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Abstract: The accuracy of Power System State Estimation (PSSE), its robustness against bad data and the speed of its algorithm 
are crucial to economic and secure system operation. On the other hand, observability and redundancy considerations man- 
date PSSE to take advantage of traditional SCADA measurements along with available PMU measurements. This set of hybrid 
PMU/SCADA inputs has traditionally made the problem formulation nonlinear, and hence time-consuming to solve due to the iter- 
ative process of solution. This paper addresses the foregoing challenges by proposing a novel linear least-absolute-value (LAV) 
estimation, without the need for an initial guess of the system state. The linearity of the proposed PSEE formulation is guaran- 
teed regardless of whether PMU-only, SCADA-only or hybrid SCADA/PMU measurements are utilized. This facilitates fast and 
non-iterative solution of the LAV estimation of system state based on linear programming (LP). The LAV estimator outperforms the 
WLS estimator in dealing with erroneous measurements, by automatically rejecting bad data of any size. An extensive number of 
simulation studies carried out on test systems of different sizes confirm the superiorities of the proposed method in comparison 
with other existing PSSE methods. 

 
 

 
 

1 Introduction 
 
1.1 Motivation 

 
Power system state estimation (PSSE) is a prerequisite for many 
applications in the energy management system (EMS), providing 
input data for economic dispatch, optimal power flow, contingency 
analysis, etc [1]. Many EMSs around the world still rely on mea- 
surements provided by supervisory control and data acquisition 
(SCADA). At the lower level of SCADA system, remote terminal 
units (RTUs) interface various meters to the SCADA system by 
transmitting telemetry data, such as voltage, active power, reactive 
power, circuit breaker status and other measurements to a mas- 
ter station. The aim of PSSE is to estimate the system state, i.e. 
voltage amplitude and phase-angle of network buses, using the 
aforementioned measurements [2]. 

SCADA measurements, however, are nonlinear functions of the 
system state and therefore PSSE has traditionally resorted to iterative 
algorithms such as Newton’s method [3]. Currently, the weighted- 
least-squares (WLS) estimator is widely in use for solving PSSE 
with SCADA measurements as the input data [4]. There are, how- 
ever, several issues related to the WLS estimator such as nonconvex 
nature of the problem and therefore the lack of guaranteed con- 
vergence. Besides, the sensitivity of iterative Newton’s method to 
the starting point and post-processing of the weighted least-squares 
(WLS) estimation for bad data detection and identification (BDDI) 
needs a great deal of attention. In comparison with the WLS estima- 
tor, the LAV estimator [5] is an effective tool for solving PSSE, in 
the sense that it inherently counteracts the inclusion of bad data in 
the measurement set. 

The motivations behind applying the LAV estimator to the PSSE 
can be summarized as follows. First, compared to magnetic instru- 
ment transformer, the accuracy of measurements is much higher in 
optical transformers [6]. Increasing growth of employing these trans- 
formers in substations is apt to the LAV estimation where, as will  be 

shown in this article, the results lean toward the most accurate error- 
free measurements. Second, the most time-consuming procedure in 
WLS estimator is construction of the hat matrix [2] for bad data iden- 
tification. This matrix needs to be revised once the measurement set 
or network topology changes. For large-scale systems, in particular, 
this becomes cumbersome, while the proposed LAV estimator rejects 
bad data automatically without a separate BDDI procedure. Third, 
even though LAV estimator has already been suggested for PSSE, 
its application, in particular to large-scale systems, has been quite 
limited as can be seen in the literature. This has motivated the non- 
iterative formulation in this article. Fourth, the conventional WLS 
estimator assumes perfect knowledge of impedance data and only 
considers error in measurements. This is not the case in practice as 
most utilities encounter impedance data error up to 30 % in their 
database [7]. The LAV estimator is expected to ignore measurements 
associated with these impedance data. 

 
1.2 Literature Survey 

 
LAV application to PSEE has been quite limited due to the compu- 
tational burden of nonlinear PSSE which involves iterations [8–11]. 

In order to overcome the nonlinear nature of PSSE, semidefinte 
and conic programming have been used in [12–14] for convexica- 
tion of power flow equations. The techniques introduced in [15, 16] 
tackle the problem by introducing redundant unknowns in order to 
formulate the problem linearly. Another line of research utilizes syn- 
chrophasor measurements [17] to have linear equations in the first 
place [18–20]. The utilization of line flow measurements has been 
studied since the emergence of PSSE up to recently [12, 21–25]. The 
formulation, however has been nonlinear, unless line measurements 

are provided by PMUs [26]. 

