the coop-

erativity seen with anti-PD-1 and anti-LAG-3 combination ther-

apy. Together, these data show that under conditions in which

anti-LAG-3 blockade alone has limited effects in unleashing

T cell responses against tumors, the inhibition of GSK-3, while

having an effect on its own, sensitizes T cells to be more respon-

sive to tumor antigens.

A similar cooperativity was observed when small interfering

RNAs (siRNAs) against the GSK-3a and GSK-3b isoforms

were used to knock down (KD) expression (Figure 2C). Naive



Figure 1. Inhibition of GSK-3 Downregulates PD-1 and LAG-3 on CD8+ T Cells

(A) OT-I CD8+ T cells stimulated with OVA peptide in the presence or absence of SB415286. Flow cytometric profiles. Green line, without SB415286; red line, with

SB415286.

(B) C57BL/6 (left) or PD-1-deficient (right) T cells stimulated with anti-CD3 in the presence or absence of SB415286. Flow cytometric profiles. Green line, without

SB415286; red line, with SB415286.

(C) Transcription of LAG-3 (left), PD-1 (middle), and CTLA-4 (right) in the presence or absence of SB415286.

(D) Downregulation of PD-1 and LAG-3 on OT-I CD8+ T cells in the presence of other GSK-3 inhibitors: SB216763 and CHIR99021.

Data are represented as mean ± SD based on triplicate values in individual experiments; data shown represent three independent experiments. Groups are

compared using unpaired t test. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant.
T cells were transfected before a 5-day activation period with

OVA-pulsed EL4 cells and then assessed for cytolytic function

using LDH release assays. siRNA treatment reduced GSK-3a

and GSK-3b protein substantially, as seen by flow cytometry

(Figure 2C, top panel), in which with the use of fluorescent

GFP-conjugated siRNAs, more than 80% of cells took up the

siRNAs. siRNAs to GSK-3 increased OT-I-mediated cytolysis

of EL4-OVA targets when compared with the scrambled

(Scrm) siRNA control (Figure 2C, bottom panel). This was signif-

icantly increased by the addition of anti-LAG-3 Ab. These data

again showed that the combination of GSK-3 inactivation and

anti-LAG-3 Ab therapy markedly increased the killing capacity

of CD8+ OT-I CTLs.
Combined Treatment of Anti-LAG-3 Abwith GSK-3 SMIs
In Vivo Enhances CD8+ T Cell Cytolytic Responses
To assess whether the combination of anti-LAG-3 with GSK-3

inhibition was effective in limiting tumor growth, B16 tumor

cells tagged with luciferase were injected intravenously into

C57BL/6 mice and treated with the GSK-3 SMI SB415286, anti-

LAG-3, and/or anti-PD-1 (Figure 3). The optimal dose of

SB415286, LAG-3, and PD-1 was established at 200 mg/mouse/

treatment. SB415286 was administered every 2 days on six

occasions, beginning 7 days post-injection of tumor cells, with

the Ab given on four occasions (days 7, 10, 13, and 16). At days

10, 12, and 19, mice were injected intraperitoneally with luciferin

and scanned by IVIS Lumina imaging (Figure 3A; Figure S2).
Cell Reports 30, 2075–2082, February 18, 2020 2077



Figure 2. LAG-3 Potentiates the CD8+ T Cell Cytolytic In Vitro Responses to GSK-3 Inhibition

(A) Cytolytic assay in response to OVA peptide in the presence of anti-LAG-3 at different concentrations.

(B) Cytolytic assay in response to GSK-3 inhibition combined with LAG-3 blockade.

(C) Flow cytometry profiles demonstrate siRNA uptake (upper left panel) using GFP-Scrm siRNA and KD of GSK-3 (gray line, upper right panel) in comparison to

Scrm (black line). Cytolytic assay (lower panel) of GSK-3 siRNA-transfected OT-I cells in the presence or absence of LAG-3 blockade.

Statistical analysis based on triplicate values in individual experiments showing means and SDs (unpaired t test). *p < 0.05, **p < 0.01, ***p < 0.001.
Importantly, anti-LAG-3 treatment alone did not have a statisti-

cally significant effect on B16 tumor growth. Anti-PD-1 or

SB415286 treatment alone reduced the luciferase signal relative

to control at all time points. However, the combination of anti-

LAG-3 with SB415286 treatment was seen to be the most effec-

tive in decreasing tumor growth. As reported (Huang et al., 2015;

Zhang and Vignali, 2016), anti-LAG-3 plus anti-PD-1 also showed

a trend in cooperating to reduce tumor size (Figure 3A); however,

the combination of anti-LAG-3 and SB415286 was even more

effective than anti-LAG-3 plus anti-PD-1. The efficacy of anti-

LAG-3 with SB415286 treatment was observed by total flux mea-

surements and the percentage of mice showing complete tumor

clearance (Figure 3A, left panels). In both instances, the combina-

tion of anti-LAG-3 andGSK-3 inactivationwasmore effective than

anti-LAG-3 plus anti-PD-1.