 
1.3 Contribution 

 
In contrast to previous SCADA-based LAV estimators for PSSE, the 
proposed method involves no iterations thereby greatly increasing 
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the speed of PSEE. More importantly, no approximation or con-
straint relaxation is required in contrast to existing convexification-
based algorithms. GPS-synchronized measurements may also be
incorporated in the formulation, although the proposed PSSE
method is generalized in the sense that its input data do not have to be
necessarily synchronized. This paves the way for integrating PMU
measurements into the existing SCADA measurements in order to
run a hybrid PSSE, while keeping solution process quite fast by com-
mercial LP solvers available today. Therefore, the proposed method
overcomes the difficulties of the traditional PSSE such as need for
initial guess, lack of guaranteed convergence and vulnerability to bad
data, while utilizing the same measurements as input data.

2 Problem Definition

The SE problem is defined as finding the most probable state of the
system, i.e. voltage amplitudes and phase angles of different buses,
given a set of measurements at different substations.

2.1 Assumptions

2.1.1 SCADA Measurements: Conventional SE concerns
SCADA measurements updated every 2-6 seconds. It is assumed
that SCADA system provides 1) voltage amplitudes of busbars,
2) active power through branches and 3) reactive power through
branches. A branch refers to either a transmission line or a trans-
former. It should be noted that step-down transformers along with
its associated downstream network may be modeled as a load. Like-
wise, a step-up transformer connects a generating unit to the system.
In these two cases, the flow measurements of transformers are
referred to as injection measurmenents. Accordingly, the last
four above-mentioned measurements are assumed to be also avail-
able for injection measurements. These four types of measurements
are assumed to have independent statistical errors, each following a
Gaussian distribution with zero mean and known variance.

2.1.2 PMU Measurements: PMU-based SE envisioned for
future EMSs utilizes accurate time-tagged voltage and current syn-
chrophasor measurements updated every cycle. It is assumed that
PMUs measure 1) phase angles of busbar voltages, 2) synchropha-
sors of busbar voltages and 3) synchrophasors of branch currents.

It is assumed that the measured magnitude and phase angle of
each voltage or current synchrophasor deviates from its true value
randomly. The measurement error of the magnitude and phase angle
of each synchrophasor independently follows a Gaussian distribution
with zero mean and known variance.

2.2 Formulation

Hybrid SE integrates a limited number of PMU measurements into
the existing SCADA measurements to enhance the accuracy of esti-
mation. Hybrid SE is quite challenging due to the unmatched refresh
rate of SCADA and PMU measurements and nonlinear relationship
of SCADA measurements and complex voltages among others. This
paper aims to present a linear formulation for hybrid SE, including
both SCADA and PMU measurements. The problem can be written
as a set of linear complex equations as follows.

⎡

⎣

[

HHHPMU
]

[

HHHSCADA
]

⎤

⎦

[

VVV

ejδ

]

+

[

ǫǫǫPMU

ǫǫǫSCADA

]

=

[

zzzPMU

zzzSCADA

]

(1)
where H and z denote known coefficient matrix and measurement
vector, respectively. V and ejδ denote unknown vectors of bus volt-
age phasors and phase-angles, respectively. ǫǫǫ denotes the vector of
measurement errors, whose expected value and covariance matrix
are attainable and therefore known.

The above formulation for hybrid SE differs from previous meth-
ods in several ways. First, it is linear. Second, it includes additional

redundant states reflected as ejδ , which is the vector of voltage
phase-angles with respect to the reference bus. Third, it will be

shown that while
[

HPMU
]

is a constant matrix composed of net-

work parameters,
[

HSCADA
]

includes not only fixed network

parameters, but also measurements.
In what follows, known matrices and vectors employed in (1) will

be presented in detail.

2.3 Notations

The formulation presented includes real- and complex-valued vec-
tors and matrices.

Vk Real-valued voltage magnitude at bus k
VVV k Complex-valued voltage phasor at bus k
.meas and .true Measured and true quantities
ε. Real-valued measurement error defined as

.meas − .true

ǫǫǫ Complex-valued measurement error
expressed in terms of different ε’s

. A v × 1 vector
[.] A matrix
[.]n An n× n matrix
[.]m×n An m× n matrix

[(.)] A v × v diagonal matrix with elements of
.v×1

[I]n The n× n identity matrix
0 A v × 1 vector with zero elements
[0]p×q A p× q matrix with zero elements

v1.v2 Element-by-element product of vectors v1
and v2, i.e. (v1.v2)k = v1kv2k

3 Modeling PMU Measurements

3.1 Phase-angle Measurements

PMUs are able to measure bus voltage phase angle, bus voltage syn-
chrophasor and branch current synchrpphasor, all with respect to the
phase angle of voltage at the reference bus. The vector of phase-
angle measurements of voltages can be related to the true vector of
phase angles as

δmeas = δtrue + εδ (2)

which can be rewritten as

ejδ
meas

= ejδ
true

+ jejδ
true

.εδ (3)

where . denotes element-by-element product of two vectors.
Equation (3) is expressed in standard form as

ejδ
meas

= ejδ
true

+ ǫǫǫδ (4)

Provided that the elements of εδ have zero mean, it is straightforward
to show that the mean and variance of εδ and ǫǫǫδ are the same.

3.2 Synchrophasor Measurements of Voltages

Phasor measurement of voltages can be written as

VVV meas = VVV true + ǫVVVǫVVVǫVVV (5)

where ǫǫǫVVV is a zero-mean vector whose variance may be calculated
according to the variances of voltage phase-angle and magnitude
measurements [27].
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Fig. 1: General pi model for transmission lines and transformers

3.3 Synchrophasor Measurements of Currents

Let us consider branch i connecting nodes f and t, as shown in Fig.
1. From circuit equations we have

[

Iis
Iir

]

=

[

yiss yisr
yirs yirr

] [

V i
s

V i
r

]

(6)

where yiss, yisr , yirs and yirr are obtained by the circuit equations.
If the branch is a transmission line, the tap ratio of the trans-

former (τ i) will be 1. If the branch is a transformer, then the shunt
susceptance (bi) will be zero.

Based on (6), the vectors of sending- and receiving-end currents
can be obtained as

Is = [Ys]V (7)

Ir = [Yr]V (8)

where [Ys] and [Yr] are built as follows.

[Ys] = [Y ss] [As] + [Y sr] [Ar] (9)

[Yr] = [Y rs] [As] + [Y rr] [Ar] (10)

where [Y ss], [Y sr], [Y rs] and [Y rr] are diagonal matrices, whose

(i,i)th elements comprise of corresponding elements of (6). [As] and
[Ar] are respectively sending- and receiving-end connectivity sparse

matrices. That is, the (i,f )th element of [As] and the (i,t)th element
of [Ar] are equal to 1 for each branch i that connects nodes f and t,
as shown in Fig. 1.

The vector of branch synchrophasor currents can therefore be
written as

[

IsIsIs
meas

IrIrIr
meas

]

=

[

[Ys]
[Yr]

]

VVV true +

[

ǫIsǫIsǫIs
ǫIrǫIrǫIr

]

(11)

3.4 State Estimation by Synchrophasor Measurements

Equations (4), (5) and (11) may be combined to formulate the PMU-
based SE as follows:

⎡

⎢

⎢

⎣

[0](n−1)×n [I]n−1

[I]n [0]n×(n−1)

[Ys]m×n [0]m×(n−1)

[Yr]m×n [0]m×(n−1)

⎤

⎥

⎥

⎦

[

VVV

ejδ

]

+ ǫǫǫ =

⎡

⎢

⎢

⎣

ejδ
meas

VVV meas

IIIs
meas

IIIr
meas

⎤

⎥

⎥

⎦

(12)

It is worth noting that
[

HPMU
]

and zPMU in the first line of (1)

can be distinguished in (12). Variants of (12) can be seen in the pre-
vious literature on PMU-only SE, probably with the exception of the
first line, where phase-angle measurements are directly used. This
owes to the redundant state variables introduced in this paper aiming
at a unified linear formulation in presence of both SCADA and PMU
measurements.