The cooperativity between anti-LAG-3 and SB415286 was

particularly evident when we measured the complete loss of

tumor (Figure 3A, right histogram). In this representative

experiment, the combination was significantly more potent in

clearing the tumor (3/5 mice) when compared with the effects
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of anti-LAG-3 alone (0/5 mice) and SB415286 alone (1/5 mice).

While the synergistic effects of PD-1 and LAG-3 on T cell function

have been reported previously (Huang et al., 2015; Nguyen and

Ohashi, 2015; Okazaki et al., 2011), our findings show that

the combination of anti-LAG-3 plus GSK-3 inhibition is more

effective than this previously documented combination against

B16 melanoma. No direct effect of SB415286 on tumor cells

was observed as previously demonstrated by treating B16 tu-

mor-bearing Rag2�/� mice (devoid of B and T cells) with

SB415286. Further, SB415286 had no obvious effect on tumor

growth in vitro (Taylor et al., 2018).

The presence of SB415286 alone increased the presence

of GZMB+CD8+CD3+ T cells and TNF+IFNg+CD3+CD8+ T cells

(Figure 3B), while anti-LAG-3 alone also increased GZMB+

T cells. However, the combination of anti-LAG-3 plus SB415286

or anti-LAG-3 plus PD-1 further increased the presence of

TNF+IFNg+CD3+CD8+ T cells and GZMB-expressing CD8+CD3+

TILs in accordance with the increased efficacy of tumor killing.

The combination of anti-LAG-3 with SB415286 was generally

more effective than anti-LAG-3 combined with anti-PD-1.



Figure 3. Combining GSK-3 Inhibition with Anti-LAG-3 Therapy Further Inhibits Pulmonary Metastasis of B16 Melanoma
(A) Luminescent image showing B16metastasis at day 19 with total flux values (in photons per second) depicted in the histogram in the middle. The histogram on

right shows the percentage of tumor-free animals at the end of the study on day 19 (n = 5).

(B) Anti-LAG-3 plus SB415286 increases the presence of granzymeB+CD8+CD3+ TILs (upper panel) and TNF+IFN+CD8+CD3+ TILs (lower panel), as measured by

flow cytometry (n = 5). GSK-3 inhibition of LAG-3 affects the PD-1+ T cell subset.

(C) Flow cytometry analysis of TILs from B16 tumors showing the downregulation of LAG-3 and PD-1 (n = 5).

(D) viSNE profiles using CytoBank show that LAG-3 and PD-1 defined several overlapping populations of CD8+ TILs. The three CD8+ islands (i–iii) that were most

brightly stained islands with anti-LAG-3 (upper panel) were also stained with anti-PD-1 (lower panel). TILs from mice treated with SB415286 showed reduced

expression of LAG-3 on each of the three islands.

(A) Data shown from one individual experiment, representative of two independent experiments. (B) Represents two pooled experiments. Groups are compared

using unpaired t test. *p < 0.05, **p < 0.01, ***p < 0.001. Data are represented as mean ± SEM.
Lastly, an examination of TILs showed that both LAG-3 and

PD-1 on TILs were downregulated in this in vivo model (Fig-

ure 3C). Further analysis by CytoBank showed that anti-LAG-3

and PD-1 defined several overlapping populations of CD8+

TILs (Figure 3D). Interestingly, the three CD8+ islands (i–iii) that

were the most brightly stained islands with anti-LAG-3 (upper

panel) were also stained with anti-PD-1 (lower panel). TILs

frommice treated with SB415286 showed a reduced expression

of LAG-3 on each of the three islands. These data showed that

three subpopulations of cells expressing LAG3 and PD-1 were

affected by SB415286.

GSK-3 Downregulation or Inhibition Blocks LAG-3
Transcription
We have previously shown that inhibition of GSK-3 led to an in-

crease in the transcription of Tbx21 (encodes T-box transcription
factor Tbet), which was inversely correlated with Pdcd1 tran-

scription (Taylor et al., 2016). We therefore examined whether

the upregulation of Tbet due to GSK-3 inhibition was also con-

nected to the downregulation of LAG-3. Mice were subjected

to B16 melanoma and treated with, or without, SB415286.