4 Modeling SCADA Measurements

4.1 Measurements of Bus Voltage Amplitudes

The vector of voltage amplitude measurements can be related to the
true vector of voltage amplitude as

V meas = V true + εV (13)

where εV is characterized by the accuracy level of meters. Element-

wise Multiplication of both sides by ejδ
true

leads to expression of
voltage amplitude measurements in terms of complex bus voltages
as follows:

V meas.ejδ
true

= VVV true + εV .ejδ
true

(14)

which can be rewritten as

[(

V meas)] ejδ
true

= VVV true + ǫVǫVǫV (15)

It can be shown from (14) and (15) that ǫVǫVǫV and εV have the same
mean and variance values.

4.2 Measurements of Branch Current Phasors

Provided that VVV i
s = V i

s∡δ
i
s and IIIis = Iis∡θ

i
s then active and reac-

tive power flows through branch i can be written as

P i
s = V i

s I
i
scos(δ

i
s − θis) (16)

Qi
s = V i

s I
i
ssin(δ

i
s − θis) (17)

which yields

θis = δis + tg−1(−
Qi

s

P i
s

) (18)

Therefore, complex branch current can be written as

IIIis = Iise
jθi

s =

(

Iise
jtg−1(−

Qi
s

Pi
s
)

)

ejδ
i
s (19)

where Iis may be calculated by measured quantities as

Iis =

√

P i
s
2
+Qi

s
2

V i
s

(20)

It should be noted that SCADA measurements contain V i
s , P i

s and
Qi

s. Substituting (7) into (19) we have

(

(Imeas
s − εIs).e

jtg−1(−
Qmeas

s
−εQs

Pmeas
s −εPs

)

)

.ejδ
true
s = [Ys]VVV

true

(21)
which can be rewritten as

(

Imeas
s .e

jtg−1(−
Qmeas

s
Pmeas

s
)
− εIsεIsεIs

)

.ejδ
true
s = [Ys]VVV

true
(22)

To write in a standard form, (22) can be expressed as

(

Imeas
s .e

jtg−1(−
Qmeas

s
Pmeas

s
)

)

.ejδ
true
s − ǫIsǫIsǫIs = [Ys]VVV

true
(23)

And in terms of state variables we have

[(

Imeas
s .e

jtg−1(−
Qmeas

s
Pmeas

s
)

)]

[As] e
jδtrue

− ǫIsǫIsǫIs = [Ys]VVV
true

(24)
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Fig. 2: Modeling Injection Measurements

Similarly, for the receiving-end currents we have

[(

Imeas
r .e

jtg−1(−
Qmeas

r
Pmeas

r
)

)]

[Ar] e
jδtrue

− ǫIrǫIrǫIr = [Yr]VVV
true

(25)

It should be noted that Imeas
s .e

jtg−1(−
Qmeas

s
Pmeas

s
)

and

Imeas
r .e

jtg−1(−
Qmeas

r
Pmeas

r
)

are branch current phasors, expressed in
terms of SCADA measurements, provided that current amplitude
measurements are telemetered to the control center. However, these
current phasors are not synchrophasors as they are not expressed
with respect to a common phase-angle reference. Therefore, there
is no need for the GPS signal for linear expression of SCADA
measurements in (24) and (25).

4.3 Injection Measurements

Injection currents, either by generators or loads, may be related to
complex voltages of the network through bus-admittance matrix.
This is simply expressed in matrix form as

Iinj = [Ybus]V (26)

Although the injection measurements often comprise of injected
active and reactive powers, the injected current amplitude can also
be telemetered by SCADA. A procedure similar to (16)-(18) can be
followed based on Fig. 2 to express the complex injected current as:

IIIiinj = Iiinje
jθi

inj =

⎛

⎝Iiinje
jtg−1(−

Qi
inj

Pi
inj

)

⎞

⎠ ejδ
i

(27)

where superscript i refers to the injection bus and Iiinj is calculated
by

Iiinj =

√

P i
inj

2
+Qi

inj

2

Vi
(28)

Substituting (27) into (26) we have

⎛

⎝(Imeas
inj − εIinj

).e
jtg−1(−

Qmeas
inj

−εQinj

Pmeas
inj

−εPinj

)

⎞

⎠ .ejδ
true

=[Ybus]VVV
true

(29)
It is worth noting that the obtained equation resembles (21). A
similar procedure is therefore followed to write:

⎡

⎣

⎛

⎝Imeas
inj .e

jtg−1(−
Qmeas

inj

Pmeas
inj

)

⎞

⎠

⎤

⎦ ejδ
true

− ǫIinj
ǫIinj
ǫIinj

=[Ybus]VVV
true

(30)

4.4 State Estimation by SCADA Measurements

Equations (15), (24), (25) and (30) may be integrated as a system of
linear equations as follows.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[I]n
[0]1×(n−1)

[−V meas \ V meas
1 ]n−1

[Ys]m×n

[0]n1
s×(n−1)

−
[

ÎsÎ ŝIs
meas

]

m−n1
s

[

Âs

]

(m−n1
s)×(n−1)

[Yr]m×n

[0]n1
r×(n−1)

−
[

ÎrÎ r̂Ir
meas

]

m−n1
r

[

Âr

]

(m−n1
r)×(n−1)

[Ybus]n×n

[0]1×(n−1)

−
[

ˆIinj
ˆIinjˆIinj

meas
]

(n−1)×(n−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎣

V1
V̂̂V̂V

ejδ

⎤

⎦

(2n−1)×1

+ ǫǫǫ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

V meas
1

0(n−1)×1
ˆIs1
ˆIs1ˆIs1

meas

0
ˆIr1
ˆIr1ˆIr1

meas

0
IIImeas
inj,1
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(31)
Let us go through (31) in detail and clarify its derivation from

(15), (24), (25) and (30) one by one.

4.4.1 Voltage Amplitude Measurements: There is a distinc-
tion between voltage at the reference bus (real-valued voltage

V1) and the vector of complex voltages at other buses (V̂̂V̂V ) in
the state vector. By definition, we know that the phase angle
of V1 is zero and any other voltage at bus k, k = 2, 3, ..., n,

is expressed as VVV k = Vke
jδk . The first row of (31) reflects the

measurement of bus voltage at the reference bus (bus 1). The
other n-1 rows reflect bus voltage measurements at other buses. It
should be noted that V meas \ V meas

1 denotes the real-valued vector

[V meas
2 , ..., V meas

n ]T and it is recalled that [V ] denotes a diagonal
matrix whose elements are those in vector V . Accordingly, the first
n rows in (31) are a rephrased version of (15).

4.4.2 Branch Current Measurements: It is assumed that there
are sending-end measurements from m branches in the network.

To save space, we define ÎsÎ ŝIs
meas � Imeas

s .e
jtg−1(−

Qmeas
s

Pmeas
s

)
. There

is a distinction made between branches whose sending-end bus is

the reference bus and other branches. ˆIs1
ˆIs1ˆIs1

meas and ÎsÎ ŝIs
meas in the

RHS and LHS of (31) denote the vectors of branch current measure-
ments associated with these two sets, respectively. n1

s is the number
of branches whose sending-end bus is the reference bus. That is,
according to Fig. 1:

n1
s = |{i = (f, t)|f = 1}| (32)

[

Âs

]

is the sending-end connectivity matrix for branches whose

sending end is not bus 1. This matrix is obtained from [As] in (9)

by removing the n1
s rows related to bus 1 in [As].

m rows are therefore devoted in (31) to branch current mea-
surements according to (24). The difference is that since δ1 = 0 in

(24) by definition, ÎsÎ ŝIs
meas in (24) is partitioned into two vectors of

ˆIs1
ˆIs1ˆIs1

meas and ÎsÎ ŝIs
meas. Receiving-end currents are treated similarly,

assuming that current amplitudes and active and reactive power flows
at both ends of the m branches are measured.

4.4.3 Injection Measurements: Injection measurements are
treated very much like branch current measurements. It is assumed
that there are n injection measurements at all buses. The vector

of injection measurements IinjIinjIinj
meas � Imeas

inj .e
jtg−1(−

Qmeas
inj

Pmeas
inj

)
in

(30) is partitioned into the injection measurement at the reference
bus, i.e. IIImeas

inj,1 , and the vector of injection measurements at buses

2, ..., n, i.e. ˆIinj
ˆIinjˆIinj

meas. It is straightforward to show that the last n
rows of (31) is rephrasing (30).

5 Hybrid Linear LAV Estimator

Equation (31) can be appended to (12) in order to form (1). It is

worth noting that
[

HPMU
]

, ǫǫǫPMU and zPMU are presented in
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(12), while
[

HSCADA
]

, ǫǫǫSCADA and zSCADA can be seen in

(31). Equation (1) can be rewritten as a system of linear equations as
follows.