CD8+ T cells were isolated from spleens harvested on day 19,

and RT-PCR was performed (Figure 4A). Concurrent with the

preceding findings, LAG-3 expression was reduced by the pres-

ence of SB415286. Furthermore, this was associated with an in-

crease in Tbx21 transcription. Chromatin immunoprecipitation

(ChIP) with anti-Tbet Ab followed by RT-PCR confirmed that

GSK-3 inhibition increased Tbet binding to the LAG-3 promoter

in anti-CD3-activated primary T cells (Figure 4B).

We next examined whether GSK-3 mediated its effect

on LAG-3 transcription via Tbet. OT-I CD8+ T cells were trans-

fected with either scrambled (Scrm) or Tbet siRNA (Figure 4C).
Cell Reports 30, 2075–2082, February 18, 2020 2079



Figure 4. Inhibition of GSK-3 Inhibits LAG-3

and Increases Tbx21 Transcription

(A) Tbx21 and LAG-3 transcription in response to

B16 melanoma with or without SB415286 treat-

ment.

(B) ChIP performed using CD3-activated primary

T cells with or without SB415286. ChIP performed

using anti-Tbet Ab followed by PCR analysis of

LAG-3.

(C) Tbet siRNA used to block Tbx21 transcription.

(D) Flow cytometry of LAG-3 expression on T cells

expressing Scrm siRNA or Tbet siRNA in the

presence or absence of SB415286.

(E) CTL killing efficiency of Tbet siRNA-expressing

CTLs in the presence of anti-LAG-3 blockade or

SB415286.

Statistical analysis based on triplicate values in

individual experiments showing means and SDs

(unpaired t test). *p < 0.05, **p < 0.01, ***p < 0.001.
Tbet siRNA expression decreased Tbet transcripts while

increasing LAG-3 transcription, a result consistent with the nega-

tive regulation of LAG-3 by Tbet (Durham et al., 2014; Graydon

et al., 2019; Kao et al., 2011). Importantly, SB415286 failed to

reduce LAG-3 expression in cells expressing Tbet siRNA, as as-

sessed by flow cytometry (Figure 4D). Tbet siRNA impaired CTL

killing over different E:T ratios (Figure 4E). This inhibition was

partially restored by LAG-3 blockade; however, GSK-3 inhibition

had no effect. This result indicated that the modulatory effects of

GSK-3 on LAG-3 expression operated in a pathway that required

the expression of Tbet.

Overall, our findings demonstrating GSK-3 regulation of

LAG-3 expression introduce a new pathway in the regulation

of T cell responses in cancer immunotherapy. We have shown

that GSK-3 now targets the two central IRs that are linked to

T cell non-responsiveness or exhaustion (McLane et al., 2019;

Wherry, 2011). Anti-PD-1 therapy, although effective, gener-

ates residual CD8+ T cells expressing PD-1+LAG-3+ T cells

with an exhaustion phenotype (Wei et al., 2019). GSK-3

SMIs, by reducing the expression of both PD-1 and LAG3,

should promote the functionality of T cells in tumors, either

in the context of anti-PD-1 or LAG-3 immunotherapy. Future

studies will assess whether the GSK-3-PD1/LAG3 axis also

affects other key players like the transcription factor TOX in

determining the response of intra-tumoral T-cells (Alfei et al.,

2019). Importantly, our findings showed that the combination

of anti-LAG-3 with GSK-3 inactivation was as effective as,

or more effective than, anti-LAG-3 and anti-PD-1 in B16 mel-

anoma cancer therapy. The synergic effect of LAG-3 with
2080 Cell Reports 30, 2075–2082, February 18, 2020
PD-1 blockade has been studied extensively (Woo et al.,

2012). One advantage of our approach in targeting GSK-3 in-

volves the potential oral use of SMIs, which could be used in

combination with anti-LAG-3. Intriguingly, in this context, we

found that the combination of anti-LAG-3 plus SB415286

was more effective in the complete clearance of tumor

mass than the combination of anti-LAG-3 and anti-PD-1. Its

ability to compliment anti-LAG-3 presumably results

from the limited effectiveness of Ab blockade in maintaining

the complete blockade of receptors in vivo, as well as its

ability to increase the expression of Tbet (Taylor et al.,

2016), a key transcription factor for the development of

CTLs and the transcription of granzymes and interferon-g1

(Glimcher, 2007). Overall, our findings show that GSK-3

inactivation can potentiate the anti-tumor effects of anti-

LAG-3 even more effectively than the combination anti-

LAG-3 and PD-1 to eliminate tumor cells.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
C57BL/6, PD-1-deficient, OT-I and OT-II Tgmice were bred at the Department of Pathology, University of Cambridge. C57BL/6 were

also bred at St James’s Biomedical Service (SBS) unit, University of Leeds. 8-10 week old female mice were used for all analyses.