[HHH]

[

VVV

ejδ

]

+ ǫǫǫ = zzz (33)

where [HHH] is of size (4m+4n−1)×(2n−1) while ǫǫǫ and zzz are of
size (4m+4n−1)×1. Theorem 1 helps solve (33), optimally.

5.1 Robust Estimation of Voltage Phase Angles

It is evident from (33) that no constraint is imposed on the ampli-

tude of ejδi , which is 1. Otherwise, the problem would be nonlinear
again. To resolve this issue, the idea is to solve the problem in two
steps: first, the phase-angle variables are estimated while preserving
the linear structure of formulation. Next, the estimated phase angles
can be used to estimate the system state by another reduced linear
system of equations. The first problem is dealt with here while the
next will be solved in the subsequent subsection.

Separating (33) into real and imaginary parts yields

⎡

⎣

[

HR
] [

−HI
]

[

HI
] [

HR
]

⎤

⎦

[

xR

xI

]

+

[

εR

εI

]

=

[

zR

zI

]

(34)

where (.)R and (.)I denote the real and imaginary parts of the
complex argument, respectively. In a compact form, this real-valued
system of equations is written as

[M ]y + r = b (35)

The unknown vector obtained by an LAV estimator is comprised
of

y =
[V1 V2cosδ2 ... Vncosδn cosδ2 ... cosδn

V2sinδ2 ... Vnsinδn sinδ2 ... sinδn]
T (36)

Least absolute value (LAV) estimation of y minimizes sum of the
absolute of residuals

Min
y

‖r‖1

s.t. r = b− [M ]y
(37)

An equivalent linear programming (LP) problem for (37) can be
defined as [5]

Min
y

fT r

s.t.

[

[−M ] [−I]
[M ] [−I]

] [

y
r

]

≤

[

−b
b

]

(38)

where f may consist of identical non-zero elements (LAV estima-
tor) or the the inverse of the standard deviation of the associated
meter (WLAV estimator). The LP problem in (38) can be rewritten
in matrix form as

Min
y

wTu

s.t. [B]u ≤ v
(39)

where

w =
[

0 f
]T

u =
[

y r
]T

v = [−b b]T
(40)

Existing LP solvers are able to solve (39), efficiently. Once (39)
is solved, voltage phase-angles may be estimated robustly by

δ̂i = tg−1
ˆsinδi
ˆcosδi

(41)

where ˆsinδi and ˆcosδi are the elements of u, obtained by the LAV
estimator.

5.2 Linear LAV Estimator Using Estimated Phase Angles

Once the phase angles of complex voltages at all buses are calculated
from (41), it is possible to formulate the problem as another linear
LAV estimation, aiming at estimating the bus voltage amplitudes.
This is achieved by putting all the voltage and current measurements
in (31) in the measurement vector as below.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[I]n
[Ys]m×n
[Yr]m×n

[I]n
[Ys]m×n
[Yr]m×n
[Ybus]n×n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

VVV
]

+ ǫǫǫ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

VVV meas

IIIs
meas

IIIr
meas

[

ejδ̂
]

[V meas]
[

ejδ̂
][

ÎsÎ ŝIs
meas

]

[As]
[

ejδ̂
][

ÎrÎ r̂Ir
meas

]

[Ar]
[

ejδ̂
][

ˆIinj
ˆIinjˆIinj

meas
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(42)

where
[

ejδ̂
]

is a diagonal matrix containing ejδ̂i values solved

in (41). It should be noted that (42) is the combination of (12)
and (31), except that thanks to the phase-angle estimates in (41),
the unknown terms associated with the phase angles have become
known and moved to the right-hand side. Only the first three lines of
(42) are related to PMU measurements and other lines are comprised
of SCADA measurements.

After separating the real and imaginary parts of (42) it can be
transformed into a real-valued system of linear equations as

[G]p+ s = q (43)

where

p=[V1 V2cosδ2 ... Vncosδn V2sinδ2 ... Vnsinδn]
T

(44)

It is worth noting that (43) is similar to (35) and hence the same
process may be followed to solve it by an LAV estimator. Another LP
problem may be developed to minimize the sum of absolute errors
in (43). Once (43) is solved by the LAV estimator, unknown states
of the system are attainable from the elements of p as

V̂i =
√

p̂2i + p̂2n+i (45)

δ̂i = tg−1 p̂i
p̂n+i

(46)

for i=2,...,n. The estimated values are robust to measurement errors
thanks to the LAV estimator, which is capable of rejecting outliers,
automatically [5]. Moreover, with the advent of computer proces-
sors, the LP-based LAV estimators used here are run very fast even
for large-scale problems. As a final note, in contrast to some of pre-
vious methods, no assumption regarding the network condition is
required and there is no approximation when modeling the PSSE
problem as an LP problem.

6 Case Studies

In this section, the proposed linear LAV state estimator is tested by
more than 10000 simulations. The proposed estimator is compared
with the conventional iterative WLS estimator based on Gauss-
Newton algorithm [2]. The performance index used for comparison
is the root-mean-square error (RMSE) defined as

RMSE =

√

∑n
i=1 |V̂VV i − VVV i|2

n
. (47)

where V̂îVîVi = V̂ie
jδ̂i is the estimated complex voltage at bus i

obtained by (45) and (46). In practice, the true complex voltages
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Table 1 Average of RMSE for Different Systems

System WLS LAV

9-bus 0.00526 0.00048

14-bus 0.00564 0.00047

30-bus 0.00636 0.00065

57-bus 0.02138 0.00121

118-bus 0.00481 0.00065

300-bus 0.01742 0.00652

1354-bus 0.00719 0.00042
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Fig. 3: LAV versus WLS estimator (Flow measurements from one
end).

VVV i are never known. Fortunately, this is not the case in a simulation
environment, where trueVVV i values are simulated as the output of the
load flow function in MATPOWER [28].

RMSE for the LAV estimator is tested on the IEEE 118-bus test
system [29]. Voltage and flow measurement errors are assumed to
be Gaussian with zero mean and the standard deviations of 0.001 pu
and 0.002 pu, respectively. To generate bad data, 20% of randomly
chosen branch flows have been polluted by Gaussian noise with zero
mean and standard deviation of 0.1 pu. Fig. 3 reflects the results of
100 Monte Carlo simulations, where voltage amplitudes at all buses
and active and reactive power flows from one end of each line are
available. In Fig. 4, it is assumed that active and reactive power
flows from both ends of each line are available. The WLS estima-
tor utilizing Gauss-Newton algorithm is available in MATPOWER
(doSE.m) [28]. Table II shows the estimation results for other IEEE
test systems. It can be observed that similar to Figs. 3 and 4, the
LAV estimator outperforms the WLS estimator in presence of bad
data. The reason, as expected, is the robustness of the LAV estimator
against outliers, while the WLS estimator leans toward bad data [5].

A comparison is made between the solution time of the proposed
method, conventional method [2] and the SOCP algorithm in [12],
whose results are reflected in Table 2. The conventional and pro-
posed methods have been implemented on a PC with Core i5 8250U
CPU at 1.6 GHz and 8 GB of RAM. The results of [12] are directly
reported, where a Windows system with 2.7 GHz CPU and 8GB
RAM is used except for the last system for which a macOS system
with 2.2 GHz CPU and 12 GB RAM is utilized. It can be seen that
for small- and medium-scale systems the proposed method is much
faster than [12], while for large-scale systems the solution time is
comparable. The linear nature of the proposed method along with
efficient interior-point algorithm for solving large-scale LP problems
makes the proposed algorithm superior in terms of computational
burden.

Fig. 5 compares LAV and WLS estimators in terms of their cor-
responding average of RMSE for 1000 Monte-Carlo simulations
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Fig. 4: LAV versus WLS estimator (Flow measurements from both
ends)

Table 2 Solution time of State Estimation (in seconds ) for Different Systems

System Convexified LAV [12] Linear LAV

9-bus 1.58 0.021

14-bus 2.54 0.034

30-bus 3.21 0.08

57-bus 4.09 0.16

118-bus 5.63 0.44

300-bus NA 2.56

1354-bus 9.48 11.32

9241-bus 109.14 89.93

when erroneous measurements are deviated from their true values by
20%. Sensitivity analysis on the percentage of bad data in the mea-
surements has also been carried out, in conditions where erroneous
measurements comprise 1% up to 20 % of total measurements.
In addition, sensitivity analysis on the measurement accuracy level
related to good data (σ) is carried out (x-axis). The less the ratio of
RMSELAV /RMSEWLS , the better is the performance of LAV
estimator. It can be seen form sensitivity analysis that when bad
data deviate from their true values significantly, the LAV estima-
tor outperforms the WLS estimator. It can be seen that the LAV
estimator is effective the most when the percentage of bad data
compared to good data are high. Accordingly, the LAV estimator
shows its robustness compared with WLS, when 10 to 20 % of mea-
surements are corrupted with bad data. It should be noted that the
LAV estimator outperforms WLS estimator in all conditions as the
RMSELAV /RMSEWLS is less than 1 for all cases.