Micewere housed in individually ventilated cages (IVC) and all experiments were approved by theHomeOfficeUK (PPLNo. 70/7544).

Primary T cell cultures
Spleen cells (taken from female mice – strains above) were treated with a hypotonic buffer with 0.15M NH4CL, 10mM KHCO3

and 0.1mM EDTA, pH 7.2 to eliminate red blood cells before suspension in RPMI 1640 medium supplemented with 10% FCS,

50uM beta-mercaptoethanol, sodium pyruvate, 2 mM L-glutamine, 100 U/ml penicillin and streptomycin (GIBCO). T cells were iso-

lated from tumor and spleen samples, using T cell purification columns (R&D Systems).

Cell lines
B16F10 melanoma and EL4 lymphoma cells were cultured in DMEMmedium supplemented with 10% FCS, 50uM beta-mercaptoe-

thanol, sodium pyruvate, 2 mM L-glutamine, 100 U/ml penicillin and streptomycin (GIBCO).

METHOD DETAILS

Generation of Cytolytic T cells
OVA specific CD8+ cytoytic T cells (CTLs) were generated by incubating isolated splenocytes OT-I mice with SIINFEKL peptide of

OVA257-264 peptide used at 10nM (Bachem Ag) for 5-7 days.

CTLs were generated in the presence or absence of inhibitors and/or anti-PD-1 or anti-Lag-3 for 5-7 days prior to washing and

analysis by FACs, PCR or in cytoxicity assays. GSK-3 inhibitors were reconstituted in DMSO to give a stock solution of 25mM

and diluted to a concentration of 10uM for in vitro assays.

Activated CD4 T cells
OVA specific CD4+ T cells were generated by incubating isolated splenocytes from OT-II mice with SIINFEKL peptide of OVA323-339

peptide used at 10nM (Bachem Ag) for 5-7 days in the presence or absence of SB415286.

Cytotoxicity Assays
Cytotoxicity was assayed using a Cytotox 96 non-radioactive kit (Promega) following the instructions provided. In brief, purified

T cells were plated in 96-well plates at the effector/target ratios shown using 104 EL4 (pulsed with OVA peptide). Target cells per

well were in a final volume of 200 ml per well using RPMI lacking phenol red. Lactate dehydrogenase release was assayed

after 4 h incubation at 37�C by removal of 50 ml supernatant from each well and incubation with substrate provided for 30 min

and the absorbance read at 490 nm using the Thermomax plate reader (Molecular Devices). Percentage cytotoxicity = ((experimental

effectorspontaneous – target spontaneous)/(targetmaximum – target spontaneous)) x 100. All cytotoxicity assays were reproducible

in at least three independent assays.
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Antibodies and reagents
GSK3 inhibitors used at 10 mM in vitro and 200 mg/mouse in vivo; SB415286, SB216763 and CHIR99021 (Abcam plc). OVA257-264

peptide used at 10nM (Bachem Ag).

Nuclear transfection
In certain cases, naive cells were subjected to nuclear transfection in the presence of various siRNA oligos (i.e., GSK-3). 3.0-5.0ug of

siRNAs were added to 1 3 106 T cells and suspended in 100ul of NucleofectorTM solution for T cells (Amaxa Biosystems, Cologne,

Germany). Cells and oligos were then transferred into a cuvette and electroporated using program X-01 of the NucleofectorTM

(Amaxa Biosystems), and then immediately transferred into pre-warmed RPMI medium.

Flow cytometry
The following antibodies were used in experiments; Anti-CD3 (2C11), anti-PD-1 (CD279, J43) and anti-LAG-3 (C9B7W) (BioXCell);

PD-L1 (E1L3N) (Cell Signaling Technology), conjugated antibodies anti-Granzyme B, anti-Tbet, anti-LAG-3 (C9B7W), CD279

(PD-1), anti-CD8a and anti-CD4 (Biolegend). Flow cytometry of antibody staining of surface receptors was conducted by suspending

106 cells in 100 mL PBS and adding antibody (1:100) for 2hr at 4�C. Cells were then washed twice in PBS. Cell staining was analyzed

on a Beckman Coulter Cytoflex S and by CytExpert software. For intracellular staining, cells were fixed in 4% paraformaldehyde

(PFA), permeabilized with 0.3% saponin (Sigma–Aldrich) and stained with the desired antibody in saponin containing PBS for 2hr

at 4�C.