7 Discussion

The LAV state estimator essentially ignores bad data and hence
rejects them automatically. The WLS estimator, however, needs
bad data detection and identification (BDDI) carried out usually
be largest normalized residual test (LNRT) [2].LNRT requires the
computationally expensive [2] construction of Hat matrix, which
depends on measurement set and network topology. Moreover, an
exact BDDI requires calculating the normalized residuals, removing
the erroneous measurement with the largest normalized residual and
running SE again. Therefore, the WLS estimator has to be run b+ 1
times where b is the number of erroneous measurements. Therefore,
if the system is prone to bad data, LAV estimator can be efficient
since no hat matrix is required. Furthermore, if there are several
erroneous measurements, the LAV estimator becomes faster than the
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Errorneous Measurements are Normally Deviated by STD of 20%
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Fig. 5: LAV versus WLS estimator

WLS estimator, since its solution time is independent of the number
of bad data.

Technical shortcomings and challenges of the LNRT for BDDI in
the WLS estimator are briefly discussed here. The first challenge is
the dependency of measurement errors. That is, for example, active
and reactive power measurements are processed with inputs from
voltage and current transformers. Therefore, an erroneous voltage
transformer output spreads over active and reactive power measure-
ments [30]. In addition, several good measurements may be removed
along with the bad one if traditional LNRT is employed [30].

The second shortcoming is the incapability of LNRT in identify-
ing bad data in certain conditions [31]. A single erroneous leverage
point even with gross error is unlikely to be identified by LNRT.
Moreover, a group of interacting leverage points also may remain
undetected by LNRT. It is shown that these leverage point may
account for more than a third of the total measurements [31]. It
should be noted that these problems occur even when the measure-
ment redundancy is reasonable. Otherwise, if critical measurements
are erroneous, the LNRT will not be able to identify them [2].

The third challenge is the assumptions of the WLS estimator,
where network parameters are assumed to be known exactly. How-
ever, in practice most of the impedances are approximate values with
accuracy levels comparable to those of measurements. Most utilities
are reported to include impedance data in their database with up to
25% error compared to their real vlues [7]. The complications of
LNRT in WLS estimator make that estimator quite vulnerable to
cyber attacks on power systems, most notably false data injection
attacks [32].

8 Conclusion

A robust linear LAV estimator has been presented in this article to
deal with rejection of bad data in power system state estimation. In
contrast to previous robust state estimators, the proposed algorithm
is generalised in the sense that either SCADA or synchrophasor mea-
surements or a combination of both can be used as input data. The
proposed estimator is linear with no approximation, which renders
its solution process non-iterative. As opposed to the iteration-based
algorithms requiring an update of the Jacobian matrix after each iter-
ation, the proposed method requires only two LP problems to be
solved.

The WLS estimator needs constructing the computationally
expensive hat matrix and to be run for each erroneous measurement
separately, if it is successful in dealing with multiple erroneous mea-
surements. In contrast, the proposed estimator automatically rejects
bad data, which is advantageous over the WLS estimator in practice,
in terms of the computational effort.

Simulation results indicate that the proposed LAV estimator out-
performs the conventional WLS estimator in terms of accuracy. That
is if bad data is not removed from the measurement set, the proposed
estimator leads to more accurate estimates than the WLS estimator.
This roots in the objective function of the LAV estimation, which is
optimized by ignoring the erroneous measurements while the WLS
estimator leans toward bad data in order to minimize the sum of
squared errors. In particular as the accuracy of meters increases, the
LAV estimation results can be more than 10 times as accurate as the
WLS estimator when there is gross error in a few measurements.
This feature is especially attractive for large-scale state estimation,
without the concern over dealing with multiple bad data.
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