Quantitative real-time polymerase chain reaction (PCR)
RNA was isolated using an RNAeasy mini kit (QIAGEN) according to the manufacturer’s instructions. Reverse transcription was

performed to generate cDNA using TaqMan Reverse Transcription Reagents (Applied Biosystems). Quantitative real-time PCR

used SYBR green technology (Applied Biosystems) on cDNA generated from the reverse transcription of purified RNA. After pream-

plification (95�C for 2 min), the PCRs were amplified for 40 cycles (95�C for 15 s and 60�C for 60 s) in a sequence detection

system (PE Prism 7000; Perkin-Elmer Applied Biosystems). The exponential phase, linear phase and plateau phase of PCR ampli-

fication were carefully monitored to ensure a measurement of real time transcription. Data obtained was normalized against GAPDH

expression using the standard curve method.

LAG-3-FW, 50- CTACAACTCACCGCGTCATTT-30;
LAG-3-RV, 50-GCTCCAGACCCAGAACCTT-30;
PD-1-FW, 5-CCGCCTTCTGTAATGGTTTGA-3;

PD-1-RV, 5-GGGCAGCTGTATGATCTGGAA-3;

GAPDH-FW, 5-CAACAGCAACTCCCACTCTTC-3;

GAPDH- RW, 5- GGTCCAGGGTT TCTTACTCCTT-3

CTLA-4-FW, 5- ATG GCT TGC CTT GGA TTT CAG-3

CTLA-4 RW, 5- TCA ATT GAT GGG AAT AAA ATA-3

Tbet-FW, 5-GATCGTCCTGCAGTCTCTCC-3

Tbet-RW, 5-AACTGTGTTCCCGAGGT GTC-3

Chromatin immunoprecipitation (ChIP) assay
C57BL/6 primary T cells were purified using CD3+ T cell enrichment columns, 33 106 cells were used as a resting (input) control while

remaining cells were cultured with anti-CD3 with/without SB415286 for 72h. Chromatin was prepared from all samples (33 106 cells)

and used for ChIP assay following the manufacturers protocols - PierceTM Agarose ChIP kit (Thermo Scientific). Chromatin samples

were immunoprecipitated with antibodies to Tbet, LAG-3, a positive control (anti-RNA polymerase II), or a negative control Rabbit Ig,

both of the latter being provided in the kit. The resulting purified DNAwith bound Abwas then quantified by RT-PCR. The results were

normalized to the non-specific antibody control as well as a standardized aliquot of the input chromatin.

Melanoma lung tumor establishment in wild-type mice
B16 melanoma cells (2 3 105 taken from the log phase of in vitro growth) tagged with luciferase were transferred intravenously into

syngeneic C57BL/6 mice 8-10 weeks old.

Treatment with SB415286 (200 mg/mouse) was given on days 7, 9, 11, 13, 15 and 17 post infection. Anti-LAG-3 (200 mg/mouse)

and/or anti-PD-1 (200 mg/mouse) treatment was given on days 7, 10, 13 and 16.

Live imaging was performed at the time points indicated. Mice were injected intraperitoneally with luciferin (2 ug per mouse),

anaesthetized with isoflurane and scanned with an IVIS Lumina (Caliper Life Sciences). For quantitative comparisons, we used Living

Image software (Caliper Life Sciences) to obtain the maximum radiance (photons per s per cm2 per steradian, i.e., photons

s�1 cm�2 sr�1) over each region of interest, relative to a negative control region. The lungswere excised 19 days after initial transfer.
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Isolation of tumor infiltrating lymphocytes (TILs)
Lungs were harvested from mice at the time indicated. Tissue was disrupted using a blade and then incubated in HBSS solution

containing 200units/ml of collagenase at 37�C for 2 hr. Tissue was then passed through a strainer and cells collected and layered

onto ficoll before centrifugation. Tumor infiltrating cells were then collected from the lymphocyte layer.

QUANTIFICATION AND STATISTICAL ANALYSIS

The mean and SE of each treatment group were calculated for all experiments. The number of samples is indicated in the figure

legends. Unpaired Student’s t tests or ANOVA tests were performed using the InStat 3.0 software (GraphPad). In certain instances,

statistics were done using 2-way ANOVA, or by non-parametric MannWhitney at each time point. * p < 0.05, ** p < 0.01, *** p < 0.001.

DATA AND CODE AVAILABILITY

This study did not generate/analyze datasets/code
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